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Abstract. These notes contain a brief introduction to finding normative solu-
tions to the speed-accuracy trade-off in perceptual decision-making. They were

written for the FENS-Hertie Winter School 2015 ”The neuroscience of decision

making”. The presented approach is based on Drugowitsch et al. (2012), Dru-
gowitsch et al. (2014a), and Drugowitsch et al. (2014b). The code for all figures

is available on my Github page, https://github.com/jdrugo/FENS2015.
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1. Accumulating evidence

Assume we want to decide between two possible states of the world, z = 1 and
z = −1. This might correspond to the opponent’s return in tennis going to the
right (z = 1) or left (z = −1), or the coherent motion direction of a random-dot
motion (RDM) stimulus being right (z = 1) or left (z = −1). A-priori, we will
assume both options to be equally likely, as expressed by the prior

p(z = 1) = p(z = −1) =
1

2
. (1)

1.1. Discrete chunks of evidence. If we could directly observe z, the task would
be easy. However, in the real world, we usually only observe some noisy instantia-
tions, x1, x2, . . . of z, which we call the momentary evidence. That is, z is a hidden
state, and we want to infer its value based on some observations, xn. In the RDM
task, for example, each observation would correspond to an instantaneous precept
of random-dot motion1.

The way we infer the hidden state z from the observations depends on how
these observations are generated by z. For simplicity, we assume these observations
to represent the hidden state, perturbed by some Gaussian noise, xn = z + εn,
where εn ∼ N

(
0, σ2

ε

)
is a zero-mean Gaussian with variance σ2

ε . This leads of the
likelihood of z given xn to be given by

p(xn|z) = N
(
xn|z, σ2

ε

)
=

1√
2πσ2

ε

e
− (xn−z)2

2σ2ε . (2)

where the last term is just the probability density function of the Gaussian.

1.1.1. A single observation. Given a single such observation, or a single chunk of
evidence, xn, we can infer z by Bayes’ rule,

p(z|xn) ∝z p(xn|z)p(z)

∝z e
xnz

σ2ε
− z2

2σ2ε

∝z
1

1 + e
−2 xnz

σ2ε

,

(3)

where, in the second line, we have replaced the likelihood p(xn|z) by its probability
density function, while keeping only the z-related terms, and in the third line, we
have added the normalisation constant such that p(z = 1|xn) + p(z = −1|xn) = 1.
For z = 1, the above posterior moves monotonically from 0 for xn → −∞, over
1/2 for xn = 0, to xn → ∞ for xn → ∞ (see Fig. 1). Therefore, observing xn = 0
is completely uninformative about z, while xn < 0 (xn > 0) slant the evidence
towards z = −1 (z = 1). The likelihood variance σ2

ε modulates how informative xn
is about z. A small σ2

ε causes the likelihoods for z = −1 and z = 1 overlap only
weakly, such that it is easier to tell apart, which of them generated the observed xn.
This is also reflected in the posterior p(z|xn), which, for the same z and xn, moves
away from 1/2 (i.e., increasing certainty) for smaller σ2

ε ’s. Thus, σ2
ε modulates the

difficulty of the task, with a small (large) σ2
ε implying an easy (hard) task.

1.1.2. Multiple observations. Usually, we observe multiple chunks of evidence before
committing to a decision. For each z, we will assume these chunks, x1, x2, . . . , to

1As motion extends over time, there is practically no such thing as an instantaneous percept
of motion. This concept is only meant as an approximation to reality.
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Figure 1. For σ2
ε = 1, the figure shows the posterior belief p(z = 1|x)

(black) upon observing a single x, and the two likelihood functions,
p(x|z = 1) (blue) and p(x|z = −1) (orange). The figure was generated
by 01evacc/single_obs.m.

be independent and identically distributed, that is p(x1, x2, . . . |z) =
∏
n p(xn|z).

With this property, the poster z given N observations x1, . . . , xN is given by

p(z|x1, . . . , xN ) ∝z p(z)
N∏
n=1

p(xn|z)p(z)

∝z e
z
σ2ε

∑N
n=1 xn−

z2

2σ2ε
N

∝z
1

1 + e
−2XNz

σ2ε

,

(4)

where we have defined XN =
∑N
n=1 xn. Thus, the posterior z is the same as for

single observations, Eq. (3), only with xn replaced by XN . This shows that, for
the chosen Gaussian likelihood, evidence can be accumulated over observations by
simply summing them up (see Fig. 2a). This sum, XN , is a sufficient statistic of
the posterior z.

1.2. Continuous-time evidence. In the real world, evidence often does not arrive
in chunks, but rather as a continuous stream. To handle such situations, we chop
this continuous stream into chunks of size δt (in time), and later let δt→ 0. Each
chunk n is associated with some momentary evidence δxn with likelihood

p(δxn|z) = N
(
δxn|zδt, σ2

εδt
)
, (5)

where the scaling of mean and likelihood of the above Gaussian ensures that with
δt → 0, the information that δxn provides about z goes to zero. If this were not
the case, then δt→ 0 would cause z to be immediately known, as every small time
step provides more and more information.

