UNIVERSITY OF

Department of %& i? BATH
. ’ @}

Computer Science

Technical Report

A Formal Framework for Reinforcement Learning
with Function Approximation in Learning Classifier Systems

Jan Drugowitsch and Alwyn Barry

Technical Report 2006-02 January 2006
ISSN 1740-9497

Copyright (©January 2006 by the authors.

Contact Address:

Department of Computer Science
University of Bath

Bath, BA2 TAY

United Kingdom

URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

A Formal Framework for Reinforcement Learning
with Function Approximation in Learning Classifier Systems

Jan Drugowitsch Alwyn M Barry
Department of Computer Science Department of Computer Science
University of Bath, UK University of Bath, UK

J.Drugowitsch@bath.ac.uk A.M.Barry@bath.ac.uk

January 2006

Abstract

To fully understand the properties of Accuracy-based Learning Classifier Systems, we need
a formal framework that captures all components of classifier systems, that is, function approx-
imation, reinforcement learning, and classifier replacement, and permits the modelling of them
separately and in their interaction. In this paper we extend our previous work on function ap-
proximation [22] to reinforcement learning and its interaction between reinforcement learning and
function approximation. After giving an overview and derivations for common reinforcement learn-
ing methods from first principles, we show how they apply to Learning Classifier Systems. At the
same time, we present a new algorithm that is expected to outperform all current methods, discuss
the use of XCS with gradient descent and TD(A), and given an in-depth discussion on how to study
the convergence of Learning Classifier Systems with a time-invariant population.

1 Introduction

Accuracy-based Learning Classifier Systems (LCS), a Machine Learning method that combines function
approximation, reinforcement learning and evolutionary computation, are capable of evolving human-
readable production rules that describe the most general but still accurate representation of a solution.
While featuring competitive performance in single-step tasks, such as data mining [40, 24, 4, 19, 2],
they still only show limited success in other than relatively trivial delayed-reward tasks [3, 1, 21]. These
limitations have stimulated research to formulate partial models of LCS [14, 16, 52]. However, even the
latest theoretical developments have only produced piecemeal models that do not adequately capture
the interaction between the different components of LCS.

As we have already argued in [22], to make adequate progress in the understanding of LCS we
need a formal framework and model that is able to capture all components and their interactions. The
framework should bridge the gap between LCS and its related Machine Learning techniques to reveal
similarities and differences, and ease the translation of new developments from one field to the other.
Additionally, it needs to be flexible enough to allow for the incorporation of eventual extensions to
LCS.

In this paper we concentrate on investigating the reinforcement learning component of LCS, and
how it interacts with its function approximation. Our study does not yet consider the replacement
of classifiers and will therefore assume a time-invariant classifier population. We will build on and
extend the framework that we have previously introduced to study the function approximation in
LCS [22]. It is known that certain methods of reinforcement learning are not stable when used in
combination with particular function approximation architectures. Q-Learning, for example, is known
to diverge in some cases when used in combination with linear function approximation [12]. Hence, to
guarantee stability of the application of LCS to multi-step problems, we need to study the compatibility
between reinforcement learning and LCS function approximation. We will not consider the modified
LCS function approximation architecture introduced in [52] for the reasons given in [22].

The first comparison between reinforcement learning and LCS was done in [20], where Dorigo and
Bersini show that a Very Simple CS without generalisation and slightly modified implicit bucket brigade
is equivalent to tabular Q-learning. A more general study showed how Evolutionary Computation
can be used for reinforcement learning [35]. The latter investigates reinforcement learning on both
the policy level and the value function level, but ignores the development of XCS [57] which moves
LCS even closer to reinforcement learning, in particular Q-learning. Wilson was possibly the first to

1

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

use XCS for function approximation [58]. Since then, it has been explicitly linked to reinforcement
learning with function approximation in an attempt to add gradient descent to the Q-Learning update
of XCS [17, 18], which was criticised by Wada et al. [51], and is commented on in Section 4.2.4. Recent
developments that improved the performance of LCS in multi-step problems were the extension of the
function approximation architecture for single classifiers [59, 33], the introduction of the Recursive Least
Squares algorithm to improve approximation speed and accuracy [32], and our use of the Kalman filter
to provide more accurate error estimation for classifiers [22]. Simultaneously, Booker has developed a
hyper-plane coding scheme for classifiers [8], related to CMAC’s of reinforcement learning. Similarly
to [52] it forms its approximation by aggregating the approximation of classifier, which is why we will
not consider it in our framework.

Due to LCS’s reliance on reinforcement learning methods to solve multi-step problems, we will use
studies of the latter to guide our investigations. They originate in Dynamic Programming (DP) and
Temporal-Difference Learning [53], where the theoretical properties of DP are usually at the heart
of answering questions of the stability of various reinforcement learning methods. Therefore we have
chosen to first introduce common methods in DP and then to show how reinforcement learning builds
on them.

Firstly, in section 2 we introduce how problems can be formulated in the reinforcement learning
framework, and the approach that is taken by DP to solve such problems. Furthermore, we describe the
function approximation architecture that we will discuss in combination with reinforcement learning,
and how to express everything in the more lucid matrix notation.

Based on that framework, in Section 3 we will introduce common methods in reinforcement learn-
ing by firstly describing how the problems are approached by DP. Furthermore, we will discuss how
to reduce the spatial an computational requirements of the different DP approaches by the use of
function approximation, and how that influences their stability. By introducing and discussing Tem-
poral Difference Learning, we show how DP methods can be efficiently approximated while lowering
the computational costs. We conclude this section by showing how to combine them with function
approximation and how to use them without a model of the problem.

In Section 4, we will firstly introduce the structure of the LCS function approximation based on
our work in [22]. Applying our previous description of reinforcement learning, we will derive from first
principles how to combine the LCS approximation architecture with reinforcement learning to provide
several model-based and model-free methods. For Q-Learning with LCS we will, in addition, give details
about two possible implementations, one based on the Least Mean Square (LMS) algorithm, and the
other based on the Kalman filter. As a final step, we will give an overview in Section 4.4 of how to
study the convergence of reinforcement learning with LCS function approximation by looking at the
properties of a DP iteration. Note that the convergence of the LCS reinforcement learning is still an
open question, which our framework might help to answer.

2 The Reinforcement Learning Framework

This section gives an overview to the type of problems that we deal with, and how a method called
Dynamic Programming (DP) can be used to approach such problems. Most of that section can be
found in more detail in [6]. The notation that is used is a blend of [6] and [47], and allows integration
into the LCS function approximation framework introduced in [22].

2.1 Problem Formulation

We will concentrate on problems that are solvable by reinforcement learning and are therefore express-
ible as Markov Decision Processes (MDPs): Let S be the set of states of the problem domain, which we
will assume to be of finite! size N, and will hence map to the set of natural numbers N. In every state
1 € S we can perform an action a out of a finite set A that leads us to the next state j. The probability
of transition p;;(a) from state i to state j upon performing action a is given by the transition function
p: S xS xA— R. Every such transition is mediated by a scalar reward r;;(a), defined through the
reward function r : S x S x A — R. The positive discount factor v € R with 0 < v < 1 determines the
preference of immediate reward over future reward. Therefore, the MDP that describes the problem is
defined by the quintuple {S, A, p,r,v}.

LA finite state space is assumed to simplify analysis. It might be possible to extend our analysis to continuous state
spaces, but that might require significantly more technical work. For examples of an analysis of reinforcement learning
in continuous state spaces see [29, 38].

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

The aim is for every state to pick the action that maximises reward in the long run, where future
rewards are possibly valued less that immediate rewards. A possible solution is represented by a policy
@ S — A, which returns the chosen action (i) for any state ¢ € S. Thus, when fixing a policy
1, the MDP is reduced to a Markov Chain with transition probabilities p* : S x S — R, where the
tranbltlon probability from state ¢ to state j is given by pU = p;;i(p(7)), with a reward rh:Sx S —R

of 7% = r5(p(4)). In such cases we will usually operate with the expected reward r}’ : S — R given
some state ¢, which is
= sz] Tij ZPU TU ()) (1)
JES JeSs

This reward expresses what we would expect to receive when choosing an action according to policy u
in state 1.

2.2 Dynamic Programming Approach

An approach that is taken by DP is to define a value function V' : S — R that expresses for each state
in the state space how much reward we can expect to receive in the long run. Let u = {uo, g1, ...} be
a sequence of policies where we are operating according to policy u; at time ¢, starting at time ¢ = 0.
Then the reward that is accumulated after n steps starting at state ¢, called the n-step return V}* for
state i, can be given by

V) = (RS SRCC.)

where {ig,1,...} is the sequence of states, and R(i,) is the expected return that we will receive when
starting from state i,. The discount factor v is part of the problem formulation and determines how
much we value future reward when compared to immediate reward?. The optimal expected n-step
return starting from state 4, denoted by V,*(7), is the one that chooses a policy that maximises that
return,

V(i) = max V(7).
I

Finite-step cases can be seen as a special case of infinite-horizon problems that are guaranteed to end
in a reward-free terminal state at latest after n actions. Hence, we can concentrate on infinite-horizon
problems, for which the expected return when starting at state 4 is given by

n—1
VAQ) = Jim B <th i lio =) - (2)

t=0

The optimum V* is again given by following the policy that maximises the expected return, that is

V*(i) = max V*(3).
"
The policies associated with the optimal values form the solution to our problem. Fortunately, those
policies are typically stationary, that is u; = po for all ¢ =0, 1,.... We will denote a stationary policy
by u.

Given that we know the optimal value function V*, the optimal policy p* is one that performs the
action that leads us to the highest-valued states out of all states that we can reach for the current
state, that is

p (i) = argmax E (ri;(a) + vV (j)li, a) -
a€A
Hence, once we know the optimal value function V*, we also know an optimal policy p* and have
solved the problem.

2.3 Optimal Control and Belman’s Equation

In some cases we do not have a model of the problem but can only explore it by trial-and-error or
simulation. That might, for example, be the case when E(r; j(a) + vV *(j)|i,a) cannot be evaluated.
In such cases we can resort to storing values for state-action pairs rather than only for states. Let

2Note that the difference between reward and return is that return implicitly considers future reward, whereas reward
does not.

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

Q@ : S x A — R be the function that gives the expected return Q(i,a) when taking action a in state i,
that is, for some policy p,

n—1
Q“(iv (L) = lim E (T'i[)'il (a‘) +y Z ’ytrftit-i-lﬁo = i, a> =E (Tij (a) + ’VVM(]”Z? (L))

n— o0
t=1

which is the expected return when taking a in state ¢ and then following policy u. Equally, the value
function can be expressed as the @-value of that state when following the current policy u, that is

V(i) = Q" (i, (i)

Given that the policy p is optimal, the optimal action in state ¢ is the one with the highest @)-value.
Hence, knowing the optimal Q*-values, we can derive the optimal policy be evaluating

w* (i) = argmax Q* (i, a).
acA

This allows us to express the optimal value function using that policy by

V*(i) = Q" (i, argmax Q* (4, a)) = max Q™ (¢, a).

a€A acA
Combining that with the definition of the Q-values gives us some form of Bellman’s Equation

V*(3) = maxE (rij(a) + 4V ()i), 3)
which relates the optimal values of different states by defining them as the maximum sum of expected
reward and value of the next state. Finding a solution to that equation forms the core of most DP
methods.

We can derive a similar form of equation for a stationary policy u. Then, a value of state i is defined
according to Eq. (2), which can be rewritten as

n— 00
t=1

n—1
V“(z) = hm]E (Tﬁ]il + VZ’YWZH-F”Z.O = Z) .
The sum in the expectation is by definition the value of state i;. Hence, above is equal to
Vi) =E (rf; + 4V ()li) (4)

which is Bellman’s Equation for a fixed policy p.

2.4 Problem Types
The three basic classes of infinite-horizon problems are:

Stochastic shortest path problems These problems are undiscounted, i.e. v = 1, with a reward-
free terminal state 0, and require finding the sequence of actions that maximise the overall reward
and lead to that terminal state. With the assumption that the terminal state is always reachable,
these problems are in effect finite-horizon problems, but the distance to the horizon may be
random.

Discounted problems This set of problems have v < 1 and a bounded reward function to make the
value V*#(i) well defined. Discounted problems are similar to stochastic shortest path problems
as for every discounted problem we can generate an equivalent stochastic shortest path problem
that leads to the same optimal value function [6, Ch. 2.3].

Average reward per step problems In some cases, the total return is V*#(i) = —oo for every policy
1 and initial state 7. In many such problems, however, the average reward per step is well defined
in its limit, and finite. We will not consider this set of problems any further.

Note that not all policies in the stochastic shortest path problem will lead to the terminal state. Hence,
in analysis we would have to restrict ourself to so-called proper policies that are guaranteed to reach
the terminal state. Besides that, its analysis is very similar to the one of discounted problems, which
is why we will only consider the case of the latter.

