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Probabilistic vs. non-probabilist
ic approaches to the
neurobiology of perceptual decision-making
Jan Drugowitsch1 and Alexandre Pouget2,3
Optimal binary perceptual decision making requires

accumulation of evidence in the form of a probability

distribution that specifies the probability of the choices being

correct given the evidence so far. Reward rates can then be

maximized by stopping the accumulation when the confidence

about either option reaches a threshold. Behavioral and

neuronal evidence suggests that humans and animals follow

such a probabilitistic decision strategy, although its neural

implementation has yet to be fully characterized. Here we show

that that diffusion decision models and attractor network

models provide an approximation to the optimal strategy only

under certain circumstances. In particular, neither model type

is sufficiently flexible to encode the reliability of both the

momentary and the accumulated evidence, which is a pre-

requisite to accumulate evidence of time-varying reliability.

Probabilistic population codes, by contrast, can encode these

quantities and, as a consequence, have the potential to

implement the optimal strategy accurately.
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Introduction
Efficient decision-making requires inferring the state of

the world from uncertain or ambiguous evidence [1].

Little evidence results in inaccurate decisions, such that

it is in the decision maker’s best interest to boost her

confidence by accumulating evidence over time and, if

possible, across cues before committing to a decision.

Thus, it is essential for the decision maker to perform

decisions in two stages: first, she accumulates evidence to

reach a certain level of confidence, and – once this level is

reached – commits to her decision (Figure 1). A hunting

eagle, for example, needs to be fairly certain about the
www.sciencedirect.com
presence of a rabbit before initiating its dive. Similarly,

humans require certainty about the state of the surround-

ing traffic before crossing the street. In both of these cases

a period of evidence accumulation is followed by acting

upon this evidence.

We first give a short overview over the origins of statistically

optimal, two-stage decision-making – which we will refer

to as the normative strategy – as well as behavioral evidence

that humans follow such a strategy. This provides us with a

set of properties that decision-making models need to

feature, and with respect to which we compare three types

of models: diffusion models, models based on attractor

dynamics, and probabilistic population codes. We show

that the model based on probabilistic population codes

provide a neural implementation of the normative model of

decision making, while the other approaches provides

various approximation to the normative approach.

Decision making under uncertainty
The realization that decision-making is essentially a task

of probabilistic inference based on uncertain information

was pioneered by Pascal in his famous wager on the

benefits and losses involved in believing in God [2].

Gaining popular following, Pascal’s approach was

extended to all sorts of probabilistic decision problems,

such as Bernoulli’s well-known St. Petersburg paradox [3]

that deals with wagering in games of chance. Finally,

Laplace fully formalized general decision making under

uncertainly [4] around 150 years after the efficacy of the

probabilistic approach was first conceived.

The two-stage process of decision-making received

particular attention in WW II, when Turing automatized

breaking the Germans’ Enigma code by first accumulat-

ing evidence in support of certain hypotheses, and com-

mitting to a decision once either hypothesis has reached a

pre-set level of posterior probability [5,6]. Independently

but at roughly the same time, Wald and colleagues [7,8]

developed a similar approach, known as the Sequential

Probability Ratio Test (SPRT), to initially determine

which of two Navy firing procedures was to be preferred

[9]. In both cases, the uncertain evidence supporting

either option is accumulated until the belief about the

correctness of either option reaches a pre-set level. At this

point, the decision maker chooses according to this belief.

Optimal accumulation of evidence
Behavioral studies have confirmed that human observers

do not only take uncertainty into account, but also do so

close-to-optimally according to the two-stage procedure
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Principles of optimal decision making. In order to perform optimal

decision making, momentary evidence needs to be accumulated across

time and, if available, across multiple cues, while monitoring ones

confidence in the correctness of all available decisions. Once confidence

in either option reaches a particular decision bound, a decision ought to

be made.
outlined above. In the stage of evidence accumulation

across time and cues, the decision maker needs to weight

the momentary evidence in proportion to its reliability.

