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Source code

Get code/data from
https://github.com/DrugowitschlLab/CoSMo2017

) DrugowitschLab / CoOSM02017 Private @ Unwatch~ 1 % Star 0 YFork 0
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights ~
Data and scripts for the CoSMo 2017 summer school Edit
Add topics
D 5 commits ¥ 1branch © O releases 22 1 contributor &z BSD-3-Clause
Branch: master v New pull request Create new file  Upload files = Find file
jdrugo Removed links in README.md's - Clone with HTTPS @ Use SSH
. Use Git or checkout with SVN using the web URL.
s dm-0.3.1 Add initial data and code
https://github.com/DrugowitschLab/CoSM E.j.
a rs_datacode Fixed links in various README.md
g
i vis_vest Removed links in README.md's Open in Desktof ‘ Download ZIP ’
[E) LICENSE Initial commit TN Yo

Extract & open folder in Matlab, try Load( ‘phs_ah.mat’)

Add dm library to path

>> addpath(‘dm-0.3.1/matlab/’)
>> ddm_fpt_example
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Decisions are endemic

Every action is a decision

Requires: identification of choice options
e.g., should | stay, or should | go?

gather knowledge (external/internal) about either option
evaluate choices with respect to expected outcome

e.g., if | stay there will be trouble
if | go there will be double

Main focus today: perceptual decisions
(decisions based on what we observe)

speed? accuracy? underlying process?



Uncertain information

Information we have about the world is uncertain

Uncertainty due to noise and ambiguity

Noisy sensory noise (physical limitations)
discretization (spatial limitations)
noise in the environment

Ambiguous no unique reconstruction of environment
e.g. visual 3D to 2D mapping
mixture of odors




(Little) time contributes to uncertainty

There is no such a thing as an instantaneous percept

Yabus (1967)

Uncertain evidence is accumulated across time / space

Perceptual decisions (at least) require evidence accumulation across time



How much evidence should we accumulate?

More evidence is expected to lead to better decisions - why ever stop?

(“Not to be reproduced”, Magritte, 1937)

Reasons to stop accumulating: evidence/time is costly
world is volatile

evidence “flow” is limited



Costly evidence introduces speed/accuracy trade-off

accumulate evidence over time

>

commit to / execute choice

fast choices «— speed/accuracy trade-off ——— slow choices

might be inaccurate should be accurate

come at low evidence cost come at high cost



The speed/accuracy trade-off in experiments

Forced choice paradigm

- show two simuli
(sequentially or simultaneously)

- choice is always A or B (or A and notA)
- choice is made (forced) on each trial
- difficulty might vary across blocks or trials

- record reaction time (RT)
choice

Examples
- word vs. non-word decisions
- numerosity judgments

- random dot motion task

sssss

“C’mon, ¢’'mon—it’s either one or the other.”




Word vs. non-word decisions

(e.g., Ratcliff, Gomez & McKoon, 2004)



Word vs. non-word decisions

(e.g., Ratcliff, Gomez & McKoon, 2004)

stay



Word vs. non-word decisions

(e.g., Ratcliff, Gomez & McKoon, 2004)

slan



Word vs. non-word decisions

(e.g., Ratcliff, Gomez & McKoon, 2004)

gohm



Word vs. non-word decisions

(e.g., Ratcliff, Gomez & McKoon, 2004)

goon



Word vs. non-word decisions

(e.g., Ratcliff, Gomez & McKoon, 2004)
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Uncertainty: processing words / memory
Difficulty: word frequency / phonetic/lexical similarity / ...

Usual findings: decisions faster and more accurate for high-frequency words



Numerosity judgments

(e.g., Ratcliff, 2006)

Examples of Stimuli for the Experiment

Large Number Small
of Dots

More/less than 50 dots?

Displays closer to 50-dot threshold: slower and less accurate



The random-dot motion task (RDM)

(e.g., Newsome, Britten, Movshon & Shadlen, 1989; Roitman & Shadlen, 2002)

51.2% coherence 12.8% coherence

“right”?