4

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

2.5 Linear Approximation Architecture

Even though the set of states S is finite, it can be very large. Therefore, operating on the value function
V' would be spatially prohibitive. A common approach is to not store the function V' itself, but only an
approximation V of it. The function approximation architecture that is currently known to work best
in combination with reinforcement learning is a linear architecture, including “|...] state aggregation
methods, CMACs, polynomial or wavelet regression techniques, radial basis function networks with
fixed bases, and finite-element methods” [36]. In [22] we describe how LCS deviate from that linear
architecture, but let us for now ignore that deviation and assume a simple linear architecture. We will
analyse how the LCS architecture operates within different reinforcement learning methods in Section
4.

Let {¢1,...¢r} be a set of L basis functions ¢; : S — R that return different features of a
state. The collection of all features for some state i form its feature vector ¢ : S — RF, given by
o(i) = (¢1(i),...,0L(7)), where -/ denotes the transpose and indicates that the vector is a column
vector. Additionally, let w € RY denote the adjustable parameter vector of our approximation, called
the weight vector. Then, the approximation V of V for some state i is given by the dot product of the
feature vector of that state and the weight vector, that is

V(i) = w'¢(i).

The independence between the weight vector and the current state is the defining characteristic of a
linear approximation architecture.

For control problems, rather than using the value function V' we operate on the @-value function.
That function can be approximated by a linear architecture in the same way. Let w € R” again be the
weight vector. Then the approximation Q of @ for some state i is given by

Q(i) = w'g(d).

The aim of the approximation is to minimise the weighted mean-squared error between the value
function V and its approximation V', that is to find the weight vector w for which

min Z (@) (V (i) — w'¢(i)*,

where 7(i) € R is the weight assigned to state i € S, with 7(i) > 0 for any i € S, and), _g7(i) = 1.
As that function is convex, we can find its unique minimum by setting its first derivative w.r.t. w to
zero. The same applies to approximating the @-value function. For more details on linear function
approximation in general and w.r.t. LCS see [22].

As by the definition of the mean-squared error, the error weights 7 (i) play a significant role in the
approximation process, and are determined by the state sampling distribution. If there is a generating
process that allows creating arbitrary state transitions, then those weights can be chosen freely. On the
other hand, if we only have a set of sample transitions, or only can perform transitions according to
the underlying Markov Process, then those error weights are determined by the sampling frequencies
or steady-state distribution of the Markov Chain respectively. As we will see later, having a good set
of transition samples available is important when approximating the value function.

2.6 Matrix Notation

As our state and action space are finite, it is convenient to apply matrix notation to ease readability.
For policy pu, let P* = (pfj) be the N x N transition matrix of the Markov Chain for that policy.
For that same policy, let r* be the N-sized vector that holds as its ith element the expected reward
when following that policy from state 7, that is 7# = (r{’,...,rk;)’, where r!" is the expected reward
for following policy p in state i according to Eq. (1).

Let V' be the N-sized value vector V = (V(1),...,V(N))’, where V(i) gives the value of state i.
Then, Bellman’s Equation for a fixed policy u (Eq. (4)) becomes

VH = pt 4 yPHYH

where V* is the value vector for policy p. This form shows clearly that the value of a state is the
sum of the expected reward from that state and the expected discounted value of the state after one
transition. In future discussions we will use both value function and value vector to refer to the same
concept.

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

To discuss linear function approximation, let ® be the N x L matrix that combines the features of
all states, that is
- (1) -
- o(N)
That allows us to define the approximation parameterised by the weight vector w as V = dw. Let
D be the N x N diagonal matrix with the sampling distribution 7(1),...7(N) along its diagonal.
The approximation aims at minimising the weighted distance between the value vector V and its

approximation V, given by ||V — V|| p, where || - ||p denotes the weighted norm, given for any V e RN
by [V} = > iesm(i)V(i)2. We can find this approximation by orthogonally projecting the value

b =

vector into the approximation subspace {v/ D®w : w € RF}, spanned by the column vectors of v D®,
and given by B
V =1pV,

where IIp is the projection matrix
Ip = ®(@'DP)"'d'D. (5)

The L x L matrix &' D® is invertible if the basis functions ¢1,..., ¢ are linearly independent and if
there are at least as many states as there are features, that is N < L.

3 Common Methods in Reinforcement Learning

Using the described framework, we will discuss some methods that can be used to solve Bellman’s
Equation or an approximation of it. Whereas DP requires a complete model of the problem, Temporal-
Difference learning approximates its solution by iterative updates based on simulated state trajectories
and is therefore the more adequate method for the simulation-based approach and adaptive control.

3.1 Dynamic Programming Methods

Bellman’s Equation is a set of linear equations that can in theory be evaluated directly, given that
all problem parameters are known. However, even then the evaluation might be tedious and not very
efficient. Fortunately, several methods have been developed that make solving that equation easier. In
this section we will introduce some of those methods, about which more information can be found in
[6].

3.1.1 The Dynamic Programming Operators 7" and 7T},

The core of the DP methods is formed by the two DP updates, given by the mapping operators T and
T),. In this section we will define those operators and give a short description of their properties.

For any value vector V, we define the vector TV as the result of applying an update related to
Bellman’s Equation to it once, giving its components

(TV)() = max 3" pis (@)(rij (@) + 2V (). (6)
jeSs

Similarly, for any stationary policy u, we define the vector T),V as a result of applying an update
related to Bellman’s Equation for a fixed policy, giving its components

(T V) (@) = > Pl (rls + V()
jeSs
which in matrix notation can be written as
T,V =rt +~yP"V.

We will write 7"V for applying T" to V, n times. Similarly, T)}V' means the application of T}, to V, n
times.

One elementary property of the mapping operators T and T, is that they both define a contraction
mapping. That is, given any value vectors V and V and any policy ,

HTV - TV”OO < '7||V - VHOO?
1TV = Tu Voo <AV = Ve,

6

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

where || - || is the maximum norm, defined by ||V ||cc = max; |V (¢)| . That means that when applying
the same operator to two different value vectors, they will move closer together (as v < 1). Applying
them repeatedly will therefore lead us to some fixed point of that update. This property of the DP
operators is at the core of all of the methods.

Using those operators, we can state the main results of their analysis, as listed in [6]. Due to the
contraction property of T, the optimal value vector V* is the unique vector that satisfies TV* = V*,
which is Bellman’s Equation (Eq. (3)) in operator notation. Furthermore, repeatedly applying T' to any
initial value vector V' will result in the optimal value vector V*, that is lim,_,., 7"V = V*. Similarly,
repeatedly applying 7}, to any initial value vector V with any fixed policy p will give us the unique
solution to the Bellman Equation for fixed policy u (Eq. (4)), that is lim, . T;;V = V*. However,
this policy p is only optimal if and only if 7),V* = T'V*. Note that it is possible to have several optimal
policies.

3.1.2 Standard and Asynchronous Value Iteration

Value iteration is a method that follows directly from the results of the last section. It is defined
by repeatedly applying T to the current value vector V. According to [6, Prop. 2.3], this method is
guaranteed to converge to the optimal value vector V* for any initial vector V. However, we cannot
guarantee convergence before an infinite number of iterations.

Asynchronous Value Iteration is a variant to Value Iteration that does not update the values of all
states synchronously, but only updates one state per update. We will not give any formal definition of
the method here but will only state that, as long as every state is updated infinitely often, the method
converges to the optimal value vector V* for any initial vector V' [6, Prop. 2.5].

3.1.3 Standard and Modified Policy Iteration

As an alternative to Value Iteration, Policy Iteration will always terminate after a finite number
of iterations, and is based on alternating policy evaluation and policy improvement. In the policy
evaluation step at time ¢, we compute the values V#t for the policy u; as the solution to the system of
equations given by Eq. (4). Subsequently, we improve the current policy by

1 (8) = argmaprij(a) (rij(a) +V*(4)),
acA jes

which in operator notation is
T, V# =TVH,

Mt+1

The sequence of policies {pug, i1, ..} generated by that procedure is monotonically improving and is
guaranteed to terminate with an optimal policy [6, Prop. 2.4].

If the number of states is large, the policy evaluation step of Policy Iteration might be computa-
tionally prohibitive. One way to get around this is to approximate the value function V#t by using
a limited number of Value Iteration updates. The idea behind this method, called Modified Policy
Iteration, is that value iteration involving a single policy (evaluating 7),V') is much less expensive than
an iteration involving all policies (evaluating T'V).

3.1.4 Asynchronous Policy Iteration

Asynchronous Policy Iteration allows for even more freedom than Modified Policy Iteration by mixing
Asynchronous Value Iteration with Policy Iteration. At each step, we can either i) update some states
of the value vector by Asynchronous Value Iteration, or ii) improve the policy of some set of states
by policy improvement. Hence, Asynchronous Policy Iteration is a generalisation over all previously
discussed methods. However, convergence can only be guaranteed if all states are updated infinitely
often, and for the initial policy po and initial value vector V we have T}, Vo < Vj [6, Prop. 2.5]. This
initial condition can be satisfied by selecting a proper initial policy po and setting the initial value
vector such that Vp = V#o,

3.2 Approximate Dynamic Programming

Approximate DP applies the DP methods to an approximation V of the value function rather than on
the value function V itself. That this change also modifies the convergence behaviour will be discussed
in the next two sections.

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

3.2.1 Approximate Value Iteration

Approximate szlue Iteration is based on the Value Iteration update Vi1 = TV; performed on the
approximation V. Hence, the update can be defined as

Vis1 = argmin ||T‘7t - f/||7
‘7

which minimises the squared error of approximating the Value Iteration update TV;. As demonstrated
by Boyan and Moore [11], that method might diverge when used with even the most common function
approximation architectures, like linear or quadratic regression, local weighted regression, or neural net-
works. The identified problem was that even though the approximation is able to adequately represent
the optimal value function, it fails to approximate the immediate steps of the Value Iteration.

An option to avoid divergent behaviour of the method is to only use approximation architectures
that by themselves feature non-expansion to the maximum norm, as discussed by Gordon in [23]. A
non-expansion is similar to a contraction (see Section 3.1.1), but it does not necessarily have to reduce
the norm, as long as it does not expand it. As the DP operator T' causes a contraction to the maximum
norm, applying a non-expansion to the same norm results in an overall contraction. This is sufficient
to state that, by the Contraction Mapping Theorem, the update converges to the unique fixed point
of the update procedure, given by the solution to

V* = argmin |TV* — V.
%

As for any approximation, the values that V can take are restricted to the approximation space defined
by the approximation architecture.

A class of approximation architectures that fulfils the above requirement is the class of averagers
[23]. This class is characterised by having the approximation of a set of observations bounded from
below and above by the range of those observations, that is, the approximation can never exceed
the highest observed value. That class, for example, contains the methods of “[...] local weighted
averaging, k-nearest neighbour, Bézier patches, linear interpolation, bilinear interpolation on a square
(or cubical, etc.) mesh, as well as simpler methods like grids and other state aggregation.” [23]. The
linear architecture, as described before, is not necessarily an averager and thus might diverge when
used for Approximate Value Iteration®.

3.2.2 Approximate Policy Iteration

Approximate Policy Iteration performs the policy evaluation step of Policy Iteration by generating
an approximation V#* of the value function V** [6]. The policy improvement step generates a new
policy based on the approximated value function. This method is proven to be significantly more stable
(in the sense that it cooperates with a higher variety of function approximation architectures) than
Approximate Value Iteration, but has the disadvantage of having to store the policy while evaluating
it. An alternative is to base the policy on the approximated value function of a partial evaluation of
the previous policy, which at worst means to directly derive the policy from the current value function
approximation at every step. We will discuss the impact of such a change in the next section, and will
for now assume that the policy is fully evaluated before it is improved.

As for the function approximation, we again assume a linear architecture and want to minimise the
mean-squared error ||[V# — V| p for a policy u. There are several approaches to that [36], of which the
optimal solutions are different [41]:

Optimal approximate solution, which is to find the minimum of |[V#* — V||p, i.e. the orthogonal

projection V# = IIpV* onto the approximation subspace w.r.t. I lp- As we do not know VH#,
we can estimate its value by Monte-Carlo simulations, which makes the method computationally
expensive.

Minimal Quadratic Residual (QR) solution, which is to find the function V* that minimises the
Bellman residual |7,V — V| p. As this Bellman residual is related to the change caused by the
DP update for a constant policy, minimising this residual is equivalent to finding the solution for
which its change is minimised. Fortunately, for linear approximation architectures, finding the
QR solution is reduced to resolving a linear system of size K that can always be solved. Another

3To be more specific, the linear function approximation architecture is an averager as long as the features are state-
independent, e.g. if ¢(i) = (1) for all : € S.