Cue integration experiments that modulate the reliability

of one of the cues have confirmed that humans indeed

take this reliability into account [1,10,11], even if the

cues’ reliabilities change over time within single trials

[12,13]. That they are able to do so on a trial-by-trial basis

provides strong support for a direct neural representation

of this reliability.

For evidence for optimal temporal accumulation of evi-

dence we focus on experiments using the random-dot

motion (RDM) task. In this task, the observer needs to

decide for one of two opposing motion directions, based

on a display of randomly moving dots, a fraction of which

coherently moves towards the correct target [14,15]. The

difficulty of this task, and as such the reliability of the

evidence, is controlled by this fraction – referred to as

coherence. If this coherence remains constant over time,

subjects perform the task optimally by putting the same

weight on the momentary evidence at each point in time

during stimulus presentation. This has been confirmed

behaviorally for short stimulus presentation times of up to

600 ms [16]. Further evidence comes from neural activity

supporting the presence of neural integrators in the cortex

[17,18�], and from subjects being able to report or utilize

confidence at decision time [19,20,21�,22,23]. Moreover,

subjects performing a heading discrimination tasks have

been shown to be able to accumulate momentary evi-

dence optimally even if its reliability changes over time,

by correctly weighting this evidence in proportion to its

reliability (Drugowitsch et al., abstract in Computational

and Systems Neuroscience 2011, Salt Lake City, UT,

February 2011).

Committing to a decision at the bound
The second stage of optimal decision-making under

uncertainty is to commit to a decision once a pre-set
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level of certainty, called the decision bound, has been

reached. Setting this bound optimally is complex, as it

depends on both factors internal to the decision maker

and properties of the task at hand. Thus, we first consider

evidence for the presence of such a bound, and then

discuss its optimality.

In reaction time tasks, decision makers are able to trade-

off their decision speed with the accuracy of this decision

[19,24��,25–28], already hinting at the presence of a

decision bound. This bound seems to find its neural

correlate in parietal areas in monkeys performing the

RDM task [16,17,29��,30–32]. There, neurons coding

for particular saccade targets feature ramping activity

with a slope proportional to the reliability of the momen-

tary evidence [17,30]. Once this activity reaches a certain

threshold, a decision seems to be triggered. Interestingly,

the threshold seems to also be present when the exper-

imenter determines the decision time [28,29��], which

implies that evidence late in the trial might be ignored, as

confirmed behaviorally [16].

The optimal setting of the decision bound depends on

multiple contingencies, such as the expected reward/loss

for correct/incorrect decisions [33,34], the cost of accumu-

lating evidence, the expected reliability of the evidence

[35�], the presence of stochastic deadlines [36], and the

general timing of the task. For the simple case of a known

reliability of the evidence and a constant cost of accumu-

lating evidence, Wald and colleagues have shown that the

best strategy corresponds to a constant bound on the belief

of the correctness of either option [7,8,37]. Following this

strategy leads to the fastest decisions for a pre-set level of

correctness, or – when optimizing this level – to maximiz-

ing reward rate [17,33]. Observed behavior suggests on

tasks with constant across-trial evidence reliability that

humans seem to adjust their speed-accuracy trade-off to

achieve close-to-optimal reward rates [38,39], with a slight

bias towards overemphasizing decision accuracy [39]. If

this reliability is allowed to vary across trials, the optimal

strategy corresponds to a decision bound that collapses over

time [35�]. In this setting, it has been shown that humans

and animals only follow this strategy if they feature a cost

for accumulating evidence that rises over time [35�].