“respond as quickly and accurately as possible”

Uncertainty: stimulus is inherently ambiguous

Difficulty: coherence
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Behavior in the random dot motion task

Palmer, Huk & Shadlen (2005) dataset: 6 human subjects performing RDM task

load(‘phs_[subj_1id].mat’)
(subj_1d € {ah’, ‘eh’, ‘3d’, ‘3p’, ‘mk’, ‘mm’})

Contains three vector, one element per trial:
choice Q - "left” / 1 - "right”
rt reaction time in seconds
cohs signed coherence, positive/negative — rightwards/leftwards motion

To become familiar with dataset:
- open plot_psych_chron.min editor

- update line 17 to compute vector corr_choice (0 = incorrect, 1 = correct)
Hint: choice is correct if “right” for rightward motion, “left” for leftward motion



Behavior in the random dot motion task

Computing correct choices

corr_choice
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Higher coherence - faster, better choices

0.5 * (sign(cohs + 1le-6) + 1) == choice;
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Speed/accuracy trade-off in the PHS dataset?

load(‘phs_[subj_1id].mat’)

plot_speed_accuracy per-coherence RT median split

Subject JD Subject MM
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faster choices also more accurate?

Here, most RT fluctuations driven by fluctuations in stimulus informativeness
(would need to compare fast/slow choices for same stimulus sequence)



Usually skewed reaction time distributions
Try plot_rt_dist and plot_rt_quant
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plot_rt_dist(coh, choice, rt) plot_rt_quant(coh, choice, rt)



Features of a successful decision-making model

choice probability across conditions

Fits mean reaction times and \\

Accounts for variability:
reproduces RT distributions
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Accumulator models

Noisy evidence in small samples of continuous evidence stream

Accumulation to bound
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Exists in multiple variant, with
discrete (Poisson) inputs,
continuous (Gaussian) inputs, etc.



Accumulator model have their issues
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The drift diffusion model

(or diffusion decision model; or diffusion model; Ratcliff, 1978)

Introduced by Ratcliff (1978) as model for memory recall;
one of the most successful models in neuroscience

x1(t) x2(t)

I (t) (1)

accumulators
- perfectly
anti-correlated

single decision process



The drift diffusion model

particle location x(t)

correct! choose “right”

incorrect! choose “left”

drift = K x coherence

white noise
process

drift  diffusion
standard dev.

|u| = mean evidence strength
sign(u) = determines correct choice
Il = signal/noise ratio

accumulating uncertain evidence = stochastic particle motion

l

commit to / execute choice = threshold crossing



Simulating the drift-diffusion model
Using the Euler method:

From continuous-time process...

dx x(t + 6t) — x(t)

E=H+0U(t)’v’ 57

...t1o discrete-time simulation
x(t + 6t) = x(¢t) + udt + Vétoz

z ~N(0,1)

(zero-mean unit-variance
Gaussian random number)

See, for example, sim_ddm.m

Careful: too large 6t cause
biased first-passage time

Drugowitsch (2016)

Alternatives: see dm library



Some diffusion model predictions

2 —
Generated with sim_ddm.m (DT1a.0) 0c, wu=0
1 0r =10 tanh(8p), otherwise
p=0 U
p(right) = T4,
i’ — . (e.g. Palmer, Huk & Shadlen, 2005)

decision time [s]

e
-
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partcie location xit)

What happens for higher/lower bounds?
Try it out: ddm_s1im.m, setting of theta




Adjusting drift and boundary heights

Low
.
-t+—— 7 ——»

High
Drift

Time—»

\

Time —»

Vg

Speed/Accuracy tradeoff

Only boundary separation changes

Time ——»

Lower drift:

slower, less accurate choices

Raise bound:
Slower, more accurate choices

Quality of evidence from the stimulus
Only drift rate varies

‘ accuracy  [hig
low
Speed
speed
f accuracy

Ratcliff & McKoon (2008)



Diffusion models match well observed behavior

Assume that u = k X coherence,
reaction time = diffusion model decision time DM + non-decision time t,,;.
Gives 3 parameters: k, 0, t,,4