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

advantage of this method is that its stability is relatively insensitive to the sampling distribution
given by D, particularly when compared to the method that will be presented next [36]. A major
disadvantage is that finding the QR solution either requires a full model of the system, or at
least a generative model that allows as to produce sample trajectories. It cannot be applied to
problems where we only have a fixed set of trajectories [31].

Temporal-Difference (TD) solution, which aims at finding the fixed point V# = HDTM‘N/“ of the
update IIpT),, giving a projection of the DP update for a fixed policy into the approximation
subspace. Due to its use in LCS, we will discuss this method at length in a later section. For the
sake of comparison, let us only mention that this method is significantly more sensitive to the
sampling distribution given by D, but can be applied to problems where no model exists.

Probably the most general approach to the analysis of policy evaluation with linear function ap-
proximation, as introduced in [42], is to reduce the algorithms to matrix iteration of the form

Wi = Awg + b,

where w; is the weight vector after iteration ¢, A is an L x L matrix, and b is a vector of size L. To
study convergence of such an iteration, we need to know the spectral radius p(A), i.e. the eigenvalue
with the maximal absolute value p(A) = max{|A| : A € 0(A)}, where o(A) is the spectrum of A, that
is the set of its eigenvalues. The above iteration converges to its fixed point w = (I — A)~!b if and only
if matrix A has a spectral radius p(A) < 1. This investigation is expanded on in [34], where Merke and
Schoknecht show that for the case p(A) =1 the iteration still converges under certain conditions, but
the limit depends on the initial weight vector w_;.

Both the QR and the TD-method can be reduced to such matrix iteration, as shown in [42]. In
[34], this matrix iteration was used to demonstrate that for the QR method there exists a range of
positive step-sizes « such that the method converges for every initial value wy. The method of TD is
more sensitive and might diverge if trajectory sampling does not follow the steady-state distribution
of the Markov Chain, as demonstrated in [25] and analysed in [49]. Even if we sample according to the
steady-state distribution, that distribution changes at the next policy improvement step, which might
mislead the Policy Iteration process [27]. More positively, TD was proven to converge faster than QR
under certain conditions, even in its weakest form, TD(0) [43].

The approximated value function V#* will most likely never exactly represent V*. Therefore, when
alternating approximate policy evaluation and greedy policy improvement we might improve the policy
rapidly in the first few iterations and then oscillate around the optimal policy. This behaviour is due
to the approximation error in comparison to the set of value functions that produce optimal policies.
At some point in the iteration we will not be able to get any closer to the optimal value function
V* and the policy improvement step will therefore fail to be efficient. Hence, the algorithm does not
converge, but due to the closeness of the approximate value function to the optimal value function,
we can expect to reach good final policies [36]. Error bounds for sub-optimal policies can be found as
functions of the maximum norm in [6, Ch. 6.2], and as functions of the quadratic norm in [36].

3.2.3 Optimistic Policy Iteration

Optimistic Policy Iteration, like Policy Iteration, consists of a policy evaluation and a policy im-
provement step. However, in contrast to Policy Iteration, the policy improvement step is based on an
incomplete evaluation of the policy. The method is in many respects similar to Asynchronous Policy
Iteration introduced in Section 3.1.4 [6, Ch. 5.4].

By the use of a Value Iteration-like iterative update for state transition 4;,4;11 at time ¢ 4 1, given
by a variant of Viy1(i¢) = (T,V:)(i), we get a monotonically improving sequence of value functions
with the value function V* for policy p as its limit, given that each state is visited an infinite number
of times. Hence, we can perform policy improvement based on an intermediate step rather than the
limit. Optimistic Policy Iteration improves the policy after each partial policy evaluation step. As such,
it does not need to store the policy separately but can it derive at each step from the current value
function. Partially Optimistic Policy Iteration is a variant that performs several policy evaluation steps
before improving the policy and therefore needs to store the policy separately.

For the case without value function approximation, Tsitsiklis has shown that Optimistic Policy
Iteration with a synchronous value function update of

Vigr = (1 —a)Vi + T, Vi,

where p; is the policy at time ¢, converges to the optimal value function V* with probability 1,
given that the scalar step-size a behaves according to stochastic approximation theory [50]. Similarly,

9

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

convergence can be guaranteed if the value function update is only performed for one state at a time,
given that the states are sampled uniformly over the state space. In the same paper, Tsitsiklis also
proves convergence for the TD-method and a variant that can be applied to control problems, both
for the case of synchronous value function update. For an asynchronous update, however, when state
trajectories are observed or generated with a nonuniform distribution, the same methods are known
to be non-convergent in some cases.

What happens if we work with an approximated value function rather than a tabular representation
is still an partially open question, but in the light of results presented in this section, the outlook is
rather dim. Still, Konda and Tsitsiklis prove in [29] that some form of step-wise TD-update on an
approximate value function in combination with an approximated policy based on the same features
shows convergent behaviour, even for a special case of continuous state and action spaces. As the result
relies heavily on a linear approximation architecture, it is unclear if similar analysis can be performed
for the nonlinear function approximation architecture of LCS.

3.3 Temporal-Difference Learning

TD-Learning is a method for policy evaluation that can be used as part of (Optimistic and/or Ap-
proximate) Policy Iteration. It is actually a family of algorithms TD(A) that is parameterised by the
scalar A\, with 0 < \ < 1.

At its core is a sequence of temporally related events with associated predictions, of which the
predictions are updated in a step-wise fashion by the temporal difference between the old prediction
and the updated prediction. It originates from a reformulation of the Widrow-Hoft rule [55] for multi-
step sequences, resulting in TD(1), and is then generalised to TD(A). From the reinforcement learning
perspective, it acts as a multi-step backup operator, in contrast to the single-step backup 7}, at the
core of most DP methods. The next sections discuss the TD-method from various different viewpoints,
starting with its origin, then on to its application in reinforcement learning, and finishing on how to
improve reinforcement learning with TD by using least-squared methods.

3.3.1 The Origins of TD()\)

In his original paper [45], Sutton introduced TD-Learning as a method to update predictions on events
that are temporally related. It is derived by a rewrite of the Widrow-Hoff rule [55], which performs
gradient descent on a local approximation of the gradient. Given a state trajectory {ig,41,...} due to
following policy u, the sequence of rewards {rﬁ) i TZ igs+ -+ and the value function V;(i) at time ¢, we
use the updated prediction of the value of state i;, given by TZ“H + YVi(it41), to perform gradient
descent on the resulting local approximation error for state i,

(Fhi iy T YVe(irgr) = V(in))*.

Gt le41
Following the gradient of the error w.r.t. V(i) results in the Widrow-Hoff weight update

Vi1 (ie) = Vi(ie) + aulrl;,, + 7 Viliesr) = Valin)), (7)
where « is the positive scalar step-size at time ¢. This update modifies the value for the current state i,
based on the current value of the next state 4;11. Since the transition from é;41 to i;4o will update the
value for state 7441, we can also use this knowledge to update the value for state ;. Performing such a
back-propagated update at time ¢+ 1 for the values of the states ig,...,%; is the basis of TD-learning.

Given the policy pu, the value function V; at time ¢, and the Temporal Difference d;(i,j) at time ¢
for performing a transition from state i to j,

dy(i, j) = 5 +Ve(d) = Vi),

the TD(A) update is defined as

Vit1(1) = Vi(i) + cude (it iev1)er1(in), Vo i€S, (8)
(i) = { Ayeq(7) otherwise,)

where e; € RY is the eligibility trace vector at time ¢, of which component e;(i) gives the eligibility
trace for state ¢ € S at time ¢. Sutton has shown that for A = 1, the above method is equivalent
to performing a Widrow-Hoff update on the current and all past states, even if combined with linear

10

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

function approximation architectures [45]. On the other hand, setting A = 0 causes TD-Learning to
update only the current state and is therefore equivalent to the local Widrow-Hoff update of Eq. (7).
Note that the interpretation of TD-Learning presented so far is called the Backward View as it treats
TD(\) as looking backwards in time to update the prediction of all states that it has already visited.

3.3.2 Bias-Variance Tradeoff

A different, but mathematically equivalent interpretation for TD-Learning is the Forward View, which
treats TD(A) as looking forward in time and founding the prediction of any state on the observation of
all future rewards. Given policy p and the infinite state trajectory {ig, i1, ...}, the new value of state
i at time ¢ is according to T'D(A) estimated by

=N Y AR,
m=1

where REn) is the n-step return at time ¢, given by

R(n) = + At

ltlt+1 Tp41%¢42

+’7 + -+ Y Viliggn)-

1t+2 1t+3

Hence, TD()\) mixes returns of different lengths to generate a new estimate for the current state [47,
Ch. 7]. The closer A is set to 1, the more future reward influences that estimate. A low A, on the other
hand, will cause TD(\) to rely mainly on the existing estimate V; of the value of future states.

For A = 1, the expected return is the unbiased Monte-Carlo return, which might have a high
variance, as it is based on a long stochastic sequence of rewards. A = 0 only considers the current
reward and the current value estimate of the next state, causing the new estimate to have lower
variance (being based on less samples) but introduces a bias by the potential inaccuracy of the current
estimate [10]. Hence, the parameter A controls the Bias-Variance Tradeoff of TD()). Several empirical
studies have demonstrated that intermediate values for A give the best performance [45, 47].

3.3.3 The Temporal-Difference Operator T,EA)

Similar to the DP update operators T and Tu (Section 3.1.1) for Dynamic Programming, we can
introduce an update operator for TD()), that we will denote by Ty‘), indicating value update by TD(\)
according to policy p. Given a value vector V', and the state sequence {ig, i1, ...} from following policy
i, T,SA) is according to [49] defined by

(()\)V) Z A"E (ZV Zﬂt+1 m+1v(im+1)|i0 = Z) ’
for A < 1, and
(T(l)V (Z’y T‘ltlf+1|20 - 7’) = (Z)’

for A = 1, so that limy;; (T™MV) (i) = (T™MV)(i) (under some technical conditions).

For A < 1, the expectation is equivalent to the n-step return V*, as defined in Section 2.2, and
is approximated by the trajectory-based n-step return R(™ of the last section. This shows again that
the A parameter controls the mixing weights for returns of different lengths. If A is set to 0, the T,SO)
is equivalent to the DP operator T}, for a fixed policy.

Regarding the properties of that operator, it was shown in [49, 6] that T, &A)u describes a contraction
mapping w.r.t. the steady-state distribution due to policy p; that is, for any A € [0,1], and any
V.V e RV,

S (Y I '
[TV =TV < BBV = Vil <3V = Vilo.

where D determines the steady-state distribution due to policy u. Hence, repeatedly applying that
operator to a value vector makes it converge to the fixed point of the update, independent of its
initial value. Additionally, Berstekas and Tsitsiklis show in [6, Ch. 2] that the Tf,”) forms a contraction
mapping to the maximum norm with a contraction modulus* of yA. When comparing that to the DP

4The contraction modulus determines the strength of the contraction. Given the contracting function f, causing the
contraction || f(a) — f(b)|| < ¢|la — b]|, its contraction modulus is the scalar c.

11

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

update T}, which has a contraction modulus of 7, we can see that TD-Learning performs at least as
much contraction as the DP update, which is particularly helpful as the parameter A is controllable
by the learning system.

3.3.4 Convergence of TD()\)

The discussion of the Forward View as well as the operator description of TD(A) both rely on looking
into the future for an infinite number of steps, and hence prohibit implementation. However, with
the help of eligibility traces, we can use the mathematically equivalent Backward View to describe an
implementable algorithms.

Following the update described by Eq. (8) and (9), we perform a step-wise approximation to the
update as given by the T,SA) operator. As the state transitions follow the Markov Chain determined by
the policy i, the approximation will asymptotically converge to the iteration

Vis1 = Vi + . D(TVV, — V),

which is equivalent to the steady-state distribution weighted Widrow-Hoff update for the new estimate
TNV,

That observation allows linking of TD()) to stochastic approximation theory, as first done in [26].
Given the mapping H : RV — RY, and some parameter V € RY, the Robbin-Monro stochastic
approximation algorithm

Visi = (1 — o) Vi1 + o HV,

is known to converge to its fixed point V' = HV given that the step-size «; fulfils some stochastic
approximation assumptions. In its stationary form, TD(\) can be described by such an update equa-
tion. Its initial deviation from the stationary form can be added as update noise that asymptotically
converges to zero. This path was taken in [6, Ch. 5] to prove convergence of TD(A) with probability 1
to the value function V# of the followed policy p.

Even though our discussion has been kept rather informal, it captures the core of the convergence
proofs of most step-wise approximations to DP updates: Firstly, it is shown that the method converges
for the synchronous case, that is when all states are updated in the same iteration. For DP and TD-
Learning this is ensured by the contraction mapping formed by their update operators. As a second step,
the step-wise approximation is modelled as a deviation from the synchronous case that asymptotically
converges to zero. The same approach has been used to show convergence of TD(\) with function
approximation [49], and for Least-Squared Policy Evaluation (LSPE) [37].