Assume we now observe momentary evidence δx0:t from time 0 (onset of the
stimulus / start of the observation) to t. In discrete chunks of size δt, this would
correspond to N ≈ t/δt observations. Based on these observations, the posterior z
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Figure 2. Evidence accumulation with (a) discrete or (b) continuous
evidence. In both cases, the top panels show the momentary evidence,
either per observation, or in small, finite steps of δt. Here, momentary
evidence providing evidence towards z = 1 (z = −1) is shown in blue
(orange). Note that the momentary evidence is always drawn from the
blue density. The middle panels show the sufficient statistic that sums
up this momentary evidence. The bottom panels shown the posterior
belief p(z = 1| . . . ) provided the given evidence. The figures were gener-
ated with 01evacc/discrete_obs.m and 01evacc/continuous_obs.m.

is given by

p(z|δx1:t) ∝z p(z)
N∏
n=1

p(δxn|z)

∝z e
z
σ2ε

∑N
n=1 δxn−

z2

2σ2ε
δtN

∝z
1

1 + e
−2X(t)z

σ2ε

,

(6)

where we have defined X(t) =
∑N
n=1 δxn. If we now take δt → 0, this sum turns

into the integral

X(t) =

∫ t

0

δx(s), (7)

where δx(s) is the momentary evidence at time s after stimulus onset. This illus-
trates that the principle is the same as for the discrete case: the sufficient statistic
X(t) is simply the sum of the momentary evidences (see Fig. 2b).
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Figure 3. Posterior belief and expected reward/reward rate assuming
(a) only rewards and no costs, (b) a cost for accumulating evidence,
(c) the reward rate as the relevant measure. In all cases, the top panel
shows the median belief (solid line), as well as its 2.5 and 97.5 percentile
(shaded area). The bottom panel shows how the expected reward (av-
eraged over 105 runs) evolves over time. In (b) this expected reward is
shown for different cost per unit time for accumulating evidence. In (c)
the inter-trial interval ti is varied without introducing a cost for accumu-
lating evidence. The figures were generated with 02lossfn/loss_01.m,
02lossfn/loss_cost.m, and 02lossfn/loss_rr.m.

What is interesting in this case is that X(t) describes a diffusion process with
drift z and diffusion variance σ2

ε , such that (in the absence of any bounds)

X(t) ∼ N
(
zt, σ2

εt
)
. (8)

As will be shown later, this property allows us to perform optimal decisions with
diffusion models.

2. What do we want to maximise when making decisions?

In order to turn the posterior z into a decision, we need to additionally define
a loss function. For each decision, this loss function specifies the loss that occurs
for each choice, given that the hidden state z has a certain value. The optimal
decision is the choice that minimises the expected loss (i.e., maximising the negative
expected loss), where the expectation is taken over the posterior z.

2.1. Maximising decision accuracy. The simplest loss is the 0-1 loss. It assumes
a loss of 0 for correct choices (e.g., choosing ”right” if z = 1), and a loss of 1 for
incorrect choices (e.g. choosing ”right” if z = −1). In this case, it is easy to show
that the optimal choice corresponds to that for which the posterior p(z| . . . ) > 1/2.
For example, if p(z = 1| . . . ) > 1/2, we would choose ”right”.

For some given accumulated evidence, this loss tells us which choice is best, but
how do we know how much evidence to accumulate? To answer this, we need to
consider in which case making a decision with the current evidence leads to a lower
loss (i.e., a higher decision accuracy) than accumulating evidence and deciding later.
In light of the fact that accumulating more evidence will on average make us more
certain about which decision is correct (this is easy to show formally), we would
always accumulate more evidence (see Fig. 3a). Thus, according to the 0-1 loss, we
would never cease to accumulate more evidence, and thus never make a decision.
Clearly, this does not correspond to what humans and other animals are doing. To
describe their behavior, we need to use other loss functions.
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2.2. Costly accumulation of evidence. Why would humans only accumulate
limited evidence to make decisions if they could increase their decision accuracy by
waiting forever? One possibility is that accumulating evidence (e.g. staring at an
RMD stimulus) comes at an implicit (e.g. attention) or explicit (e.g. loss of reward
doing something else) cost. Assuming a reward of 1 for correct choices, no reward
for incorrect choices, and a cost of c per unit time for accumulating evidence, the
decision maker ought to adopt a strategy that maximises

ER (PC,RT ) = PC − cRT, (9)

where PC denotes the probability of making a correct choices, RT is the expected
evidence accumulation time, and ER is the expected reward as a function of the
two previous quantities. Introducing this (positive) cost causes strategies that ac-
cumulate evidence forever to become sub-optimal, as at some point, the marginal
increase in choice accuracy when accumulating more evidence does not justify the
additional cost to pay for doing so (see Fig. 3b). For most of the rest of this note,
we will focus on finding the optimal strategy that maximises the above expected
reward.