Minimizing parameter log-likelihood
given mean RTs and choice probabilities (paimer, Huk & Shadlen, 2005)

fit_psych_chron(cohs, choice, rt)

Subject JP




...but there are issues: #1 symmetry

Incorrect choices are frequently slower than correct choices

Uncomment relevant lines

_ slower incorrect
inplot_psych_chron.m

_ than correct choices
Subject MM /
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(but see subj JP)



Vanilla diffusion models predict symmetric RT distributions
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...but there are issues: #2 long-tail predictions

Observed reaction time distributions don’t always have a long tail
Try plot_fitted_rt_dists(cohs, choice, rt)
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Monkeys are even less patient

Roitman & Shadlen (2002) dataset: 2 monkeys performing RDM task

load(‘rs_[monkey_1id].mat’) (monkey_1id € {'b’, ‘n’})
plot_fitted_rt_dists(cohs, choice, rt)
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Heuristic “fix”: the Ratcliff diffusion model

+ diffusion models implement both, and fit mean RTs and choice probabilities
- predict same correct/incorrect RTs
- don’t match reaction time distributions

How to fix: add more parameters!

RT=400ms Weighted Weighted
Pr=95 — % Mea% RT Mean RT
s* =491ms Pr=.98 Pr=.80 = 395ms
RT=600m a RT=350ms RT=450ms
r=.80 < Correct Respond A
a orrect Respond A a+.3s; V' Responses
Responses 2
272 a-.5s,
Error Responses
0 Respond B
Error Responses Pr=.20 Pr=.02
0 > G Respond B RT=350ms RT=450ms
Pr=.05 %\: Weighted Mean RT
Mean RT = 359ms
=560ms

Ratcliff & McKoon (2008)

Variable drift rates: slower errors Variable starting point: faster errors
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Normative approach: how ought we make decisions?

: : handling uncertain information
accumulating evidence _ _ o
using Bayesian statistics

Rev. Thomas Bayes
(1701-1761)

v

o _ trading of benefits with costs
deciding when to decide

using Dynamic programming

Richard E. Bellman
(1920-1984)



A model for the momentary evidence

Assume: fixed coherence p,, two motion directions, u € {—p, 110}
uniform prior, p(u = —119) = p(u = 119) =

At any point n in time: noisy observation x,, of u,

/"
pCealt) = NCealu, 1) P
¥ :

“x,, is Gaussian/Normal : >
with mean p and variance 1” —Ho 0 Ho Xn

+“—>

difficulty

Observe x4, x,, ...; identify if they came from blue or distribution

p(.u — |x1:n) =7 Kalman filter

........

X1 X2 X3

Why not use Kalman fiter? Explicit derivations provide further insight



Deriving the posterior
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Moving to continuous time

Smaller time steps §t: less reliable evidence §x,, per time step

_><_

/T\ p(8x, 1) = N(8x,|udt, 6t)

—Ho Ho gxn

Find p(u = 119|x1.5), USINg N6t =t and )., 6x,, = x(t)
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Shows why diffusion models are useful
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a Y n(6) x(t) < 0implies p(u =

x(t)

000000000000
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000000000000
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Normative approach: how ought we make decisions?

accumulating evidence

handling uncertain information
using Bayesian statistics

Rev. Thomas Bayes
(1701-1761)

o / ) trading of benefits with costs
deciding when to decide _ _ _
using Dynamic programming

A

Richard E. Bellman
(1920-1984)



When to stop accumulating evidence?

Assume: aim is to maximize reward
(reward 1/0 for correct/incorrect choices)

more momentary evidence

expected reward

higher expected reward

¢

accumulate forever!

time
accum_evidence_reward.m

Stopping to accumulate is only rational in presence of cost
- Motivational/effort cost

- Cost of attention/computation

- Opportunity cost; less time on future choices
(can be internal & external)



Objective functions

Maximizing expected reward for single choice

Payoff 1 for correct choice, O for incorrect choice,
cost ¢ per second accumulation

ER = PC — c(t)

expected reward

time

Maximizing expected reward across multiple choices

Sequence of choices with inter-choice-interval t;

©

_ PC—c(t)
RR = (t) + ¢;

reward rate

Optimal stopping required closed-loop control - Atim?e



Interlude: dynamic programming (DP)

Markov decision process (MDP)

- set of states, s4, 55, ...