3.3.5 Approximate Temporal-Difference Learning

So far, we have only discussed TD-Learning with a full representation of the value function in form of
a value vector V. What happens to its properties if we replace that vector by its linear approximation
V(i) = w'¢(i) for any i € S?

Firstly, we need to adapt the TD(\) update in terms of the function approximation used, as was
already done when TD-Learning was first proposed [45]. We will use the description of [49], which gives
the temporal difference d; at time ¢ for policy p and the state sequence {ig,41,...} by

de =1y, +ywid(iee1) — wig(iy),

where w; is the approximation’s weight vector at time ¢. That weight vector is updated according to
TD()) by
t
W1 = Wy + atdt Z (7>\)t_m¢(2m)
m=0
As that would require remembering past states to evaluate ¢(i,,), we can again use the eligibility trace
vector e; € RE to rewrite the update as

Wiy1 — Wt + atdt6t7
t+1

i1 = Y (PN (im) = yAer + B(irs),
m=0

initialised with e_; = 0. Due to the linear architecture’s separation of state-dependent features and
their mixing weights, most of the state-dependencies are moved to the trace vector e;. This separation

12

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

allows is to update values of past states without remembering the whole trajectory. In TD-Learning
without value function approximation this is only possible by updating all states at once at the end
of the trajectory (called off-line TD-Learning). As we are dealing with discounted problems without a
terminal state, there is no end to the trajectory, and we have to update the state values while passing
by. Even though that method is still convergent, it is only the case for decreasing step-sizes «, as that
also reduces the noise that is introduced by the on-line update. Since for linear architectures we can
produce accumulated state values of past states with the help of eligibility traces, this noise does not
occur.

Similar but not equal to TD-Learning without function approximation, approximate TD-Learning
performs a step-wise approximation of the steady-state iteration

Wi41 = Wi —+ Oétq)/D(T,SA) (@wt) _ (I)U}t)

As analysed in [49], for the case of A = 1 the iteration describes a steepest descent along the gradient

of
> o w(@)(VH(E) = w'é(i))?,
ies
which is known to converge for adequate step-size settings. For A < 1, above iteration follows the
steepest descent of the time-variant function
2
> w(i) (T (@) (6) - w's(d))

i€S

which makes sense if we see T,S)‘)(q)wt) as an approximation to V#.

Both versions aim to minimise a convex function, of which the optimum can be found by orthogonal
projection into the approximation subspace, given by the projection matrix IIp (Eq. (5)). Hence, the
steepest descent at time ¢ aims to find HDT,E)‘)f/t, where we use f@ = ®w,. That lets us introduce a

replacement algorithm of the form } }
Vi = IpTMVV;,

which gives the optimal approximation at each iteration. We already know that Tﬁ)‘) describes a
contraction mapping w.r.t. D, the steady-state distribution of the Markov Chain due to policy p. As
shown in [49], the projection matrix Il causes a non-expansion on that same norm. Hence, both
in combination give a contraction w.r.t. || - ||p, and the iteration converges to the fixed point of its
update V# =TI DTL(L’\)IN/“, which is different for different settings of A. The implemented algorithm is
a step-wise approximation to the described iteration. As the difference between the iteration and its
approximation decreases asymptotically, the algorithm converges under some realistic assumption with
probability 1 [49].

An important finding of the above is that I only causes a non-expansion on || - || p if the states are
sampled according to steady-state distribution. As this distribution is usually not known beforehand,
we have to follow the state trajectory as it would occur by following the state transitions of the problem
Markov Decision Process. If the states are sampled according to another distribution, the non-expansion
w.r.t. || - ||[p cannot be guaranteed anymore and divergence can occur, as demonstrated by counter-
examples in [25, 11, 23, 48]. That the condition of on-line sampling is sufficient but not necessary
for the convergence of approximate synchronous TD-Learning is shown in [42], where they reduce the
algorithm to a form of matrix iteration. We will later demonstrate that LCS with TD-Learning can
also violate that condition but still converge.

3.3.6 Least-Squares Methods

With the better understanding of TD-Learning, two variants of TD(\) emerged that feature signifi-
cantly better convergence rates by replacing the local gradient descent by a direct evaluation of the
minimum approximation error.

The first method, called Least-Squares TD-Learning (LSTD())), works from the convergence point
backwards and introduces a new algorithm that directly approximates that convergence point. The
method was introduced for A = 0 by Bradtke and Barto [13], and later extended to A € [0, 1] by Boyan
[9, 10]. It uses the solution to the fixed point VH = HDT,S)‘)V“, which is also the solution to Aw+b = 0,
where

A=Y eldli) — o)), b= el
t=0 t=0

13

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

and e; is the eligibility trace vector, given by

t

€t = Z (7>\)tim¢(im)-

m=0

Matrix A and vector b can be incrementally updated, giving A; and b; at time t. Hence, the value
function approximation a time t is the solution to A,w; +b; = 0, given by w, = A, p,. To avoid taking
the inverse of A; at each step, we can directly update the inverse by use of the Sherman-Morrison
formula [37]. Either way, the incremental update of both A; and b, converges to A and b, and therefore
LSTD()) as a whole converges with probability 1 [37]. Due to the change of algorithm, the requirement
of TD()) for sampling by the steady-state distribution is not significant anymore. Instead, an arbitrary
sampling distribution will still lead to convergence, as long as every state is visited infinitely often.
[41].

An interesting observation is that LSTD(\) has the same structure as an approach that builds
an observation-based model of the environment and then uses that model to derive the approximate
value function V# [10]. The vector b is responsible for storing an approximation of the expected return
for each state. An approximation of the observed state transitions are captured by the matrix A.
If @ is an N x N identity matrix, that is if the approach is tabular, then LSTD(0) is equivalent
to learning an exact model of the environment. For any form of function approximation, LSTD())
creates a compressed model in correspondence with the feature vectors. As a side-note, LSTD(1) is
also mathematically equivalent to linear regression without the same excessive use of resources [10].

The other recently introduced Least-Squares method is Least-Squares Policy Evaluation (LSPE)
[37, 5], a method that closely follows the TD(X) update. Indeed, at every time ¢ it aims at finding the
w; that minimises

t t 2
Z (wéqs(im) — W p(im) — Z (7/\)nmdt(in7i7t+1)>)
m=0 n=m

where d; (i, j) is the temporal difference, given by
dt(in, in+1) = szmiwrl + 7w£¢(in+1) - w{gb(zn)

While TD(A) performs local gradient descent on above function, LSPE computes the minimum of the
above function by an iterative matrix update. The resulting w is used to update the approximation
weights by

W41 = Wy + a(u_)t — 'U}t),

where « is the scalar step-size. Thus, rather than strictly following the optimal approximation, which
would be the case for a = 1, the algorithm also allows for more gradual weight updates. According to
[5], that is an advantage that LSPE has over LSTD(\), as it allows LSPE to be used with Optimistic
Policy Iteration where a small step-size is essential for good overall performance. Otherwise, LSPE and
LSTD(A) converge to each other faster than they converge to the optimal solution, given that o = 1.
What is not documented is that LSPE is computationally and spatially more expensive as it needs to
maintain one additional L x L matrix.

With respect to convergence, LSPE can be reduced to a step-wise approximation to a matrix
iteration. As the difference between the iteration and its approximation converges to zero with infinity,
the method converges if the matrix iteration converges. This is shown to be the case if the step-size is
within a particular range that always contains 1 [5]. Due to its similarity to TD()), the proof for LSPE
is based on the assumption that the state transitions are distributed according to the steady-state
distribution for the current policy. That requirement is another drawback of LSPE when compared to
LSTD()).

3.4 Optimal Control and Q-Learning

All above methods require some model of the problem to create policies based on the current value
function. However, as already shown in Section 2.3, we can use the @-value function rather than the
value function to improve the policy without having a model of the problem. In addition to that, we
need to use some step-wise update on that @-value function as full update of all states also requires a
model.

In this section we will introduce SARSA()A) and Q-Learning. The first performs Policy Iteration
and uses TD-Learning to update the @Q-value function. Q-Learning is a step-wise approximation to
Value Iteration.

14

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

Both methods require visiting all states an infinite number of times for convergence. However,
policies that always select the best action (so-called greedy policies) might not cover the whole state
space. Hence, those methods need to implement some form of a soft policy, like e-greedy or a softmax
policy, which sometimes also choose sub-optimal actions. We will not discuss details about those policies
here, but the interested reader is referred to [47] for more information.

3.4.1 SARSA())

SARSA stands for State-Action-Reward-State-Action, as SARSA(0) requires only information on the
current and next state-action pair and the reward that was received for the transition. The name was
coined by Sutton [46] for an algorithm developed by Rummery and Niranjan [39] in its approximate
form, which is very similar to Wilson’s ZCS [56], as noted by Kovacs [30].

It performs Optimistic Policy Iteration on a @-value function that is updated by TD(A). As the
value update is based on the state trajectory of the current policy, this method is an on-policy method.
Due to its use of Optimistic Policy Iteration, the convergence properties discussed in Section 3.2.3 apply.
An additional investigation that shows convergence of SARSA(0) under certain policies is available in
[44]. For a description of how to implement SARSA()), the interested reader is referred to [47]. Using
linear function approximation on the)-value function has the same effect as using approximate TD-
learning, which was discussed in Section 3.3.5. The requirement of on-line sampling is always fulfilled
as the sequence of observations is the only information that is used.

3.4.2 Q-Learning

The much-celebrated Q-Learning was developed by Watkins [53] as the result of combining TD-
Learning and DP methods. It is similar to SARSA(0), but rather than using the Q-value of the next
state-action pair to update the @Q-value of the last state-action pair, it uses the @Q-value that would
result from following a greedy policy, even though that is not necessarily the case. Hence, Q-Learning
is called an off-policy method.

For the sequence of states {ig,i1,...} and the corresponding sequence of actions {ag, a1, ...}, the
Q-values are updated by

Qi41(i¢, ar) = Qi iy, ar) + v (Tit,itﬂ(at) + ’Ygleaj(Qi (i41,a) — Q¢ (i, at)) .

Hence, the estimate for Q(i;, a;) is updated by ri, i, , (ar)+YVi* (i¢41), where Vi*(ig41) = maxaea Q¢ (i¢41,a)
is the current estimate for the next state i;y; when following a greedy policy. This shows that Q-
Learning is an approximation to Asynchronous Value Iteration that performs the update with the
actual reward rather than its expectation. Consequently, Q-Learning is guaranteed to converge to the
optimal Q*-values, given that all state-action pairs are visited an infinite number of times [54].

A variant of Q-Learning, called Q()) is an extension that uses eligibility traces like TD()) as long
as it performs on-policy actions [54]. With the choice of an off-policy action, all traces are reset to zero,
as the off-policy action breaks the temporal sequence of predictions. Hence, the performance increase
due to traces depends significantly on the policy that is used, but is usually marginal.

As Q-Learning is a step-wise approximation of Asynchronous Value Iteration, function approxima-
tion architectures for which the latter diverges will very likely not work with Q-Learning (see Section
3.2.1). This also applies for linear approximation architectures, for which Q-Learning was demonstrated
to diverge in some cases [12].

4 Reinforcement Learning with LCS

In this section we will show how to construct Learning Classifier Systems based on reinforcement
learning that uses an LCS function approximation architecture introduced in [22]. For now, we will
restrict ourselves to a time-invariant population of classifiers, but investigations on how such a system
reacts to the replacement of classifiers in the population is the next logical step of our research.

We will firstly give a short overview of the LCS function approximation architecture and how it
can be related to reinforcement learning methods. Subsequently, we will show how it can be applied
to model-based and model-free Value Iteration and Policy Iteration. Finally, convergence of one type
of such a system is discussed, followed by an outline of possible further work.

15

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

4.1 LCS Function Approximation Architecture

We have introduced a formal framework and extensions to the LCS function approximation architecture
in [22]. Here we will show how it can be applied to reinforcement learning.

4.1.1 The Framework

LCS utilise a finite set of K classifiers to approximate the value function. We will enumerate the
classifiers with 1,..., K, and denote a classifier parameter of classifier k£ by the subscript -4.

Each classifier k matches a particular subset S, C S of the state space S, which we have called
the match set. The aim of classifier & is to find the optimal approximation in the mean-squared sense
of the parts of the value function that it matches. To ease notation, we use the indicator function
Is, : S — 0,1 that returns Ig, (i) = 1 if ¢ € Sy and Ig, (i) = 0 otherwise. The approximation of
classifier k is determined by its weight vector w; € R¥, which is used to approximate the value for
state i by Vi (i) = w,¢(i). Additionally, each classifier keeps track of its own approximation error, that
we denote by ey.