2.3. Implicit opportunity costs. Another possible loss function that leads to
early choices is to explicitly take into account the loss of future reward in current
choices. We can do so by aiming to maximise the reward rate, which is the average
reward per unit time. Assuming a time ti inbetween consecutive similar choices (or
trials), and an additional penalty time tp for incorrect choices, this reward rate is
given by

RR (PC,RT ) =
ER(PC,RT )

RT + ti + (1− PC)tp
, (10)

where ER is the single-choice expected reward for the previous section. In this case,
even if the accumulation cost c is zero, earlier choices are preferred, as late choices
cause an increase in the denominator that reduces the reward rate (see Fig. 3c).
We will briefly discuss handing reward rate cases towards the end of this note.

3. Optimal stopping for known evidence reliability

Here we consider the following problem. Assume continuous evidence accumu-
lation, as in Sec. 1.2 where we assume z ∈ {−1, 1} and some known likelihood
variance σ2

ε . What is the decision strategy that maximised the expected reward,
Eq. (9)? We find this strategy by Dynamic Programming (Bellman, 1954).

3.1. Dynamic Programming. Before applying Dynamic Programming to our
problem, let us first describe it in a more general setting. Assume a set of states,
s ∈ S, in each of which we can perform one of multiple actions, a ∈ A. Choosing
action a in state s leads to state s′ with probability p(s′|s, a). Furthermore, the
transition yields reward r(s, a), which is a function of the current state s and the
taken action a. The aim is to find the optimal policy π, which, for each state s,
chooses the action π(s) ∈ A that maximises the overall expected reward. It has
been previously shown by Bellman that such a deterministic (rather than stochastic)
policy π is the best one can do. To keep the reward bounded, we also assume a
terminal state s̃ that will always be reached, loops onto itself, and yields no reward,
that is, p(s̃|s̃, a) = 1 for all a, and r(s̃, a) = 0.

To find the optimal policy π, we first define the value function V (s). For some,
not necessarily optimal policy π, this value function V π(s) maps each state into the
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total expected reward from this state onwards, following this policy, that is

V π(s) =

〈 ∞∑
n=0

r(sn, π(sn))

〉
p(s1,s2,...|π,s0=s)

, (11)

where the expectation is over all state trajectories starting in s and following policy
π. The optimal policy is the policy that maximises the value for each state. Thus,
the value function corresponding to this optimal policy is given by

V (s) = max
π

〈 ∞∑
n=0

r(sn, π(sn))

〉
p(s1,s2,...|π,s0=s)

(12)

The insight in Dynamic Programming is that this value function can be computed
in smalls steps by relating the optimal values to each other, leading to Bellman’s
equation2,

V (s) = max
π

〈
r(s, π(s)) +

∞∑
n=1

r(sn, π(sn))

〉
p(s1,s2,...|π,s0=s)

= max
a

r(s, a) +

〈
max
π

〈 ∞∑
n=1

r(sn, π(sn))

〉
p(s2,s3,...|π,s1=s′)

〉
p(s′|s,a)


= max

a

[
r(s, a) + 〈V (s′)〉p(s′|s,a)

]
,

(13)

where, in the second line, we have split the max operator into the current action
a and future actions, as defined by π, and have split the expectation into the
expectation over the next state s′ and that over future states x2, x3, . . . . The
optimal policy corresponds to choosing in each state the action that satisfies the
above maximum.

3.2. Dynamic Programming applied to perceptual decision-making. Equipped
with this method, we can return to our perceptual decision-making problem. The
first question is how the states and actions of dynamic programming map onto our
decision-making problem. The state space corresponds to the internal state of the
decision maker when performing evidence accumulation. As previously shown this
internal state can be summarised by the sufficient statistic X(t) of the posterior
p(z| . . . ). As X(t) ∈ [−∞,∞], this choice would make the state space infinite, and
thus hard to numerically store the value function over this state space. We avoid
this problem by instead using the belief g,

g(X) ≡ p(z = 1|X) =
1

1 + e
−2 X

σ2ε

, s.t. X(g) =
σ2
ε

2
log

g

1− g
, (14)

as another sufficient statistic of the posterior (see Eq. (6)). This belief g is bounded
by g ∈ [0, 1] and is a sufficient statistic of the posterior as every X maps uniquely
on a particular g. Thus, our value function V (g) will be a function of this belief.

As a next step, we need to find the possible actions. In our case, these correspond
to either making a choice (two actions; choosing either ”right” or ”left”) or to
continue accumulating more evidence and making a choice later. Thus, we have
three possible actions.

What would the left-hand side expression of Bellman’s Eq. (13) represent for each
of these actions? If we choose ”right”, we expect a reward of 1 with probability

2This derivation of Bellman’s equation is only approximate, as it ignores the possibility of
returning to the same state s in future transitions. A derivation that takes this into account is
slightly more technical, but results in the same final equation.