In summary, there is sufficient evidence that humans and

animals are able to perform optimal decision-making

according to the two-stage strategy outlined above. We

do not claim that all of their decisions are optimal in the

senses described above [for example [40]]. However,

observing optimality in some tasks already points to

the existence of neural decision mechanisms that can

feature this optimality. When discussing the different

decision-making models we will this focus in particular

on (i) the maintenance of reliability during evidence

accumulation, and (ii) a measure of belief/confidence at

the time of the decision.
www.sciencedirect.com



Neural models of perceptual decision-making Drugowitsch and Pouget 965
Diffusion decision models for 2AFC decision-
making
The dominant model of decision-making for two-alterna-

tive forced choice (2AFC) tasks in psychology is the

diffusion decision model [DDM [24��,26,41,42]], in

which a particle drifts and diffuses between two bound-

aries (Figure 2). Hitting either of these boundaries trig-

gers a decision. A decision is correct if the particle hits the

boundary corresponding to the mean drift rate. Incorrect

choices occur due to the stochastic particle diffusion, and

are less frequent for large drift rates. Thus, the magni-

tude of the drift is a representation of the reliability of the

momentary evidence. Despite its simplicity, the DDM

has been able to fit well a wide decisions and reaction

times for a wide range of different tasks [for example

[42]].

The position of the particle in the DDM is generally not

interpreted as encoding a posterior probability [but see

[35�,37,41,43]], but rather as providing a purely mechan-

istic account of the decision-making process [for example

[44]]. Nonetheless, it is possible to relate the particle

position to a posterior probability, a particular useful

exercise as it reveals when the DDM implements the

ideal, normative strategy and when it does not. For binary

decisions in which the drift rate remains constant within

and across trials, the DDM implements the optimal

strategy corresponding to SPRT [7,8]. When the drift

rate varies within or across trials, which is to say when the

reliability of the evidence changes over time, the DDM

becomes suboptimal.

A further problem for the DDM is that it does not by itself

have the ability to represent decision confidence, as all
Figure 2
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Decision making in a diffusion model. In diffusion models, a particle drifts

and diffuses between two absorbing boundaries. A decision is triggered

as soon as the particle hits either boundary. The drift rate is proportional

to the reliability of the mean of the momentary evidence, while the

diffusion represents its fluctuation. A correct decision corresponds to

hitting the boundary towards which the particle drifts – in this example

the upper bound. The figure shows various example trajectories leading

to different decision times, one of which causing the decision to be

incorrect (i.e. hitting the lower boundary).

www.sciencedirect.com
that is known at decision time is that the particle has

reached the bound. This is because, in a DDM, the bound

is on particle location (as in Figure 2) rather than confi-

dence (as in Figure 1), and mapping particle position to

confidence might be time-dependent or not even one-to-

one [35�]. A possible workaround for the case of a time-

dependent mapping is to assume that, in addition to the

particle location, the decision maker also keeps track of

time. Then, the decision confidence becomes purely a

function of time [21�]. This, however, is only possible

with a separate neural representation of time, and is also

only valid for binary decision in which the evidence

reliability remains constant over time. Thus, DDMs

are only able to meet our second requirement – a correct

measure of belief at decision time – in very specific cases.

Another possibility for computing decision confidence

involves using multiple accumulators, one for each

possible choice. The race is stopped whenever one of

the accumulators reaches the stopping bound. The state

the loosing integrator can then be used as a proxy for

confidence. For instance, if the loosing integrator is close

to reaching the bound at decision time, the model assigns

a low confidence to the decision [19,20]. As we will see

later on, this idea can be formalized more precisely with a

type of neural code known as probabilistic population

codes [45��,46��].

To summarize, the DDM falls short of the normative

ideal, as its applicability is restricted to tasks in which the

reliability of the momentary evidence is constant as a

function of time. Furthermore, confidence at decision

time can only be computed if one assumes a separate

representation of time, and even then, the same restric-

tions on the evidence reliability applies. Still, the DDM

performs remarkably well at describing behavior in tasks

in which these restrictions are met, thus providing further

evidence that decision-making is guided by a two-stage

process, but most probably with an implementation that

differs from the DDM.