To recover an approximation V : S — R over the whole state space, the classifier’s individual
approximation is mixed by

K
V(i)=Y ve(i)Vi(i), (10)
k=1
where ¢y, : S — [0,1] is the mixing weight for classifier £ and is given by

ISk (i)sk_'u
K N _—v
Zp:l ISp (/L)gk‘

v is a positive constant that allows additional control over the mixing weights. Hence, classifiers are
weighted by an inverse of their estimates approximation error, and only contribute to the approximation
if they match the current state. The mixing weights are undefined for states that no classifier matches.
We will assume that for each state there exists at least one classifier that matches that state, to avoid
that problem. For demonstrations of how to use this framework and a detailed discussion about the
optimality of a classifier see [22].

In matrix notation, the approximated value vector Vj of classifier k is given by Vi = ®wy.
Matching of the same classifier is expressed through the N x N diagonal matching matrix Is, with
Is (1),...,Is,(N) along its diagonal. Note that due to binary matching, (Is,)* = Ig, for all a €
R_o. The sampling distribution w.r.t. classifier k is given by the sampling matrix D, = Is, D.
The mixing weights are represented by the N x N diagonal mixing matrix ¥; with diagonal en-
tries Y5 (1),...,¢¥k(N). Due to our definition of the mixing weights, for any classifier k, ¥}, = Is, ¥y,

(i) = (11)

and Zszl Uy, = I. The combined approximation V is given by

K
V=> UV =
k=1

This approximation is a result of the approximation of all classifiers, and should not be optimised as
a whole as that would distort the approximation of the separate classifiers [22].

K

\Ifk<1>wk.
1

4.1.2 Relating States

Any reinforcement learning method presented here is based on relating the value of the current state
to the value of one or more following states. The values of the states cannot be directly observed but
are only an artifact of the DP solution to an MDP problem, emerging through the reward function
and the relation between states.

In LCS, each classifier approximates its own part Sy of the state space S, but might have many
states that it does not match. Let us consider a transition from state ¢; to state i;;1 by performing
action a;, where classifier k¥ matches the first state but not the second, that is i; € Si and ;41 & Sk.
That implies that the classifier provides an approximation Vk(zt) for the value of the first state i,
but its approximation f/k (i¢41) for the second state i1 is unreliable as the classifier does not aim at
approximating it. Hence, to update f/k(it) the classifier has to rely on another approximation than its
own. For that purpose we will use the combined approximation V (i,41) that reflects our best estimate
of the value approximation of that state. Hence, the new estimate for Vk(it) will be the reward for

16

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

the transition and the discounted value of the next state, that is /' vic T ’y‘?(it+1), given that we are
following policy p.

Generally, we will use that new estimate for all updates, regardless of whether the classifier matches
the next state or not. This is justified by observing that the overall approximation is on average more
accurate than the approximation of a single classifier. Given, for example, that we have a classifier that
matches a large area of the state space, then this classifier will without doubt have a larger approxima-
tion error than a classifier that matches a subset of that space. Hence, the mixed approximation for the
states where both classifiers match will be more accurate than the approximation of the first classifier.
It will only differ slightly from the approximation of the second classifier, as the approximation error
determines the mixing weights.

4.2 Value Iteration

The method of Value Iteration is based on repeatedly performing the DP update T on the current value
function estimate. If used without approximation, it is guaranteed to converge to the optimal value
function V*. In the next few sections we will develop some variants of Value Iteration in combination
with LCS function approximation, and will discuss their likelihood of convergence.

4.2.1 LCS Value Iteration

In the case of LCS, each classifier approximates the result of one Value Iteration update TV, based on
the overall value function approximation V;. Hence, we want find V}, for which

S (@06 - %) = 177 - Gl
1E€Sk

is minimal. We can compute that minimum by performing an orthogonal projection into the approx-
imation subspace {Is, ®w : w € RE} of classifier k, given by the projection matrix g, (Ea. (5)).
Hence, one Value Iteration update becomes

Vi t41 ZHISkTVt, k=1,...,K,

which results in the weight update

W1 = (Z ¢<z‘>¢(z‘>'> D (i) (TVi)(

1€SK 1€Sk
-1
- (Z ¢<z‘>¢<z‘>’> > eli)ymax Y pij(a)(rij(a) +1Vi())
1€Sk 1€ Sk jeSs

= (Z ¢<z‘>¢(z‘>’> > éliymax pij(a (r”) +70(j Zwkt wkt>,

1€Sk 1€Sk jes

where we minimise above approximation error w.r.t. wy, and substitute for the DP update 7' (Eq. (6))
and the overall approximation V' (Eq. (10)). The mixing weights 1y, are given by Eq. (11) and are
based on the approximation error €+, which is

kvt |S ‘ Z (T‘/t 1 w;f,t(vb(i))Qa

where |Sk| returns the number of elements in Sj, which is the number of states that classifier k¥ matches.
Note that for the update at time ¢ we have to use the approximation error from time ¢ — 1, as we
cannot evaluate the error at the same time as using it for the mixing weight to assemble the overall
approximation V. The error can only be updated once the mixing weights are known and therefore
always lags one step behind. Furthermore, we should not rely on the current overall approximation 17
to calculate the error, as that approximation is less accurate than the DP update T'V;_; based on the
previous approximation. Overall, it might be most efficient to update the error at the same time as
updating the weight vector (using the mixing weights based on the previous error) so that we do not
need to store information to recover the previous overall approximation V;_.

As already discussed in Section 3.2.1, Approximate Value Iteration might diverge if used in com-
bination with linear approximation architectures. Hence, it might only be safe to apply if we use the

17

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

features ¢(i) = (1) for all i € S. This makes the classifiers to be averagers, for which Approximate
Value Iteration is known to converge [23]. By averaging over the classifier’s approximation to form the
overall value approximation, it makes it very likely that the whole function approximation architecture
acts as an averager and allows us to guarantee convergence. On the other hand, using other features
might cause the method to diverge. Further work on that topic will allow us to give more definite
statements about the convergence behaviour of LCS Value Iteration.

4.2.2 Asynchronous LCS Value Iteration

Rather than updating the value function of all states at once, Asynchronous LCS Value Iteration only
updates the value function of a subset of all states. We will develop the method as updating only one
state at a time, which we consider to be state i; at time t. The new value estimate for that state is
given by the DP update (T'V;)(i;) and concerns only classifiers that match that state.

In contrast to completely reevaluating the approximation of each classifier at each iteration, as
done in LCS Value Iteration, we now only update the value estimate for one state and therefore have
to perform an iterative update of the function approximation without discarding past information. As
the estimate at time ¢ is given by (T f/t)(zt) and classifier k£ only performs updates for the states that
it matches, its approximation at time ¢ aims at minimising®

Z Is, (iM)((T‘ZrL)(i7rL) - w;g,t(b(im))?
m=0

Consequently, the minimisation is dependent on the distribution of states that we update. In the long
run that causes the approximation costs to be weighted by the state distribution D, that is

Y w(@(TV)E) = wipli)® = 1TV — Gwgl|3, -
i€Sk

Hence, minimising that cost gives a step-wise approximation to the iteration
Vg1 = Ilp, TV;,

which differs from LCS Value Iteration by the distribution weighting. In terms of the overall approxi-

mation, the iteration becomes
K

Vi1 =Y Wpyallp, TV,
k=1

which is a weighted mixture of the orthogonal projection of the DP update into the approximation
subspaces of the classifiers.

Implementation possibilities are to use the LMS algorithm to perform local gradient descent on the
current error Ig, (i;)((TV;)(iy) — wy, 1¢(ir))? and track the approximation error, or to use a Kalman-
filter based update to accurately track both the optimal approximation and its approximation error.
Both algorithms are described in [22], and their application will be demonstrated in the next section.

With respect to the method’s convergence properties, we expect the difference between Asyn-
chronous LCS Value Iteration and LCS Value ITteration to asymptotically converge to zero (ignoring
the difference in sampling distribution). Hence, the discussion of the convergence of LCS Value Iteration
should also apply to the asynchronous variant.

4.2.3 LCS Q-Learning with Implementations

Even though the previous method only updates one state at a time, it still required the evaluation of
the DP update (Tf/) (i¢) at each step. However, if we choose our actions according to a greedy policy
and follow the transitions of the Markov Chain, the received rewards will in the long run be similar to
the ones that correspond to the DP update T' (Eq. (6). Hence, we can replace the DP update T'V; (i)
of the previous method by

Tiyie (@) +7 max z;pmlj (a)Vi(4),
JjE

5Even though it would be better to use f/}(zm) rather than Vi, (im), we cannot separate the state information from the
overall approximation as the mixing weights might change over time. Hence, to use V(i) would require the performance
of the complete minimisation at every step and does not allow for an iterative update.

18

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

where a; is chosen in accordance with the greedy policy. That still requires consideration of all transi-
tions from i;41 to compute the value of the second term. We can avoid that by operating with @-values
rather than the value function itself, and reduce above to

Piviva (@) +ymax Qy(it1, a),

which essentially gives Q-Learning. Even though it increases the spatial requirements, because we need
to store one value function per possible action, it does not require a model of the problem. For the sake
of this discussion we will assume that one classifier only matches one action, as is usually the case,
which is why it is sufficient to keep the classifier approximation Vj, action-independent. Hence, we will
only modify the matching indicator function to Is, : S x A — {0,1}, returning only 1 for the actions
that the classifier matches, the mixing weights 15, : S x A — [0, 1] to also consider the actions, and
will define the overall Q-value approximation by

K
Q(iv a) = Z 1/%(% Q)Vk(i)’
k=1

with the mixing weights

Is, (i, a)a,;”

K) -
> pe1 1s, (i, a)e”

An extension to this would be to allow a classifier to approximate values for several actions, made
possible by introducing action-dependent feature vectors.
The error we want to minimise is the sequence of temporal differences

’(/Jk (i, a) =

t

2
57 Ty limstn) (i () + 108 Qi 1,0) = (i)) (12)

m=0

To avoid having to store the sequence of past states, we will employ an iterative update procedure.
Using the normalised LMS algorithm, we will perform local gradient descent w.r.t. the current
error®. That gives the weight update

Wh 41 = Wet + arlg, (4, at)M (Timﬂ (at) +ymax Q¢ (ig+1,a) — wy, t¢(it)> ; (13)
()2 a€A :
where «; is the step-size at time t. Hence, only the matching classifiers are updated. Besides the
difference in the mixing weight computation, the algorithm is equivalent to the one used in XCSF [59].
The approximation error can be updated by the same LMS algorithm, performing gradient descent
on the local approximation error

) 2
Is, (it,a¢) ((Tititﬂ (a¢) + 7 max Qi(itg1,0) — w;c,t¢(it)) - €k,t>

to get the error update

2
i = i s, i 1) (((@) + g Quiesn.a) = wh0li)) - k) .

That completes the algorithmic description for LCS Q-Learning with the LMS algorithm.

A more powerful alternative is to use the Kalman filter to track both the optimal approximation
and the approximation error. Minimising the temporal difference sequence, given by Eq. (12), reveals
that the optimal weight vector wy, ¢4 for classifier k after the transition i, —® i, satisfies

(Z Is, (im,amw(z‘mw@m)’) 01 = 32 Tl 00 (1o)+ 105 Qi1,0)).

m=0 m=0

Of the several possible algorithmic forms of tracking this optimum, we will use the one described in [22,
Sec. 4.3.6]. The approach is to observe that above optimality condition is of the form Ay jwi 141 = bi ¢,

6For more information on the use of the normalised LMS algorithm in LCS, see [22].

19

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

where Ay ; is an L x L matrix, and by is a vector of size L. Hence, if we have knowledge of Ay ; and
by, we can recover wy ¢+1 by
-1
Wk t+1 = Akﬂgbk,t-

by can be iteratively updated by
bt = bii—1 + Is, (ie, ar)d(ie) Qe (i),
initialised with by, _1 = 0, where Q:(i¢) is the expected return for state i;, given by
Qu(it) = Tiy iy (ar) +y max Qulitt1,a).

To avoid inversion of Ay ; at each step, we can apply the Sherman-Morrison formula to directly operate
on the inverse, that is

At 0ol Ay
Lt (i) Apy 1 0(ie)

AI;,% = AZ}:A - ISk (itv at)

where A,;l_l is initialised to 01, with § being a small constant.
The approximation error can be tracked according to [22, Th. 4.1] by

(k1 = Denerr = (crp — Dewe + Ls, (e, ar) (Qu(ir) — wi 1 0(ir)) (Qr (i) — wh 4 419(ir))

with €5, 1 = 0, where ¢ ; is the match count for classifier k, defined as

t
Ck,t = Z ng (im,am).
m=0

This completes the algorithmic description for LCS Q-Learning with the Kalman filter. A mathemat-
ically similar weight-update has already been used in [32], but in that XCS variant the error was
approximated by the LMS algorithm. The presented algorithm tracks the exact mean-squared error
and can therefore be expected to give a quicker and more accurate error approximation.