- set of actions, a4, a,, ...

- transition probabilities, p(s’|s, a)
- rewards, r (s, a)

- discount factor, y < 1

Aim: find optimal policy, m(s) returning action
for each state to maximize expected
discounted future reward (or return)

VTE(s) = <2 Y™ r(sp, T[(Sn))> = T(S; T[(S)) + V<Vn(5,))p(s’|s,n)

\ p(51,52,...|)

“value” of state s under policy

n=0



Example: navigation

Specific solution:

V(s =yia+y? .
- choose m; if a 2;—)/

V7™2(sy) = y?

55 54_ 53 S Sl
Ty 1 a+y ya+y? v3a +y*
T2 1 X X Y2

Bellman’s principle of optimality

“optimal policy: whatever initial state/decision, the remaining decisions must
constitute an optimal policy with regard to state resulting from first decision”

Bellman’s equation:  V*(s) = m§1X{T(S, a) + vV (Nps' 100}

f

the maximizing action provides the optimal policy



Dynamic programming applied to optimal stopping

- set of states, s4, 55, ... —— accumulated evidence/belief,
g(t) = p(p = uolx(t))
- set of actions, a4, a, ... — accumulate/make choice

- transition probabilities, p(s’|s,a) — change of accumulated evidence,
belief transition p(g’|g)

- rewards, r (s, a) — cost for accumulation/rewards
choose jij:r=g

choose —uy:r=1—g

accumulate another 6t: r = —cdt

- discount factor, y < 1 — assumey =1

Bellman’s equation for perceptual decisions

V(g) = max {g, 1—g, (V(g’))p(g/Lg) — c5t}



The belief transitions function

Examples for p(g’|9)

0

o 0.5 A

o 0.5 A

decreasing 4t

»
Ll

dt = 0.001, muO = 1.000

.dt = 0.100, mu0 = 1.000

0.5 A

0 dt = 0.010, muO = 1.000

0.5 1

decreasing u,

0.5

0.5

dt = 0.010, mu0 = 1.000

»
Ll

dt = 0.010, mu0 = 2.000

0.5 A1

0.5 A1

o 4dt = 0.010, mu0 = 0.200

0.5
g

plot_g_trans_point_hyp.m




The value function for perceptual decisions

V(g) = max{g,1—g,(V(g"),(y'|g) — 5t} ZﬁZ:\ /

0.7

0.6
[}
=0.5+

3 < <
. f? > | | =,
What happens if ¢ or u, changes” o | accumuate | 3
Try it out: ' g | more evidence = 2
. . 0.2 - e O
plot_dp_valueintersect_point(u,,c) o] ;
’ 0 OTZ Oj4 ) 0?6 0?8 l
1 _ 9 belief g Hg
plot_dp_diffusion_point(u,,c):
Hg 0.9 SN gx M
E Ao.e - /J . x(t) — ﬁlog 125?,:)
o) G 05 oo e > ob——— -t - ——-——-——— =
_Q 0.4
1— 9g 01t _Hx
time tirine

Diffusion models implement the reward-maximizing strategy



Finding the bound without dynamic programming

We now know: diffusion model with time-invariant bound is optimal

Initial aim: maximize ER = j’C — c(t\‘) —
1

maximize directly
0
11 o-2mf M—Otanh(uoe)

Complete direct_bound(uy,c) in plot_dp_bound_direct_maximization.m

ER_deriv = @(theta) (mu@ - 2 * ¢ * theta) * sech(theta * mu@)A2 / 2 - ..

c * tanh(theta * mu@) / mu0;
theta = fzero(ER_deriv, 1);

o
o
T

enough evidence
for fast choices

=<4
o
T

bound 9
bound 9

too little
evidence

0 0t2 0.‘4 0.‘6 018
cost ¢ drift mu0
cost ¢ drift g



The sequentual probability ratio test (SPRT)

For this simple case, the optimal policy has been known for a while.