8 JAN DRUGOWITSCH

belief c

va
lu

e

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

max(g, 1−g)
<V> − c dt

Figure 4. Illustration of finding the optimal decision bound by Dy-
namic Programming. The figure illustrates the value max [g, 1− g]
of making immediate decisions (red), and that, 〈V (g′)〉p(g′|g) − cδt,

of accumulating more evidence and deciding later (blue). The opti-
mal bound where to stop accumulating evidence is where these two
value functions intersect (grey lines). The plot was generated by
03knownreliab/plot_valueintersect.m.

p(z = 1|X) = g, and no reward otherwise. Therefore, the expected reward in this
case will be g. Furthermore, we will not receive any further reward in the future,
such that 〈V (s′)〉 will be zero. Choosing ”left” instead, we expect reward 1 with
probability p(z = −1|X) = 1− g, which results in an expected reward of 1− g, and
again 〈V (s′)〉 = 0. If we instead continue to accumulate more evidence for some
more time δt, we will not receive any reward, but instead incur a cost cδt (recall
that the cost c is the cost per unit time). Furthermore, the expected next value
will be 〈V (g′)〉p(g′|g), which is the expected future value when accumulating more

evidence, resulting in belief g′ (see next section for how to find p(g′|g)).
Putting all the pieces together results in Bellman’s equation

V (g) = max
[
g, 1− g, 〈V (g′)〉p(g′|g) − cδt

]
. (15)

The optimal action at any point in time corresponds to choosing the largest right-
hand side term within the squared bracket. This already gives us a hint about
how the optimal policy looks like (see Fig. 4). As long as the last term dominates
either g or 1 − g, we will continue to accumulate more evidence. As soon as the
other two terms, either g or 1 − g, dominate, the corresponding decision will be
triggered. This policy will thus yield two boundaries in the space of beliefs within
which evidence accumulation is the preferred course of action. As soon as either
boundary is reached, the corresponding decision is made.

3.3. Computing the belief transition p(g′|g). In order to computed the ex-
pected future value, we need to know the probability p(g′|g) of holding belief g′

after having observed another δt time units worth of evidence, and before having
held belief g. Due to the monotonic relation between X and g, we can first find
this density in X and then map it onto g.

To find the density p(X ′|X), note that z = 1 with probability g, and z − 1
with probability 1 − g. Therefore, the next small chunk of momentary evidence
will either be drawn from N (δt, σ2

εδt) or N (−δt, σ2
εδt). As X ′ is just this chunk of
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Figure 5. Examples of belief transition densities p(g′|g). In each panel,
each row corresponds to a density over g′ for a different g. In each of
these rows, the black dots indicate the 2.5 and 97.5 percentiles of the
distribution. The top row of panels illustrates how a smaller δt causes
the transition densities to sharpen towards a Dirac delta. The bot-
tom row illustrates how increasingly harder tasks (from left to right)
also introduce such a sharpening, as, within the same time-span, less
evidence is expected to be collected. The plots were generated by
03knownreliab/plot_belieftrans.m.

evidence added to X, the density of X ′ is given by the mixture of Gaussians,

p(X ′|X) = g(X)N (X ′|X + δt, σ2
εδt) + (1− g(X))N (X ′|X − δt, σ2

εδt) (16)

This density does not take into account any boundary crossings that lead to de-
cisions, and is therefore only valid for very small δt, in which these crossings are
unlikely to occur.

To map X ′ back onto g′, we use the relation

p(g′|g)

∣∣∣∣ dg′

dX ′

∣∣∣∣ = p(X ′|X) (17)

with the derivative

dg′

dX ′
=

2e
2
σ2ε
X

σ2
(

1 + e
2
σ2ε
X
)2

=
2e

2
σ2ε

σ2ε
2 log g′

1−g′

σ2

(
1 + e

2
σ2ε

σ2ε
2 log g′

1−g′

)2

=
2

σ2
ε

g′(1− g′),

(18)
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Figure 6. Implementation of the optimal policy by a diffusion model.
The figure shows an example decision (red trajectory) implemented by
a diffusion model (left panel) or by directly updating the belief (right
panel). The mapping between diffusion and belief space is mostly linear,
except for close to the boundaries. This is also apparent in the grey-
shaded background, whose colour marks the decision maker’s decision
certainty at different points within the diffusion and belief space (black
= completely uncertain, white = completely certain). The plots were
generated by 03knownreliab/plot_diffusion_example.m.

where the second line is based on substituting X(g) for the X, and the third line
on simplifying the expression. Combining all the above results in

p(g′|g) =
σ2
ε

2g′(1− g′)
(
gN (X ′|X + δt, σ2

εδt) + (1− g)N (X ′|X − δt, σ2
εδt)

)
=
σ2
εe
− δt

2σ2εN
(
X(g′)|X(g), σ2

εδt
)

2g′(1− g′)

(
ge

X(g′)−X(g)

σ2ε + (1− g)e
−X(g′)−X(g)

σ2ε

)
,

(19)

where X(g) and X(g′) are the summary statistics corresponding to belief g and
g′ (see Eq. (14)), and the second line results from expanding the Gaussians in
the bracket and collecting common terms into the outer Gaussian. See Fig. 5 for
examples of transition densities.