Both algorithms describe an approximation to LCS Value Iteration. Hence, we can assume that the
same convergence constraints that apply to Value Iteration also apply to those algorithms. Additionally,
they require investigation of whether the step-wise approximation is in conformity with LCS Value
Iteration in order for their difference to converges to zero.

Even though LCS are mostly applied to complete state trajectories, a set of independent state
transitions is sufficient for using this algorithm. Examples of how this can be done for a Least-Squares
reinforcement learning method can be found in [31].

4.2.4 XCS with Gradient Descent?

Inspired by [47, Ch. 8.2], Butz, Goldberg and Lanzi attempt in [18] to add a gradient-descent like
update to the Q-Learning of XCS by multiplying the residual term of the update by the derivate of the
Q-value function w.r.t. the weight vector of the corresponding classifier. What they do not consider
is that in XCS each classifier approximates its value function independently. Hence, the derivative of
(is to be taken of the classifier’s approximation Qk,t rather than the combined approximation Q; of
all classifiers. The derivative of Qk}t is ¢(i;) at time ¢, and is therefore 1 for XCS’s feature vector of
¢(i) = (1), leaving the update equation unchanged.

In Butz, Goldberg and Lanzi’s derivation, they add a factor inversely proportional to the approxi-
mation error to the update equation. Surprisingly, this factor improves XCS performance significantly.
Our intuitive explanation for the observed effect is that the changed update strongly supports over-
specific classifiers and does not allow for sufficiently general classifiers. As more specific classifiers
have a lower approximation error, the additional update factor will have a higher value than for more
general classifiers, hence supporting the @-value update of more specific classifiers. As a result, more
general classifiers will have an overly high error, as their approximation is very slowly updated. Con-
sequently, those classifiers are easily removed from the population, and the over-specific classifiers are
replicated. What follows is an accurate approximation due to many specific classifiers, but very little
generalisation. As no population analysis was published in [18], we cannot check the validity of our
argument.

In [51], Wada et al. investigate the gradient term introduced by Butz, Goldberg and Lanzi, and
argue that the term is not valid as it refers to the approximation error which is a function of the

20

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

approximation itself. What Wada et al. ignore is that it is completely valid to use a local and temporary
approximation of the gradient, as used in the well known Widrow-Hoff rule [55], also known as the LMS
algorithm. They proceed by investigating XCS with different combinations of standard and residual
gradient descent, but derive their gradients from the combined approximation rather than from the
classifier’s approximation, which is incorrect for the reasons discussed above. Our update Equation (13)
for Q-Learning in XCS is derived from first principles and uses a normalised form (by the additional
factor ||¢(i¢)||~2) of local gradient descent. This demonstrates that no additional factor is required to
make Q-Learning in XCS conform to a gradient descent update.

4.2.5 Directly solving Bellman’s Equation

Particularly for testing new algorithms, it is useful to directly find the solution to Bellman’s Equation
(3). As in combination with function approximation this solution depends on the function approxima-
tion architecture, we have to solve it by including the LCS architecture.

As previously described, the value estimates of an individual classifier Vj, are backed up by the
reward and the value estimate of the overall approximation V. That gives for Bellman’s Equation with
LCS function approximation

T 5) = maxE (ry(a) + 77 (7)) = max Y pis(o) (rij<a> S0 (j)) .
Jjes p=1

acA

The mixing weights 1, are some normalised inverse of the approximation error e, which can be given

by
2

> r;leaichij(a)Gw +Vz¢p) Vi (i)
jeSs

1€SE

IS k|
Therefore, the mixing weights are nonlinearly related to the classifier’s approximation, which makes
the whole Bellman Equation nonlinear and not directly solvable.

Although this is a problem, we might get around it with an iterative procedure. Given that the
classifier errors are held fixed, the Bellman Equation with LCS function approximation is linear and
can be solved. Therefore, we can alternate between solving the Bellman Equation for fixed error values
and updating the error values. Due to the increasingly more accurate approximation error estimate we
can expect that iterative update to converge.

An alternative approach to solving the Bellman Equation is to use the iteration derived for LCS
Value Iteration, which can be written as

K
Verr =) Wi Ik TV,
k=1

The approximation error i ; to compute the mixing weights ¥y, ; can be evaluated by
ere =[Skl 7TV = VielT,, = ISk 7HITVe = g Va3, -

That gives an iterative update procedure on the overall approximation V equal to LCS Value Iteration.
The approximation of individual classifiers if given at any time by Vj =11 Is, V;. Due to its relation
to Value Iteration it is questionable if the method converges for anything else than simple averaging
classifiers (though not even that is currently guaranteed). If in doubt, we recommend using the iteration
that is based on fixed errors rather than the one derived from Value Iteration.

4.3 Policy Iteration

Due to the fragility of Value Iteration w.r.t. some function approximation architectures, we will also
investigate how LCS function approximation can be applied to the policy evaluation step of Policy
Iteration. That step aims at finding the value function V* for a fixed policy u. Throughout the rest
of the section we will consider policy p as being fixed, and will discuss several possibilities of how to
find its value function when using LCS function approximation architectures. For a discussion on the
consequences of improving the policy before that policy is fully evaluated see Section 3.2.3.

At its core, policy evaluation facilitates the DP update T}, for policy u. Repeatedly applying that
update to the current estimate of the value function guarantees convergence to the optimal value func-
tion V* for a fixed policy p. When applying function approximation to the value function approximate,
our goal becomes to minimise the difference ||V* — V#|| between the optimal value function V* and
its approximation V*. Section 3.2.2 outlines common methods to achieve this.

21

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

4.3.1 Model-based LCS Policy Evaluation

Similarly to LCS Value Iteration, we want each classifier to approximate the result of the update TH\N/t
for the states that it matches. Hence, we want to find V}, for classifier k£ that minimises

S (@00~ V@) = 12,7~ Vall,. (14)
i€Sk

This minimum is given by the orthogonal projection I, (Eq. 5) into the approximation subspace of
classifier k, and hence the update becomes

Vi t41 :HIskTthv k=1,...,K.

Deriving the weight update and updating the classifier error is similar to that for LCS Value Iteration
and does not require repetition.

If we perform our approximation on generated samples rather than iterating though all the problem
states, the update gets weighted by the sampling distribution D, and gives the iteration

Vk,t+1 ZHDkT#‘z, k=1,... K.

In terms of the overall value approximation this iteration can be written as

K

Virr =) Willp, T,V
k=1

As for Asynchronous LCS Value Iteration, this iteration can be approximated by a step-wise procedure
that, at time ¢, minimises

i Isy (im) ((TMVM)(Zm) - w;c,t(b(im))Q)
m=0

with respect to wy ;. Possible candidates for an iterative update are the LMS algorithm or a Kalman
filter-based approach [22].

Due to the higher stability of Policy Iteration, we could expect the outlined algorithms to be
more likely to converge than LCS Value Iteration. We will give more details about the convergence of
synchronous policy evaluation in Section 4.4, and will note here that the presented analysis gives the
first partial results on the convergence of LCS with such a function approximation architecture.

4.3.2 Step-wise LCS Policy Evaluation

By following the transitions of the Markov Chain due to policy u, we can approximate the expected
refurn E(rfj +~Vi(j)]i), required by the operator T, by the state transitions iy — 441, giving rﬁilﬂl +
YVi(iry1). Hence, for the state sequence {ig,i1,...} we can approximate LCS Policy Evaluation by

minimising for classifier k,

t - 2
Z Is, (im) (rélmimﬂ + YV (1) — w;ct(ﬁ(zm)))

m=0

with respect to wy+ at time ¢. To additionally remove the requirement for a model of the problem,
we can use (Q-values instead of the value function. Using the same notation as in Section 4.2.3, our
minimisation goal becomes

t - 2
S 15, Gims am) (it () + 1 Qmim1, G1) = w0 6(im))

m=0

where a,, = u(iy,) is chosen according to policy p.

Applying the LMS algorithm to above minimisation gives SARSA(0) with LCS function approxi-
mation. Applying the Kalman filter gives an algorithm similar to LSPE with A = 0 and o = 1. As the
derivation and results are almost equal to the ones in Section 4.2.3 we will not discuss them here.

22

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

4.3.3 What about TD(\)?

In [21] we have empirically tested the effect of introducing eligibility traces to LCS. Our conclusion
was that the performance loss due to traces was caused by classifier replacement and the introduction
of over-general classifiers. Here we present an additional reason why introducing eligibility traces in
LCS can degrade performance.

To perform TD(\) with linear function approximation we calculate the expected return for state
im after following the state trajectory {i,,, ...} by

M~

Vilim) + D (N7 (s, +2Vilims1) = Vilim))
l=m
t
= wjdim) + Y (N (v, + 0 Blimtn) = (i)
l=m
t t
= wt¢ im) + Wy Z " (Y@ (imt1))+ Z l " ZH+1'
l=m I=m

That shows how to separate the approximation parameter w; from the state-dependent values ¢(i,,)
and Tllll+1’ and allows us to use w; to calculate the approximation for previous states, effectively
reevaluating their values given the current knowledge.

In LCS, the overall approximation of a state value is the mixed approximation of all matching
classifiers. At time ¢, the values for V; are given by the values of f/k,t for all matching classifiers.
An update of those approximations concerns not only the classifiers but also reevaluates the mixing
weights for the overall approximations. Even though we are able to calculate all state values using the
current approximation, there is no known efficient implementation that allows us to update the state
values of past states without having to store the state trajectory. Our previous implementation, as
described in [21], does not honour the change of mixing weights and therefore introduces additional
errors. We believe that it is not possible to find such an implementation, because we cannot make
predictions about the mixing weight changes and therefore are unable to separate the state-dependent
and the state-independent part of the approximation. That is not only a problem for LCS but for any
non-linear function approximation architecture.

An additional effect of the non-separation of approximation parameters and state-dependent values
is that for TD(0) we have to minimise Eq. (14), using a previous approximation Vj, (i,,1) for the
expected return of state i,, rather than projecting it onto the current approximation ‘Z(imﬂ), which
would be to minimise

t
~ ~ 2
> Toulim) (i + 9 Vilimrn) = Vilim))

For a linear architecture that gives

Zfsk i) (M 01 (Vi) — 0(i)))

which allows separation of state-dependent and state-independent values. Hence, with linear archi-
tectures we can minimise the difference between the current approximation and the expected return,
given the current approximation, for all states ever visited. For non-linear architectures we are forced
to accept that we cannot project expected returns for past states onto the current value approximation
and are therefore bound to use the past approximations for minimisation which results in a slower rate
of convergence.

4.4 Convergence Investigations

Convergence properties of a system give important information about its long-term behaviour. Even
though it is usually impossible for stochastic systems to give convergence guarantees within finite time,
even convergence after an infinite number of steps can tell us how the solution evolves over a finite
number of time steps.

In this section we will investigate the behaviour of the LCS policy evaluation update

Vk,t+1 = HDkTqu

23

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

This is the first step to investigating the properties of TD(0) and SARSA(0) with LCS function
approximation, as both performs a step-wise approximation of this iteration.

For the sake of this discussion, let us assume that the mixing weights are time-invariant, given by
Uy, for classifier £ and all ¢. By using the definition of 7}, and the overall approximation V, we can
reformulate above iteration as

K
Vipr = Y Wllp, T,V
k=1

K
Ui, 47 U Ilp, PMV;
1 k=1

I
] =

ES
Il

We can see that this is a matrix iteration of the form

Vig1 = AV, +0, (15)
where A and b are given by
K
A = 7)) Wllp, I
k=1
K
b = Z \I/;CHD,CT“.
k=1

We will use this observation in later to determine the convergence of this iteration.

4.4.1 Optimal Approximation

Let us give a short overview of how the iteration comes about: We assume that we have a model of
the problem and therefore know the transition probabilities pﬁj and expected rewards rfj Hence, the

expected return for state ¢ based on the overall value function V; is given by
Sty (vl + Vi) = (7 + APV (i),
JES

Classifier k aims at minimising the distribution-weighted difference between expected returns and their
approximation for all states that it matches, which is to minimise

2

Sl | Sl (s + Vi) — whaia6() |

i€Sk jES

which is equivalent to
[r# + Y PEVy — @y i [[, -

Minimising that w.r.t. wy ;41 gives the condition

(Z w(z‘)a:(z‘)qs(z’)’) wiesr = 30 w(i)60) 3 ol (s +270))

1€Sk €Sk JESk

which, in matrix notation, is
(®'Dyp®) wi g1 = ®' Dy, (T“ n yP“f/t) .
Pre-multiplying by ® (®'D;®) ", and using Eq. (5), results in
Dwi 1 = @ (3 Dp®) " &' Dy (M n 'yP“f/t) = 1Ip, (r“ + fyP”f/t) = 1Ip, T,V

That demonstrates that the iteration Vk,t_i'_l =IIp, Tuf/t does indeed give the optimal approximation
for classifier k.