Decision-making by attractor dynamics
Many neural models of decision making are based on

networks with attractor dynamics. As we will argue, these

models only approximate diffusion decision models and,

as such, might not be optimal even when decisions are

binary and the evidence is of constant reliability. None-

theless, these models have the advantage of incorporat-

ing many biological features, such as different types of

neurotransmitter receptors and distinct classes of excit-

atory and inhibitory neurons [47]. Their dynamics is best

imagined as the network’s state being represented by a

ball moving along an energy landscape (Figure 3b). The

ball’s motion is determined by the sensory inputs, the

internal noise, and the landscape’s topology. In Wang’s

model, the network connectivity is carefully tuned to

achieve a flat landscape around the initial state, such that
Current Opinion in Neurobiology 2012, 22:963–969
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Figure 3
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Attractor network models of decision-making. (a) The full model (top)

contains one general (NS) and two input-dependent excitatory

populations (1 and 2) and one inhibitory population (I) of neurons. This

complex model is well approximated by a two-population model

(bottom) that only tracks the average activity of the two input-dependent

excitatory populations [49��]. (b) Schematic illustration of the energy

landscape of the reduced model for balanced inputs. Initially, evidence is

accumulated in the flat area of the energy landscape towards the

unstable saddle point (blue empty dot), until the network state ‘drops’

into either of the two stable basins of attraction (blue solid dots), at which

point a decision is made. The red and green traces provide two

examples of network state trajectories, each leading to a different

decision. An imbalanced input reshapes the energy landscape to make it

more likely for the network state to reach the point attractor associated

with the stronger input [49��].
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Probabilistic population codes for decision-making. The lower neural

population encodes the momentary evidence, while the upper

population represents the accumulated evidence. More specifically,

both layers use probabilistic population codes to encode the probability

distribution over the stimulus based either on the momentary evidence

(in the input layer) or the evidence accumulated since the start of the trial

(in the output layer). If the neural variability of the population encoding

the momentary evidence follows the exponential family with linear

sufficient statistics, then the upper layer only needs to sum the spikes

from the input layer over time in order to encode the optimal posterior

distribution over the choices given all the momentary evidence up to the

present time [45��]. When the reliability of the momentary evidence only

affects the gain, or height, of the input patter of activity (with higher gain

corresponding to more reliable data), this solution also works when the

reliability of the momentary evidence changes during the course of the

trial. This implies that the activity in the upper layer correctly encodes the

decision maker’s confidence. Thus, the decision bound on confidence

can be implemented via a bound on a function of this population activity.
the ball’s motion is initially mostly determined by the

inputs – corresponding to the accumulation of evidence.

Over time, the ball drops into either of two attractor states

– valleys in this energy landscape that are hard to escape

and correspond to the commitment of a decision

[47,48,49��]. Thus, it also emphasizes a two-stage

decision making process, but with less clear-cut bound-

aries between these two stages.

Mathematical analysis has shown that, in contrast to the

one-dimensional state-space of the DDM, the network’s

essential dynamics is captured by a two-dimensional

state-space (Figure 3) [49��]. Thus, it is at least in prin-

ciple possible to represent both decision and confidence

simultaneously. However, using point attractors to com-

mit to a decision implies that the network cannot take

advantage of this property, as the network state at

decision time are reduced to one of two possible states.

Once the network adopts one of these states, the decision

is known, but there is no other dimension available to

encode the level of confidence.

In terms of evidence accumulation, the network imple-

ments a slow ‘integration’ phase by being tuned such as to

avoid pre-mature convergence to committing point

attractors, but without following principles of optimal

accumulation of evidence. It is in fact unclear how
Current Opinion in Neurobiology 2012, 22:963–969
effective the network is in capturing the information

that is available in the input, particularly, as the majority

of the noise comes from within the network rather than

this input [47]. Furthermore, the use of attractor states

causes a tilt in the energy surface towards the closer

attractor, resulting in biases in evidence accumulation

towards evidence supporting the decision associated

with this attractor [50]. Thus, evidence accumulation

overemphasizes early evidence rather than weighting

all momentary evidence equally, as would be required

in the simple RDM task in which all momentary evi-

dence is equally reliable [16,18�].