3.4. Optimal decision-making with diffusion models. As previously derived,
the optimal policy corresponds to two boundaries in belief. This belief g maps
monotonically into the sufficient statistics X. Therefore, the boundaries on the
belief can be transformed into boundaries on X, using the same mapping. As a
result, we can perform optimal decision-making without ever representing, and even
computing the belief explicitly.

As shown before, X(t) follows a diffusion process. By the optimal policy, this
diffusion process is bounded by two constant (i.e., time invariant) boundaries. Thus,
this policy corresponds to diffusion models, in which either decision is triggered once
either boundary is reached. Therefore, diffusion model perform optimal decision-
making in this setting, as long as the boundaries are set to the correct height, which
is imposed by the optimal policy (see Fig. 6).

3.5. Computing the solution by belief discretisation. So far we have shown
to theoretically derive the optimal policy. In this section we describe how the
bounds due to the optimal policy can be found numerically.

As the belief g can take an infinite number of possible values, and there is no
known functional form of V (g), we need to represent V (g) in some approximate
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form. The approach that makes the least assumptions is to discretise g in equally-
sized steps of size ∆g, and represent v(g) only for these discretised values of g. To
discretise g, we will skip its extremes {0, 1}, as at these points the value function is
known, and the belief transition p(g′|g) is a Dirac delta at δ(g′− g). We denote the
remaining discretised g by gk with k = 1, . . . ,K. The corresponding value function
is denoted V k = V (gk). This allows us to express Bellman’s equation as

V k = max

gk, 1− gk,∑
j

p(gj |gk)V j − cδt

 , (20)

where p(gj |gk) is normalised, such that
∑
j p(g

j |gk) = 1.

To find the V k that solves this equation, we use a Dynamic Programming tech-
nique called value iteration. This technique starts with some arbitrary value func-
tion V k,0, and then uses this value function in the right-hand side of Eq. (20) while
assigning the left-hand side the new value function V k,1. This is iterated by

V k,n = max

gk, 1− gk,∑
j

p(gj |gk)V j,n−1 − cδt

 , (21)

until the value function does not change significantly between two consecutive it-
erations. At this point, the intersection between the third and the first two terms
reveals the boundary in belief that corresponds to the optimal policy.

A remaining question is what δt to use when computing the belief transition
p(g′|g). This transition does not consider possible boundary crossings, such that
δt needs to be small to minimise the possibility of crossing this boundary. A too
small δt, however, corresponds to almost no additional accumulated evidence, such
that the belief remains almost unchanged. In other words, for small δt, p(g′|g)
approaches the Dirac delta δ(g′ − g). This causes numerical issues, as almost no
posterior mass of p(gj |gk) falls on any j 6= k. Thus, a smaller δt requires a finer
discretisation of the belief, which causes the speed of the method to decrease. Over-
all, the best δt is a trade-off between an increased error due to ignoring boundary
crossing and numerical inaccuracies due to too little mass being assigned to gj ’s
other than gk.

See Fig. 7 for example boundaries computed by the described method. This
figure illustrates how the optimal boundary depend, on one hand, on the cost of
accumulating evidence, and, on the other hand, on the task difficulty as controlled
by σ2

ε .

3.6. Finding the optimal bounds by direct optimisation. In this simple set-
ting, we can take an alternative (i.e., non-Dynamic Programming) route to find the
optimal boundary location. We already know that these boundaries will not change
with time, and that the optimal decision making model can be implemented by a
diffusion model. This allows us to use the known expressions for expected first-
passage time and bound-hitting probability to directly find the bound heights that
maximise the expected reward. For boundaries at {−θ, θ} (in X-space, not belief
space), These expressions are given by (Cox and Miller, 1965; Palmer et al., 2005)

PC(θ) =
1

1 + e
−2 θ

σ2ε

, and RT (θ) = θtanh

(
θ

σ2

)
(22)

Substituting these into Eq. (9) allows us to use numerical maximisation techniques
to find the bounds that maximise the expected reward. This maximisation is easy,
as the expected reward has a unique maximum with respect to the bound height
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Figure 7. Dependence of optimal decision bounds on (a) cost for ev-
idence accumulation, and (b) task difficulty. Both panels show the
optimal bound in belief (only top bound; bottom bound symmet-
ric around 1/2) on one hand computed by Dynamic Programming
(black line; ∆g = 1/500, δt = 0.0005), and on the other hand by
direct optimization (grey, dotted line). In (a), the bound decreases
with the cost for accumulating evidence, as it does not pay to ac-
cumulate a lot of evidence if it comes at a high cost. In (b), the
bound decreases with task difficulty (high σ2

ε = difficult task), as lit-
tle is gained from accumulating more uninformative evidence. The
plots were generated by 03knownreliab/plot_bound_with_cost.m and
03knownreliab/plot_bound_with_sig2.m.

(Bogacz et al., 2006). The resulting bounds using this approach are shown in Fig. 7,
and match well those found by Dynamic Programming.