24

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

4.4.2 Contraction of T},

As we are interested in the effects of the operator conjunction IIp, T}, let us first investigate the effects

of T},. We can use the equivalence of T}, and T,SO) and the knowledge that T,E)‘) performs a contraction
w.r.t. ||-||p [49], where D is the steady-state distribution for policy p, to see that T}, gives a contraction
to the same norm. As this is an essential property of 7T},, we will give a short derivation.

For that derivation we will use Lemma 2.1 from [5], that states:

Lemma 4.1. For all 2 € CV, we have |[P*z||p < ||z|p-
That allows us to show the contraction mapping of 7);:

Lemma 4.2. For all V,V € CV, we have

||T;LV - T#VHD <AV - V”

Proof. We will use Lemma 4.1, the definition of T},, and the fact that v > 0 to show that

HTMV—TMVHD | 4+ v P*V — 1t — PV | p
= |yP*(V -V)lp
= [PV =V)lb

NV - V||D~

IA

O

The dependency of the contraction of 7}, on the steady-state distribution of the transition matrix
P* is introduced by the relation of the expected return to the next state, which is determined by that
matrix.

4.4.3 Approximation Properties

Having clarified the contraction of T),, we will now show the non-expansion of Ip, for any |Sy| > 1:

Lemma 4.3. For all V,V € CV, we have

|Up,V—Tp, V|p <||V—=Vlp, <|V-V]p <|V-V|.

Proof. Tt is well known that for an orthogonal projection matrix II, ||II|| < 1. Additionally, for all
z € CV, the weighted matrix norm can be rewritten as ||z||p = ||v/Dz||. Furthermore, by the definition
of the projection matrix IIp, (Eq. (5)), its hermitian property, and the fact that (Ig,)* = Is, for all
a € Ry, we have

VDIlp, = VD®(® Dy ®)® Dy, = \/Is, DB(®' D, ®)®'\/Dyr/Dy, = p, \/Dy.
Overall, that gives
ITp,V —Tp, Vlp = [VDIp, (V—-V)

T p, v/ Di(V = V)|

Mo, [l De(V = V)|

IAIA

The second and third inequality stem from the observation that the norm of a diagonal matrix is equal
to its largest element along the diagonal, which implies ||Is, || = 1 for any |Sy| > 0, and |[v/D| < 1 as
all diagonal elements are positive and smaller than 1. From that follows that for all z € CV,

I2llpy = s, VDIl < s, lllizllo = lIzllp,

and

Izlp = VD[l < [VD[||2]| < ll=I],

which completes the proof. O

25

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

4.4.4 Single Classifier Approximation

Let us assume that we have one single classifier k, and that this classifier matches all states of the
state space, that is S, = S. Then we have an approximation architecture equivalent to a linear
architecture, and the overall approximation is equivalent to the classifier’s approximation, i.e. V; = Vk ‘-
Consequently, we can reduce the LCS policy evaluation to

Vieti1 = HDTqu,ty (16)
of which we can prove convergence, given the following theorem (see, for example, [28]):

Theorem 4.4 (Contraction Mapping). Let Sy be a complete vector space with norm || - ||. Suppose
f is a contraction mapping on Sy with contraction factor a. Then f has exactly one fized point x* in
S¢. For any initial point xo in Sy, the sequence xo, f(zo), f(f(x0)),... converges to x*; the rate of
convergence of the above sequence in the norm || - || is at least .

Then, together with our knowledge of the properties of T, and Ilp,, we can state the following:

Theorem 4.5. Given a single Classifier k, with Sy, = S, then for all initial Vk,q € RV, the iteration
given by Eq. (16) converges to the unique fixed point of that iteration, given by

V“ (I ’}/HDP#) HD’I“IL

Proof. Applying Lemma 4.2 and 4.3, we can show for the operator conjunction Ilp, 7, and any two
V,V e RV:

||HDkTMV_HDkTM‘_/”D = ||HDkTH(V_‘7)||D
< TV =Vl
< AV -VI.

Hence, IIp, T}, describes a contraction mapping in the inner product space defined by < -, D- > with
contraction factor . Thus, Theorem 4.4 applies and the sequence Vk 1, Vk 05 Vk 1,... converges to the
unique fixed point of the iteration. The fixed point is derived by using Dy = D due to Ig, = I, and
the definition of T),:
Vi =Tprt + 4Ip P*VY,
giving
Hprt = VI —AIlp PPV = (I —yIIp P*) V.
O

That result is already well known in reinforcement learning, and was first derived in [49]. Naturally,
having a single classifier never applies to LCS, but the theorem shows how to combine approximation
and DP update.

4.4.5 Special Classifier Arrangements

For an arbitrary number of classifiers K, let us consider the case for which each classifier k& has a
constant mixing weight 1y, over all its matching states, giving its mixing matrix ¥y = ¢ I. Naturally,
the condition ZkK 1 ¥ = I has to hold to ensure averaged mixing over all matching classiﬁer A special
case of such a classifier arrangement is to have a disjoint set of classifiers, that is Zk 1 Is, = I, with
Y, = 1 for all classifiers.

Even though that setting of classifiers is very artificial, it is currently the only combination of
classifiers that we know to form a non-expansion. That lets us state the following result:

Theorem 4.6. Given a set of K classifiers, each with a mizing matriz ¥y, = Yyls,, where Yy is a
constant that satisfies 0 < ¢, < 1 and Zszl U, =1, the iteration

K
Vt+1 = Z ‘I’kHDkTth
k=1

26

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

converges to the unique fixed point

K R e
‘7“ = <I’}/Z\I/kﬂpkpu> Z\I/kHDkT‘M
k=1

k=1

Proof. We will first show that the mixed projection for all classifiers is a non-expansion on || - || p, which
is satisfied if for all z € RN, | e, WIlp, V] p < ||V | p:

K K 2
1> wlp VI = Y #() (Zfsk(wwk(npkvxi))

k=1 €S k=1

K
Do)y Is (), V) (i)?

€S k=1

K
= Y 7)Y wk(Ip, V)(i)?

IN

A
(]
<
VW‘
(]
pal
=
2
=
=
=
(V]

icS
= IVII%-
The first inequality is due to Jensen’s Inequality. The following equality uses Ig, IIp, = IIp,, and the
second inequality is based on ||IIp, Vl]p < ||V]Ip,, as given by Lemma 4.3. The equality after that is

based on our initial assumption that 22{:1 U, =1 -
Above non-expansion in combination with Lemma 4.2 lets us derive for all V,V € RV:

K K K

1D Ullp, TV =Y Wllp, T*Vp = || Y W, T(V = V)llp
k=1 k=1 k=1
< (v -Wlb
< AV =Vlb.

Hence, the iteration describes a contraction mapping on the inner product space < -, D- >, and
Theorem 4.4 applies, proving convergence to the unique fixed point of the iteration.
By using the definition of T#, we can write

K K
VH = Z U Ilp, 7+~ Z W, Ip, PHVH,
k=1 k=1
from which the fixed point follows from solving above for V. O

4.4.6 Arbitrary Classifier Arrangements
Let us consider a simple problem which we will investigate: Let the transition matrix P* for our current

policy u be given by

1
2

PH = 0o |,

1

2

(e} SIEESIES
NIFNI= O

which has a uniform steady state distribution 7(1) = 7(2) = 7(3) = 3, giving the diagonal distribution
matrix D = %I . We will use two classifiers to approximate the value function, where the first matches

27

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

all states, and the second only the first two, that is S; = {1,2,3} and Sy = {1,2}. Their mixing is
determined by the mixing parameter v, and the diagonal mixing matrices ¥; = diag(1—1,1—1,1) and
U,y = diag(, 1, 0). We will be using averaging classifiers, which gives the feature matrix ® = (1,1,1)’.
For a value vector (a,b,c)’, that gives the overall approximation as:

: o\ [@+v)atb)+21-p)e
UL b | = 5| @rvda+b)+20-v)e
k=1 ¢ 2(a+b+c)

As we can see, classifier 1 averages over all states, and classifier 2 averages over the first two states.
Hence, setting) = 1 will assign the first two states of the overall approximation the values of classifier
2, whereas 1) = 0 gives all states the values of classifier 1.

Let us now consider the value function V' = (2,2,1)’, and approximations V¥=0 = (2,2, 2)’ and
V=t = (2,2, 2)’, and their norms

81 b 75 ~ b 97
Vio =15 IV"lo =5 <IVIo. V"7 =/ 5 > Vo

Those values can be seen as the result of ||[IIV — IIV| p, where II is the overall approximation, and
V = (0,0,0)" is the null vector with its approximation IIV = (0,0,0)’. Hence, given that ¢» = 0,
the overall approximation forms a contraction. However, 1) = 1 features a lower approximation error
|V — V¥=!||p and performs an expansion. That demonstrates that even with a fixed mixing weight
the overall approximation is not necessarily a non-expansion. Hence, we cannot guarantee that this
approximation in combination with the DP update will converge.

An alternative approach to answering the question of convergence is to consider the LCS policy
evaluation iteration as a matrix iteration of the form of Eq. (15). As we have already discussed in
Section 3.2.2, this iteration converges if and only if the matrix A has a spectral radius of p(4) < 1. In
the above example, A is given by

2
A=73 wInPr = %
Pt 1 1 1

which has a spectrum of o(A) = {0,~, %} Hence, p(A) < 1, and the iteration converges. That
shows that the requirement of having an approximation that forms a non-expansion is sufficient for
convergence, but not necessary. In the case of LCS that requirement is not always fulfilled, and therefore
we need to concentrate on studying the eigenvalues of the matrix A. So far, we can give neither positive
nor negative results on their investigation.

To relate matrix iterations to contraction mappings, we will give one final result which shows that
TD(0) with any non-expanding approximation on || - || p results in a converging matrix iteration, which
is given if the matrix A has p(A) < 1:

Theorem 4.7. Let I1: CN — C¥ be a non-expansion on || - || p, that is for all V,V € CV,
[TV —TIV|[p < [V = V||p.

Then the N x N matriz A given by
A = ~IIP*

has eigenvalues within a circle of radius =y, that is p(A) < 7.
Proof. Let 3 € R be an eigenvalue of A, and z € CV its corresponding eigenvector, that is
~YIPHz = (2.
Taking the weighted norm w.r.t. D gives
YIITLP*2[b = |]l|z]| p-
Using the non-expansion of IT and Lemma 4.1 lets us derive for the left-hand side
MILP 2|5 < WIP 2o < [lllo-

Comparing that to the right-hand sides lets us conclude that |3| < |y|. Hence, every eigenvalue of A is
within a circle of radius ~. O

That confirms Theorem 4.5 and 4.6, as the approximation architecture of both theorems describe
a non-expansion that meets to the requirements of the last theorem.

28

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

5 Summary and Conclusion

We have introduced a framework for LCS that allows studying reinforcement learning, function approx-
imation and their interaction. Furthermore, we have demonstrated its use by deriving both model-based
and model-free reinforcement learning methods with LCS function approximation from first principles,
and have elaborated on possible implementations of the use of Q-Learning in LCS. One of the two
presented implementations is novel and is expected to surpass the performance of current LCS function
approximation algorithms.

In more detail, we have derived how we can perform model-based Value Iteration with LCS, and how
this can be approximated by a step-wise update. A further approximation led us straight to Q-Learning,
for which we have shown that the Least Mean Square algorithm on Q-Learning gives the algorithm that
is currently used in XCS. Based on our derivation we have analysed recent attempts and arguments
about XCS with gradient descent, and have emphasised the independence of classifiers in performing
the value function approximation. Based on our previous work on the function approximation in LCS
[22], we have also presented an algorithm based on the Kalman filter that performs Q-Learning with
the LCS function approximation architecture and accurately tracks the optimal approximation while
simultaneously keeping track of the approximation error of a classifier more accurately than all current
implementations. With respect to the optimal approximation, we have argued that the non-linearity of
the LCS approximation architecture makes it impossible to solve the Bellman Equation directly, but
have introduced two possible iteration that should lead to that optimal approximation.

Regarding Policy Iteration, we have discussed how we can use LCS for the policy evaluation step.
We again discussed both the model-based and the model-free case, but have omitted the description
of possible implementations due to the similarity in derivations. Regarding TD()\), we have shown
how the non-linear architecture does not allow the same efficient implementation of TD(0) as a linear
approximation architecture, and how there is no known accurate implementation of TD()), and possibly
never will be.

As the framework adapts concepts from reinforcement learning to LCS, it should make LCS more
accessible to researchers of reinforcement learning, and vice versa. For that purpose, we have derived
both the reinforcement learning methods and the LCS methods from first principles, using comparable
derivations. As demonstrated in the previous section, theoretical investigations on the stability of LCS
can now partially be answered by the using similar methods to the ones that are used in reinforcement
learning.