Overall, while the network features higher neurobiologi-

cal realism than the DDM, it lacks a clear probabilistic

interpretation along with notions of belief and confidence

– both of which are required to explain observed behavior

and to model general-purpose decision-making. The

same criticism applies to a recently proposed line-attrac-

tor variant for multiple-choice decision-making [51]. A

further variant proposes slow learning of how reliably

certain stimulus features are about predicting the correct-

ness of either option through the modification of synaptic
www.sciencedirect.com
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weights [52]. The later is used to model a task in which

symbols appearing consecutively on a screen each provide

evidence of different reliability towards one or the other

choice. Once presented on the screen, all symbols remain

visible until the end of the trial. As a consequence, it

remains unclear if the model is in fact accumulating

evidence temporally within the network, or if this evi-

dence is already combined before being fed into the

network. More generally, it is difficult to see how this

type approach could be used to implement the type of

optimal filters, such as Kalman filters, that are needed to

accumulate evidence optimally when the reliability of the

evidence changes over time and when the value of the

stimulus might also evolve over time [53].

Decision-making with probabilistic population
codes
To recap, probabilistic decision-making requires the

decision maker to at least maintain a representation of

the certainty with which either option is correct through-

out both stages of the decision process. Fortunately, neural

population codes seem to be well suited to not only

represent this certainty, but also full probability distri-

butions over the stimulus [45��,54–56] (Figure 4). Further-

more, as long as the neural spike variability belongs to the

exponential family with linear sufficient statistics (which

include the independent Poisson distribution, but also

allows for correlated variability and Fano Factors different

from one) [45��] – as observed in the cortex [57�] – optimal

accumulation of evidence is achieved by a simple linear

operation, even if the reliability of this evidence varies

over time. Thus optimal decision making with probabil-

istic population codes (PPCs) corresponds to integrating

neural population activity over time (and across cues), and

committing to a decision once a weighted sum of this

integrated activity crosses a certain threshold [46��]. Neu-

rally, all that is required is a PPC-based representation of

the momentary evidence, and an integrator of neural

activity – as observed in the cortex [18�] (Figure 4). A

further advantage of this approach is that – once the

decision boundary has been crossed – the most likely

stimulus value can be decoded optimally with a separate

line attractor network [46��,58,59]. Such architecture has

been shown to explain well both behavioral and neuro-

physiological data of monkeys performing the RDM task

[18�,46��].

In summary, PPCs are able to satisfy all previously out-

lined requirements for the normative ideal of decision-

making [see also [53]]. Furthermore, they provide a

potential explanation for some of the properties of these

data, such as, for example, why it might be advantages to

have the spike variability follow the exponential distri-

bution. Future challenges include how to perform close-

to-optimal inference even if the neural encoding deviates

from the exponential family with linear sufficient stat-

istics, as, for example, observed in MT [29��,46��,60] or
www.sciencedirect.com
MSTd [61]. Also, the theory predicts that the decision

bound ought to be on a linear combination of the neural

population activity of areas that act as integrators of the

momentary evidence (Drugowitsch, Moreno-Bote, and

Pouget, abstract I-43, Computational and Systems Neuro-

science 2011, Salt Lake City, UT, February 2011),

whereas the data seem to suggest that – at least in LIP

– the bound is on the activity of the pooled activity of

neurons coding for evidence towards the correctness of

single decisions [16,17,29��,30–32]. It remains to be seen

how the theory can be updated in the light of these

observations.

Conclusions
Based on behavioral and neural data of humans and

animals, we have argued for following a normative

approach to the modeling of decision-making. To this

respect, we have pointed out weaknesses of both diffu-

sion models as well as decision models based on attractor

networks, in particular with respect to the representation

of reliability and confidence. Probabilistic population

codes, on the contrary satisfy requirements posed by

the normative approach, and can explain both behavioral

and neural observations, but on the downside feature less

biological detail than attractor network models. Although

models based on probabilistic population codes can in

principle handle very general type of decisions, it remains

to be seen how well the theory is able to predict the neural

activity that arises from more complex life-like exper-

imental setups, with changing reliability and additional

flexibility in setting the decision bound. Without doubt,

these questions will be addressed in the coming years, as

several laboratories have started to test humans and

animals in tasks with time-varying evidence reliability.

The results of these experiments should provide valuable

insights into whether decision making can be described

within the probabilistic framework even in such complex,

increasingly realistic situations.
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