4. Optimal stopping for unknown evidence reliability

In what has been discussed so far, we have assumed that the decision-maker
has full knowledge of the likelihood functions, p(x|z = 1) and p(x|z = −1). This
corresponds to fully knowing the reliability of the evidence for each made decision.
However, in the real work, and also in many experimental settings in the laboratory,
the difficulty varies across decisions. How does the optimal decision-making strategy
change in such a setting?

To address this, we first modify the process with which the evidence is generated
to allow its reliability to vary across decisions. Second, we describe how to effects
the accumulation of evidence. Third, we show how to use Dynamic Programming to
find the optimal policy in such a setup. And, fourth, we describe how to implement
the outlined approach numerically.

4.1. Varying evidence reliability across decisions. In Sec. 1.2, we have as-
sumed the momentary evidence to be generated by δx ∼ N

(
zδt, σ2

εδt
)
. The relia-

bility of this evidence was controlled the generative variance σ2
ε . An alternative to

control this reliability is to leave the variance fixed (and set to 1, for convenience),
and instead change the magnitude of the mean of δx (above set to zδt, with constant
magnitude |zδt| = δt). In this case, a large magnitude of this mean (irrespective of
its sign) corresponds to an easy task, and a small magnitude to a hard one. Thus,
this mean can be used to encode both the hidden state z, and the difficulty of the
current decision.

To use this feature, we assume the momentary evidence to be generated by
δx ∼ N (µδt, δt), where µ = αz, z ∈ {−1, 1} is again the hidden state that the
decision maker wants to identify, and α ≥ 0 is the difficulty of the current decision.
We have already defined a prior over z from which this hidden state is drawn before
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each trial. We could now also define a prior over α to draw a per-trial difficulty.
However, instead, we define a prior over µ directly, given by

µ ∼ N (0, σ2
α). (23)

This prior specifies, on one hand, the hidden state z by the sign of µ (µ ≥ 0
corresponds to z = 1). As p(µ < 0) = p(µ ≥ 0) = 1/2 with the above prior, we
have p(z = 1) = p(z = −1) = 1/2, as before. The prior over α, on the other
hand, is defined my the magnitude of µ, that is, α = |µ|. Therefore, this prior
is proportional to a Gaussian over non-negative values only. In other words, the
above prior puts more weight on hard trials (small α) than easy ones (large α).
The σ2

α controls how hard the trials are on average, with a small σ2
α corresponding

to an overall hard task.

4.2. Evidence accumulation with unknown evidence reliability. Before each
trial, µ is drawn according to its prior. Based on this drawn µ, a stream of evidence,
δx1, δx2, . . . is generated. The decision maker observes this evidence, and needs to
identify the sign of µ (as this sign identifies the hidden state z). We will tackle this
problem in two steps: first, we find the posterior over µ, and, second, the posterior
over z.

The posterior µ, based on some evidence δx0:t from time 0 to t is again found
by Bayes’ rule, and results in

p(µ|δx0:t) ∝µ p(µ)

N∏
n=1

p(δxn|z)

∝µ e
− µ2

2σ2α e−
∑N
n=1

(δxn−µδt)2
2δt

∝µ e
−
(

1
σ2α

+t

)
µ2

2 +X(t)µ

∝µ N
(
µ| X(t)

σ−2α + t
,

1

σ−2α + t

)
,

(24)

where we have used N ≈ t/δt such that t ≈
∑N
n=1 δt, and X(t) =

∑N
n=1 δxn. Based

on this posterior over µ, we find the posterior over z by

p(z = 1|δx0:t) = p(µ ≥ 0|δx0:t) =

∫ ∞
0

p(µ|δx0:t)dµ = Φ

(
X(t)√
σ−2α + t

)
, (25)

where Φ(·) is the cumulative density function of the standard Gaussian.
The cumulative Φ(a) extends, just like the logistic sigmoid in Eq. (6), from

Φ(a) = 0 for a → −∞, over Φ(a) = 1/2 for a = 0, to Φ(a) = 1 for a → ∞.
Therefore, as for the constant-reliability case, the sign of X(t) again determines if
z = 1 or z = −1 is more likely. However, in contrast to before, the posterior z
now depends on both X(t) and passed time t, rather than only X(t). This implies
that we have to track two sufficient statistics (X(t), t) when accumulating evidence,
rather than only X(t).

The role of time in the above posterior has that of monitoring the flow of ev-
idence. If the decision maker does not perceive sufficient evidence in some time
period, which would be reflected in X(t) not growing in magnitude, that the pos-
terior would drop closer to 1/2. This is because not increasing X(t) in magnitude
with time is associated with a difficult trial, and therefore induces a larger degree
of uncertainty. The converse applies for a rapidly growing X(t). In this case, the
posterior confidence (i.e. proximity to 0 or 1) increases more rapidly over time, as
before.
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Figure 8. Examples of belief transition densities p(g′|g, t). In each
panel, each row corresponds to a density over g′ for a different g. In each
of these rows, the black dots indicate the 2.5 and 97.5 percentiles of the
distribution. The top row shows that, the further time increases, the less
likely it is to observe highly reliable evidence, as indicated by sharpening
of the transition densities. The bottom row illustrates how increasingly
harder tasks (from right to left) also introduce such a sharpening, as,
within the same time-span, less evidence is expected to be collected. All
shown densities are computed for time-steps of size δt = 0.01. The plots
were generated by 04unknownreliab/plot_belieftrans.m.