Sequential probability ratio test (SPRT) wald, 1947; Wald & Wolfowitz, 1948; Turing, 194?)

Given two hypotheses H;, H, with known likelihoods p(x|H,), p(x|H);
sequence x4, X,, ... generated by which hypothesis?

Among all test with same power (type 1 error),
SPRT requires least samples on average wald & Wolfowitz, 1948).

SPRT accumulates evidence as long as
v < an(xanl) <

=T pGlty) =4

B

Relates to diffusion models and expected reward maximization (Bogacz et al., 2006)

Limitation: assumes known likelihood functions (e.g. known coherence)
the same applies to our derivation so far

This rarely holds in real-world decisions!
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Introducing difficulty as a nuisance

Nuisance: not central to the question, but we have to deal with it

e.g., RDM stimulus: motion direction + motion coherence

want to know don’t care

latent state of interest,

z = sign(p) € {~1,1} nuisance,
Vs determines difficulty,
Stimulus variable: p=2zxy y=lul »»
\ I y
p(u)A} p(.u) — N(O; O-/f ) hard easy >

/Tﬁ> K \

easy ,—_1 hard ;=1 easy overall difficulty

Momentary evidence: p(8xn|u) = N(x,|uét, 6t)
noisy information about u

Aim: p(z = 1|8xy,8x3,...) = [ p( y16%x1, 6%z, ... )dy = p(

identify latent state without nuisance

0x1,0x%5,, ...



Evidence accumulation with nuisance

Derivation in two steps: posterior over latent state and nusiance,
p(ul8x1.) %, N(H[0, aﬁ)l_[lv(csxnlu& 5t)

2

—%(%Ht)ﬂ,tx(t)

x(t)

o, e "\ | T
x(t) 1 S
OC N H -2 ) -2 > ~ “l
H ( o, +toc+t S
=
...then averaging over nuisance AR |
® x(t) time
p( |x(t),t) = f p(u|dxy.y)du = @ accum_evidence_gauss.m
0

-2
0, +t

[x(2), )

p( ,

Posterior belief now depends on both x(t) and t

5 4 3 2 1 o 1 2 3 4 5




Consequences for optimal stopping

Mapping between belief g(t) and particle location x(t) becomes time-dependent

x(t)

/—z
o +t

- the expected change p(g’|g, t) also depends on time

gt) =p(u = 0[x(t),t) =@

required to compute expected return for
accumulating more evidence

- Value function depends on g (or x) and time

V(g,t) =max{g,1-g,(V(g’,t + ) g'1g, 1) ~ st}

L J

deciding accumulating more evidence,
immediately and deciding later

- decision boundaries depend on time



The belief transition function, unknown evidence reliability

increasing t

»

t = 4.00, o'i = 1.00

t = 0.00, oi = 1.00 t = 0.50, ai = 1.00

0 0 0
.
.
© 0.5 0.5 - - 0.5 -
A
1 1 . 1 .
0 0.5 1 0 0.5 1
: 2
Increasing o
U >
L
t = 0.50, ¢ = 0.25 t = 0.50, o> = 1.00 t = 0.50, o2 = 25.00
0 |[l. 0 Il" 0 |[l,
k.
© 0.5 - 0.5 - - 0.5 -
A
e
1 1 . 1
0 0.5 1 0 0.5 1
g g' g

plot_g_trans_gauss_hyp.m



The value function and decision boundaries

V(gl t) = max {gl 1- 9, (V(g’, t + 5t)>p(g’|g, t) - C5t}

Y Y
deciding accumulating more evidence,
immediately and deciding later

02 =1.0, c = 0.10
N

What happens if you change
- overall difficulty, o,

- accumulation cost, c,
-setc=0,7

0

time-dependent
decision boundaries

time ’ g

plot_dp_valueintersect_gauss(oj,c)