We have demonstrated the contraction mapping of the T}, operator and the non-expansion of the
approximation of a single classifier. Both in combination gives the contraction of policy evaluation with
a single classifier, and therefore its convergence to a fixed point of the update. We have also shown how
a particular arrangement of classifiers, including any disjoint set of classifiers, describes a contraction
mapping. In a simple example we have shown that not all combinations of classifiers form a contraction
mapping, but can still converge. That convergence was established by showing that the matrix iteration
that describes the LCS policy evaluation satisfies the necessary condition for convergence.

For the use of LCS for Value Iteration (including its approximations, like Q-Learning), it is know
that linear approximation architectures might diverge. However, it might still be possible to show their
convergence in combination with averaging classifiers, as originally used in XCS. What needs to be
demonstrated is that all classifiers in combination form an averager, as defined in [23], which is quite
likely, as discussed in Section 4.2.1. Once this is achieved, we additionally need to show that Q-Learning
in LCS performs an approximation to Value Iteration, in which the approximation error converges to
zero with time.

To clarify the theoretical properties of using a linear approximation architecture in policy evaluation,
we need to analyse the matrix iteration as already outlined at the end of the previous section. Even if
that matrix iteration is known to converge, it only concerns the case of fixed mixing weights. Changing
the mixing weights results in a time-variance of the matrix iteration which might be captured by
observing the joint spectral radius of the iteration matrix sequence. If that is shown converge, the
work of Konda and Tsitsiklis [29] might give hints on how to study LCS policy evaluation when used
in Optimistic Policy Iteration.

Note that all of the above only concerns LCS with a time-invariant population. How to include the
replacement of classifiers is topic of further work on our framework. Given that LCS converges with
a time-invariant population, we can assume that modifying the population of classifiers changes the
fixed point of the update. Hence, having a convergent classifier replacement makes convergence of the
whole LCS very likely. However, there is still a lot of work ahead of us before we can give definite
statements.

29

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

References

1]

[10]

[11]

[12]

Alwyn Barry. Limits in long path learning with XCS. In E. Cantu-Paz, J. A. Foster, K. Deb,
D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller,
editors, Genetic and Evolutionary Computation — GECCO-2003, volume 2724 of LNCS, pages
1832-1843. Springer-Verlag, 2003.

Alwyn Barry, John Holmes, and Xavier Llora. Data Mining using Learning Classifier Systems. In
Larry Bull, editor, Foundations of Learning Classifier Systems, Berlin, 2004. Springer Verlag.

Alwyn M. Barry. The stability of long action chains in XCS. Journal of Soft Computing, 6(3—
4):183-199, 2002.

Ester Bernadé, Xavier Llora, and Josep M. Garrell. XCS and GALE: a Comparative Study of
Two Learning Classifier Systems with Six Other Learning Algorithms on Classification Tasks.
In Proceedings of the 4th International Workshop on Learning Classifier Systems (IWLCS-2001),
pages 337-341, 2001.

Dimitri P. Bertsekas, Vivek S. Borkas, and Angelia Nedié¢. Improved Temporal Difference Methods
with Linear Function Approximation. In Jennie Si, Andrew G. Barto, Warren Buckler Powell, and
Don Wunsch, editors, Handbook of Learning and Approximate Dynamic Programming, chapter 9,
pages 235-260. Wiley Publishers, August 2004.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

H.-G. Beyer, U.-M. O’Reilly, D.V. Arnold, W. Banzhaf, C. Blum, E.W. Bonabeau, E. Cant Paz,
D. Dasgupta, K. Deb, J.A. Foste r, E.D. de Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pelikan,
G.R. Raidl, T. Soule, A. Tyrrell, J.-P. Watson, and E. Zitzler, editors. Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO-2005, volume 2, New York, 2005. ACM Press.

Lashon B. Booker. Approximating value function in classifier systems. In Bull and Kovacs [15].

Justin A. Boyan. Least-Squares Temporal Difference Learning. In Proceedings of the 16th Inter-
national Conference on Machine Learning, pages 49-56, San Francisco, CA, USA, 1999. Morgan
Kaufmann.

Justin A. Boyan. Technical Update: Least-Squares Temporal Difference Learning. Machine Learn-
ing, 49(2-3):233-246, 2002.

Justin A. Boyan and Andrew W. Moore. Generalization in Reinforcement Learning: Safely Ap-
proximating the Value Function. Advances in Neural Information Processing Systems, 7, 1995.

Steven J. Bradtke. Reinforcement Learning Applied to Linear Quadratic Regulation. In Advances
in Neural Information Processing Systems, volume 5. Morgan Kaufmann Publishers, 1993.

Steven J. Bradtke and Andrew G. Barto. Linear Least-Squares Algorithms for Temporal Difference
Learning. Machine Learning, 22(1-3):33-57, 1996.

Larry Bull. On accuracy-based fitness. Journal of Soft Computing, 6(3-4):154-161, 2002.

Larry Bull and Tim Kovacs, editors. Foundations of Learning Classifier Systems, volume 183 of
Studies in Fuzziness and Soft Computing. Springer Verlag, Berlin, 2005.

Martin Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson. Toward a theory of gener-
alization and learning in XCS. IEEE Transactions on Evolutionary Computation, 2004.

Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Gradient Descent Methods in Learning
Classifier Systems: Improving XCS Performance in Multistep Problems. Technical Report 2003028,
Ilinois Genetic Algorithms Laboratory, December 2003.

Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Gradient Descent Methods in Learning
Classifier Systems: Improving XCS Performance in Multistep Problems. IEEE Transactions on
Evolutionary Computation, 9(5):452-473, October 2005.

30

[19]

[20]

[25]

[26]

[29]

[30]

[31]

[35]

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

Phillip William Dixon, David W. Corne, and Martin John Oates. A preliminary investigation
of modified XCS as a generic data mining tool. In Pier Luca Lanzi, Wolfgang Stolzmann, and
Stewart W. Wilson, editors, Advances in Learning Classifier Systems, volume 2321 of LNAI, pages
133-150. Springer-Verlag, Berlin, 2002.

Marco Dorigo and Hugues Bersini. A Comparison of Q-Learning and Classifier Systems. In Dave
Cliff, Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors, From Animals to
Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior

(SABY4), pages 248-255. A Bradford Book. MIT Press, 1994.

Jan Drugowitsch and Alwyn M. Barry. XCS with Eligibility Traces. In Beyer et al. [7], pages
1851-1858.

Jan Drugowitsch and Alwyn M. Barry. A Formal Framework and Extensions for Function Ap-
proximation in Learning Classifier Systems. Technical Report CSBU2006-01, Dept. Computer
Science, University of Bath, January 2006. ISSN 1740-9497.

Geoffrey J. Gordon. Stable Function Approximation in Dynamic Programming. In Armand Priedi-
tis and Stuart Russell, editors, Proceedings of the Twelfth International Conference on Machine
Learning, pages 261-268, San Francisco, CA, USA, 1995. Morgan Kaufmann.

Andrew Greenyer. The use of a learning classifier system JXCS. In P. van der Putten and
M. van Someren, editors, CoIL Challenge 2000: The Insurance Company Case. Leiden Institute
of Advanced Computer Science, June 2000. Technical report 2000-09.

Leemon C. Baird ITI. Residual Algorithms: Reinforcement Learning with Function Approximation.
In International Conference on Machine Learning, pages 30-37, 1995.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the Convergence of Stochastic
Iterative Dynamic Programming Algorithms. In Jack D. Cowan, Gerald Tesauro, and Joshua
Alspector, editors, Advances in Neural Information Processing Systems, volume 6, pages 703-710.
Morgan Kaufmann Publishers, 1994.

Daphne Koller and Ronald Parr. Policy Iteration for Factored MDPs. In UAI ’00: Proceedings of
the 16th Conference on Uncertainty in Artificial Intelligence, pages 326-334, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers.

A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Prentice Hall, 1970. Revised
English edition translated and edited by A. N. Silverman.

Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM Journal on Control and
Optimization, 42(4):1143-1166, 2003.

Tim Kovacs. A Comparison and Strength and Accuracy-based Fitness in Learning Classifier Sys-
tems. PhD thesis, University of Birmingham, 2002.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine
Learning Research, 4:1107-1149, 2003.

Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. Generalization in
the XCSF Classifier Systems: Analysis, Improvement, and Extenstion. Technical Report 2005012,
Ilinois Genetic Algorithms Laboratory, March 2005.

Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. XCS with
Computed Predictions in Multistep Environments. In Beyer et al. [7], pages 1859-1866.

Autor Merke and Ralf Schoknecht. Convergence of Synchronous Reinforcement Learning with
Linear Function Approximation. In ICML ’04: Proceedings of the twenty-first international con-
ference on Machine learning, page 75, New York, NY, USA, 2004. ACM Press.

David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evolutionary Algorithms
for Reinforcement Learning. Journal of Artificial Intelligence Research, 11:199-229. 1999.
http://www.ib3.gmu.edu/gref/papers/moriarty-jair99.html.

Remi Munos. Error Bounds for Approximate Policy Iteration. In 19th International Conference
on Machine Learning, pages 560-567, 2003.

31

[37]

[38]

[39]

[40]

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

Angelia Nedi¢ and D. P. Bertsekas. Least Squares Policy Evaluation Algorithms with Linear
Function Approximation. Discrete Fvent Dynamic Systems, 13(1-2):79-110, 2003.

Dirk Ormoneit and Saunak Sen. Kernel-Based Reinforcement Learning. Machine Learning, 49(2-
3):161-178, 2002.

Gavin Rummery and Mahesan Niranja. On-line Q-Learning using Connectionist Systems. Tech-
nical Report 166, Engineering Department, University of Cambridge, 1994.

Shaun Saxon and Alwyn Barry. XCS and the Monk’s Problems. In Pier Luca Lanzi, Wolfgang
Stolzmann, and Stewart W. Wilson, editors, Learning Classifier Systems. From Foundations to
Applications, volume 1813 of LNAI pages 223-242, Berlin, 2000. Springer-Verlag.

Ralf Schoknecht. Optimality of Reinforcement Learning Algorithms with Linear Function Ap-
proximation. In Proceedings of the 15th Neural Information Processing Systems conference, pages
1555-1562, 2002.

Ralf Schoknecht and Artur Merke. Convergent Combinations of Reinforcement Learning with
Linear Function Approximation. In Proceedings of the 15th Neural Information Processing Systems
conference, pages 1579-1586, 2002.

Ralf Schoknecht and Artur Merke. TD(0) Converges Provably Faster than the Residual Gradi-
ent Algorithm. In ICML ’03: Proceedings of the twentieth international conference on Machine
Learning, pages 680—-687, 2003.

Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvari. Convergence Results
for Single-Step On-Policy Reinforcement-Learning Algorithms. Machine Learning, 39:287-308,
2000.

Richard S. Sutton. Learning to predict by the method of temporal differences. Machine Learning,
3:9-44, 1988.

Richard S. Sutton. Generalization in Reinforcement Learning: Successful Examples Using Sparse
Coarse Coding. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors,
Advances in Neural Information Processing Systems, volume 8, pages 1038-1044, Cambridge,
MA, USA, 1996. MIT Press.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998. A Bradford Book.

John Tsitsiklis and Benjamin Van Roy. Feature-Based Methods for Large Scale Dynamic Pro-
gramming. Machine Learning, 22:59-94, 1996.

John Tsitsiklis and Benjamin Van Roy. An Analysis of Temporal-Difference Learning with Func-
tion Approximation. IEEE Transactions on Automatic Control, 42(5):674-690, May 1997.

John N. Tsitsiklis. On the Convergence of Optimistic Policy Iteration. Journal of Machine
Learning Research, 3:59-72, 2003.

Atsushi Wada, Keiki Takadama, Katsunori Shimohara, and Osamu Katai. Is Gradient Descent
Method Effective for XCS? Analysis of Reinforcement Process in XCSG? In Wolfgang Stolzmann
et al., editor, Proceedings of the Seventh International Workshop on Learning Classifier Systems,
2004, LNAI, Seattle, WA, June 2004. Springer Verlag.

Atsushi Wada, Keiki Takadama, Katsunori Shimohara, and Osamu Katai. Learning Classifier
System with Convergence and Generalisation. In Bull and Kovacs [15].

Christopher J.C.H. Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge,
Psychology Department, 1989.

Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279-292, 1992.

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In IRE WESCON Convention
Revord Part IV, pages 96-104, 1960.

Stewart W. Wilson. ZCS: A zeroth level classifier system. Ewvolutionary Computation, 2(1):1-18,
1994. http://prediction-dynamics.com/.

32

[57]

[58]

[59]

Jan Drugowitsch and Alwyn Barry / A Framework for RL with FA in LCS

Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149-175,
1995.

Stewart W. Wilson. Function Approximation with a Classifier System. In Lee Spector, Erik D.
Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco
Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), pages 974-981. Morgan Kaufmann,
2001.

Stewart W. Wilson. Classifiers that Approximate Functions. Neural Computing, 1(2-3):211-234,
2002.

33