4.3. Optimal decision-making by Dynamic Programming. We can use the
same principles of Dynamic Programming to find when to best stop accumulating
evidence even for the case of an evidence reliability that varies across decisions. The
possible actions, choose ”right”/”left” or continue to accumulate more evidence,
remain the same, but the state space is now determined by X and t, which are the
sufficient statistics of the posterior z. For some fixed t, we again map this X into
the belief g by

g(X) ≡ p(z = 1|X, t) = Φ

(
X√

σ−2α + t

)
, s.t. X(g) =

√
σ−2α + tΦ−1 (X) ,

(26)
where Φ−1(·) is the inverse of the cumulative density function of a standard Gauss-
ian. Facilitating this mapping, we define the value function V (g, t) over (g, t) rather
than over (X, t). This leads to Bellam’s equation

V (g, t) = max
[
g, 1− g, 〈V (g′, t+ δt)〉p(g′|g,t) − cδt

]
, (27)

where, in contrast to Eq. (15), the last term additionally takes into account the
passage of time.

To compute the expected future value 〈V (g′, t+ δt)〉, we again need to find the
belief transition density p(g′|g, t). Its derivation follows the same arguments as in
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Figure 9. An example value function and resulting bound. The left
panel shows the value function over belief g and time t, with values
randing from 0.5 (black) to 1 (white). The bounds (green) are the lo-
cations where the values for immediate decisions equals the value of
continuing to accumulate more evidence. The right panel shows some
example value function, with the values for immediate decisions shown
in red, the the values for accumulating more evidence shown in different
shades of blue. The latter corresponds to different time-points, corre-
sponding to the blue vertical lines in the left panel. The green lines in
the right panel indicate the locations of the inferred bounds. The plots
were generated by 04unknownreliab/plot_valuefn.m.

Sec. 3.3, and results in the following expression

p(g′|g, t) =
1√
δteff

exp

([
Φ−1(g′)

]2
2

−
[
Φ−1(g′)−

√
1 + δteffΦ−1(g)

]2
2δteff

)
, (28)

where we have defined δteff = δt/(t + σ−2α ) (see Drugowitsch et al. (2012) for the
derivation; the paper has a typo in δteff ). In contrast to before, this transition
density now depends on both the current belief g and time t (see Fig. 8).

The optimal policy is again determined by Bellman’s equation, Eq. (27). For
some fixed time t, it is best to accumulate more evidence as long as the last term in
this equation dominates the one, max[g, 1−g], that describe the value of immediate
decisions. As soon as either of the first two terms dominate, a decision ought to
be triggered. This results in two bounds in the decision maker’s belief at which
decisions are triggered (see Fig. (9)). These bounds are now time-dependent, as
will generally, approach 1/2 over time.

4.4. Optimal decision-making with diffusion models. As before, we can map
the boundary on belief into the boundary on a diffusing particle, X(t), using
Eq. (26). This boundary will now vary with time, for two reasons. First, the
optimal boundary in belief already varies with time. Second, the mapping between
belief and X(t) is time-dependent, such that, even a time-invariant bound in belief
would result in a time-variant bound on X(t). Therefore, optimal decision-making
is achieved by a diffusion model with time-varying boundaries. For an example of
such a model, see Fig. 10.

4.5. Computing the solution by belief/time discretisation. How do we com-
pute the optimal bounds for a given task difficulty σ2

α and evidence accumulation
cost c? To do so, we can again discretise out state space, which now spans both
belief g and time t. Clearly, we cannot compute the value for all time, as this time is
not bounded from above. A useful strategy is to assume some large time T at which
the decision maker is guaranteed to decide, in which case V (g, T ) = max[g, 1− g].
All other V (g, t) can then be computed by backwards induction with Eq. (27),
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Figure 10. Implementation of the optimal policy for evidence reliabil-
ity that varies across decisions by a diffusion model. The figure shows an
example decision (red trajectory) implemented by a diffusion model (left
panel) or by directly updating the belief (right panel). The mapping be-
tween diffusion and belief space is non-linear and time-dependent. This
is apparent in the grey-shaded background, whose colour marks the de-
cision maker’s decision certainty at different points within the diffusion
and belief space (black = completely uncertain, white = completely cer-
tain). For the diffusion model, the same level of X maps to different
levels of certainty at different points in time. The plots were generated
by 04unknownreliab/plot_diffusion_example.m.

starting with V (g, T − δt), then V (g, T − 2δt), and so on. In practise, setting T to
around five times the time-frame of interest has worked well (Drugowitsch et al.,
2012). That is, if we are interested in 2s worth of decision boundary, we would set
V (g, 10) = max[g, 1− g] and work backwards from there.