Diffusion models with time-dependent boundaries

s RIS A
AR
‘\a———’/
1—6,(t) o
tirﬁe

Consequences:

- SPRT is suboptimal

- No analytical RT/PC solutions
- no direct ER optimization possible

diffusion % =u+n(t)

X(t) = (D_l(g(t)) O-M_Z +t ) 0: NMRWA‘/\/\M\J\/\‘JJE

v
T
’\‘é
| 3
=
=
|
|
=
|
| — |

—6,(t) - \

Unknown evidence reliability - collapsing boundary diffusion model optimal



Are DDMs with time-invariant bounds suboptimal?

diffusion model bounds bounds in belief space
~ ~  osf
\—/ s N~ Sos|
QDR qu 04//’_

ddm_const_bound_gauss.m

0, (t)
/%—2 +t

Constant diffusion model bounds implement collapsing bounds in belief
- might be close-to-optimal (under certain circumstances)

0y,(t) = @



Consequence of time-dependent boundaries

constant boundaries

collapsing boundaries

increasing u

p (tupper |w)

| p(tlowerlﬂ) | |
time
\- shorter tails
/
time

decision time

fraction correct

decision time

fraction correct

o
©
T

o4
o
T

I
~
T

09
08|
0.7
06
0.5
* 05 1 115 2 25 3
U
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08l choices slower |0
0.6 | errors
04
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% 05 i 15 > 25 3

O~
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I
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o
~

! )
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plot_fpt_vary_bound_example.m
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Evidence for bound collapse

Collapsing bound in belief = predicts dropping performance over time

Palmer, Huk & Shadlen (2005) dataset Roitman & Shadlen (2002) dataset

fraction correct
fraction correct

1 1 Il Il 1 1 J
0.2 0.4 0.6 0.8 1 1.2 14 1.6
reaction time reaction time

]
1.6

plot_pcorrect_over_time.m

In theory: we could reconstruct decision boundaries (in belief) from above plots
In practice: the non-decision time might be stochastic - prevents direct mapping



Are boundaries generally collapsing?

2 LIPA
3 o o \,\55\2@5\20\"\ 1@ MS (2014) - H RTM (2001) RM (2008) Experiment 1
8 | |
& 8
% 6
4
=
5 2
% 0 NB  ME., 12 B X A 1 5 1 5 10 15 1 5 10 15 1 5 10 15 20 25 30 35
o [[JFixed Boundaries [Jurgency Signal [l Collapsing Boundaries

Figure 6.  Approximations to posterior model probabilities in favor of the fixed bounds model with between trial variability parameters and the urgency signal and collapsing bounds models
without between trial variability parameters. All details are as described for the top row of Figure 5.

(Hawkins et al., 2015)

3 -
- collapse in particle space, not belief space g 257
= 2F
- fitting quantile plots, that might miss tail information | x
(which are affected by bound collapse) % 1}
- does it matter? i
p(correct)

How much do we gain from a collapsing boundary?
When do we expect such gains?



Hands on: benefit of collapsing boundaries

Aim: compare expected reward from optimal policy
and that arising from diffusion model with tuned constant boundary

Follow instructions in collapse_gain.m

Hints: Value function V (g, t) returns expected reward when holding
belief g at time t and behaving optimally thereafter.
> V(g =1t =0)is expected reward for whole decision. See

plot_dp_diffusion_gauss.m for how to find V(g,t).

For given u, we know probability correct and expected decision
time for diffusion model with constant boundary. To compute
expected reward, we can average these across multiple u that
well-represent p(u) = N(u|0,02). See fixedbound_er(.) in
collapse_gain.m



Hands on: benefit of collapsing boundaries

Finding expected reward for optimal strategy:

gs = dp_discretized_g(dp_ng);

[~, Ve] = dp_getvalues_gauss_hyp(gs, dp_dt, dp_maxt, ..
sigmu2s(isigmu2), c);

opter_sigmu2(isigmu2) = Ve(l,ceil(dp_ng / 2));

Completing f1xedbound_er(.) to return expected reward for fixed bound:

pcs =1 ./ (1 + exp(-2 * theta * abs(mus)));
dts = theta ./ mus .* tanh(theta * mus);
dts(mus == @) = thetarZ;

er = mean(pcs) - ¢ * mean(dts);

Finding bound height that maximizes expected reward:
[~,er] = fminsearch(..
@(theta) -fixedbound_er(theta, cs(ic), sigmu2, fb_nmu),..
D;
conster_c(ic) = -er;



Hands on: benefit of collapsing boundaries

0.7 0.62 -

0.6 -

numerical issues:

§ o062 constant-bound strategy cannot
o be better than optimal strategy
(DP solution is approximate)

o
1o
©

ex
o
(4]
=]
expected reward
o
(42
(=2}

o
o
X

expected reward
pected reward

0.52 -

05 L | | | I I L I I ) 05 I | | 1 | 1 I I I ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v
v

increasing ¢ increasing o2

For these scenarios, optimal solution barely better than constant boundary
(Recall: still collapsing boundary in belief)

Might change for stronger boundary collapse
e.g., accumulation cost that increases over time (e.g., Drugowitsch et al., 2012)
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Neural signatures of perceptual decisions in macaque

PREFERRED NULL

Wurtz (2015) Britten et al. (1993)



Memory-guided saccade coding in macaque LIP

Memory Guided Saccade

FP . FP «

M — M ——
FP
RF

{ sustained activity

L_‘% In memory-guided

== Saccades
Stimulus Onset Saccade Onset
Colby, Duhamel & Goldberg (1996)

midbrain
and pons

Wurtz (2015)



Evidence accumulation coding in macaque LIP
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Gold & Shadlen (2007);

LIP data from Roitman & Shadlen (2002);

MT data from Britten (1992)



Does area LIP implement a diffusion model?

mirrored

single bound

copy .

particle location
i
‘Si,f/
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Stage 1: MT

Motion Sensory evidence

Look-up
Random-dot table for MT 1Ime Neural
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Mazurek et al. (2003)
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Are LIP traces symmetric around common mean?

Plot 2b — r_out(t):

c .
% . avgact = mean(nanmean((m_mrlc(:,dot_ax>=200)+..
o . m_mr2c(:,dot_ax>=200))/2,2));
o .
Y mirroredact = m_mr2c,
o - mirroredact(:,dot_ax >= 200) = ..
L 2*avgact - mirroredact(:,dot_ax >= 200);
Q. i plot(dot_ax, nanrunmean(mirroredact',1),'--', 'LineWidth',2);
time
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65 @ AN not
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Urgency signal implements collapsing boundary

Urgency Signal
70 coherence 30
—_— 0.0% Y
__ 60 — 3.2% \Vag R //A-\\j/\
Y »
3 9.0% 3
o -y a
2 5 —256% ) fFenen WA g2
o ALY} — > o
o A ©
o 40 $~ R ! s
£ N £10
T 30 = Tin .
""" Tout
L ) o L L L L
20 0 0.5s 0 0.5s
time since stimulus onset time since stimulus onset

Data from Churchland et al. (2008)

neural activity

time

—— with urgency
-------- without urgency

Drugowitsch et al. (2012)



Neural evidence accumulation signatures in rodents

Rat click count discrimination task

Normalized

Normalized
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But: inactivation studies

Rodents:
Bilateral PPC (150 ng)
100 - ) °
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Also: not everything that accumulates, ramps

Rodent VR cue accumulation task

*

100
. _8 € 3
Cue 1[ ] Left Right o 2 o
Cue 6 (o] Cue2 [ | " 3 - Nt N
% 50} o g
Cues [@] Cue 3 1 ., 2 = )
Cue 4 E] : " § E =
Cue 3 [@] Turn A 1 5 D 3
Cue 2 (o] Reward N | & 5 S %
Cue 1 @ — 0 1 1 1 1 1 1 1 E 0 =
Te0 cm 60 cm 01223456 0 100 200 300 400
(~0.8s) Number of left cues Maze position (cm)

Morcos & Harvey (2016)

This does not invalidate normative approach!