To apply the discretisation, we choose ∆g as the step size between two consec-
utive beliefs, gk and gk+1, and δt as the discretisation of time. Then, the value
function can be solved by backwards induction in time from t = T − δt to t = 0 by

V (gk, t) = max

gk, 1− gk, K∑
j=1

p(gj |gk, t)V (gj , t+ δt)− cδt

 , (29)

where p(gj |gk, t) is normalised such that
∑K
j=1 p(g

j |gk, t) = 1. For each point in
time, the optimal decision boundaries in g are found where the last term equals
either of the first two terms in this expression. As time is now an explicit factor in
the value function, value iteration is not anymore required to find its solution.

5. Extensions

The above introduces the general idea of how Dynamic Programming and related
methods can be applied to find the optimal policy for decisions under the pressure
of time. In this section we discuss several variants and extensions to this idea, to
handle a different loss function, generalise the problem domain, and find solutions
more efficiently.

5.1. Maximising reward rate rather than expected reward. The approach
outlined so far finds policies that maximise the expected reward of individual de-
cisions, where the only pressure on deciding early is introduced by a cost for the
accumulation of evidence. A more realistic assumption is that early decisions are
induced to avoid a loss of potential future reward. This assumption can be formu-
lated by maximising the reward rate rather than the expected reward.

Maximising the reward rate is equivalent to maximising the overall reward in
an infinite sequence of structurally equivalent trials/decisions. The problem in
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handling such an infinite sequence by Dynamic Programming is that the value
before the first decision will be infinite, as an infinite number of reward-promising
choices follow. The trick to still be able to find the optimal policy is to use an
average-adjusted value that penalises the passage of δt time by a cost of ρδt, where
ρ is the reward rate (reward per unit time). This average-adjusted value thus
expresses how much better or worse particular states are when compared to the
average. It also allows us to handle all trials equivalently as the same trial.

To illustrate this concept, assume that we want to maximise the reward rate,
Eq. (10), while assuming that the evidence reliability is know. In this case, choosing
the option corresponding to z = 1 promises a reward of g, but causes an expected
waiting time of ti + (1 − g)tp (incurring a penalty time tp being incorrect with
probability 1 − g) until the start of the next trial. Thus, the overall expected
reward for this choice would be g + ti + (1 − g)tp + V (1/2), where V (1/2) is the
value at the start of the next trial (as the initial belief will be g = 1/2) For choosing
the option z = −1, the expected reward is 1− g+ ti + gtp +V (1/2). Accumulating
more evidence causes a cost (c+ ρ)δt. Overall, this leads to Bellman’s equation

V (g) = max

[
g − (ti + (1− g)tp) ρ+ V (1/2), 1− g − (ti + gtp) ρ+ V (1/2),

〈V (g′)〉p(g′|g) − (c+ ρ)δt

]
.

(30)
Adding a constant to all values does not change the resulting policy. Thus, we can
choose one of the values freely, for example V (1/2) = 0. We can use this property to
find the reward rate ρ, as V (1/2) = 0 is only guaranteed to hold if this reward rate
is set to the correct value. This allows us to find the value function and the reward
rate simultaneously. For more information on this approach, see Drugowitsch et al.
(2012, 2014b).

5.2. A cost for accumulating evidence that varies over time. So far we
have assumed the cost for accumulating evidence to remain constant throughout
the evidence accumulation period. This does not need to be the case, and, in fact,
humans and monkeys feature behavior that is compatible with the idea of a cost that
rises over time (Drugowitsch et al., 2012). Such a rising cost is easily included in the
Dynamic Programming formulation by making the cost time-dependent. For the
case of a reliability that changes across trials this won’t change much, as it already
features a time-dependent value function. For a constant evidence reliability, in
contrast, the value function will become time-dependent. For more information on
this approach, see Drugowitsch et al. (2012).

5.3. Reliability of evidence that fluctuates within individual decisions. In
our above formulation we have allowed the evidence reliability to vary across de-
cisions, but have assumed it to remain constant within individual choices. This is
unrealistic, as in real world choices, this reliability fluctuates all the time. Return-
ing to the initial tennis example, assuming a constant reliability corresponding to
assuming that we receive as much information about the ball’s landing point when
it has just left the opponent’s racket as when it has already passed the net.

An approach to tackle this is to formulate a process in which the evidence re-
liability varies according some reliability process, and formulate the evidence ac-
cumulation process as an inference of both the hidden state and the momentary
reliability. This approach then leads to a value function over both belief and relia-
bility estimate, and consequently to a decision boundary that also depends on this
reliability estimate. Details to this approach can be found in Drugowitsch et al.
(2014b).
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5.4. Improving the speed of finding the optimal policy. In particular when
moving to higher-dimensional value functions, finding the expected future value can
be time-consuming. The näıve implementations scales quadratically in the size of
the state space, and has problems with singularities for small δt. We have recently
developed an approach that scales linearly with the state space, and gets around
the singularity problem. It is based on finding the expected future value by defining
a continuous-time flow from current to future expected value as a stochastic differ-
ential equation. This equation can then be solved by standard partial differential
equation solvers that feature linear scaling and high robustness. Specificities about
this approach are described in Drugowitsch et al. (2014b).
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