Neural implementation is less clear
(there are multiple ways to implement evidence accumulation)
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Bayesian cue combination

Frequently, evidence from multiple cues needs to be combined

Noise:

3 cm equals 100%

Bayesian cue integration:
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The speed/accuracy trade-off in mutlisensory decision-making

Standard cue combination paradigm is fixed-duration
- Ignores temporal evidence accumulation
- Frequently, decision time is under the decision-maker’s control

A cue-combination reaction time task (prugowitsch et al., 2014)

stimulus
screen always congruent

(3D random-dot SN

optic flow, varying

coherence)
motion
platform
vestibular combined
condition
choose ‘left’ choose ‘right’ unreliable
h<O 5 h>0 /reliable
' — velocity

= acceleration

\W/ neacing

heading discrimination task varying reliability time-course




Visual stimulus example

A 5 i

‘Elevation: .0.0," Azmmth 9

Ah L




reliability modulated by coherence

Elevation: 00, Azrmuth:.0.0,

.o .k AL




Evidence reliability modulated by four factors

choose ‘left’ choose ‘right’
h<0:h>0

-~ T

heading direction (angle away from straight-ahead) %heawng

h

visual flow field coherence

unreliable
/- reliable
= velocity
= acceleration
2S

velocity/acceleration time-course time

presence of multiple modalities



The vis/vest cue combination dataset

See content of vis_vest folder:
vis_vest_[x].mat: per-trial data for single subject [ x]
vis_vest_README. txt: details of data format

A trial was characterized by
oris: heading direction (+ve: right; -ve: left)
mod: modalities present (vis/vest/comb)
cohs: visual coherence, € {0.25,0.37,0.70}

The subject’s response consisted of
choice: 0 - "left”; 1 — “right”
rt: reaction time in [s], stimulus onset to choice

Further documents:

vis_vest_tutorial.pdf: detailed instructions, derivations,
some solutions (if you get stuck)

Drugowitsch2014.pdf: paper that used this dataset



What you should do

Look at vis_vest_tutorial.pdf

- Become familiar with the data and behavior

- Perform standard Bayesian cue combination analysis

- Derive Bayes-optimal evidence accumulation & simulate
- Single cue, evidence reliability that changes over time
- Multiple cues, constant evidence reliability

- Bonus: combination of both

- Simulate behavior in a virtual experiment & try to match human data
- Bonus: refine simulations

- Bonus: derive optimal decision boundaries



Good luck!



Behavior

combined
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Standard cue combination test

Estimating thresholds o2 by fitting cumulative Gaussians

1-

09 r

-5 0 5
heading direction [deg]

test_fit_cumul_gauss(.)

' o——”o/c{crac\‘\o
Complete test_standard_cue_comb(.) A e G S S—
=06
%0.4
16 —— : 02
XZ?, %0 15 10 5 0 5 10 15 2
- O~ pr i
12 r e
gw 0.8 f/‘—/
% 206
% 8 §0.4 I
g - D/ﬂ/‘
: %0 1 -10 -5 o 5 10 15 P
4r heading direction [deg]
oL
A But, is faster than
0 0.1 0.2 0.3 0.4‘ 0. 0.6 0.7 0.8 0.9 1



Deriving optimal evidence accumulation

Momentary evidence likelihood (visual modality)

p(6x,|z(h),c) = N(6x,|z(h)v, k(c)dt, bt)

information in heading direction, z(h) = sin(h) global reliability
(depends on coherence)
informative

. component, z(h)

time-dependent reliability
(velocity, v, = v(nét))

i /actual

‘h/ heading

Find posterior z(h) given some momentary evidence 6x4, ...,0x,
n

PGB, .., 6x,) | [p(8x]2(h),€) with x,(6) = > oy Vo) =) vk
| £

j j=1

Find posterior belief of right-ward motion,

p(z(h) = 0lx, (1), £) j )y (©), Ddz(h) s [ NGela, D) = o ()
0



Simulate weighted evidence accumulation
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sim_weighted_diffusion.m
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