
Towards Convergence of
Learning Classifier Systems Value Iteration

Jan Drugowitsch and Alwyn M Barry1

Abstract. In this paper we are extending previous work on
analysing Learning Classifier Systems (LCS) in the reinforcement
learning framework [4] to deepen the theoretical analysis of
Value Iteration with LCS function approximation. After introducing
the formal framework and some mathematical preliminaries we
demonstrate convergence of the algorithm for fixed classifier mixing
weights, and show that if the weights are not fixed, the choice of
the mixing function is significant. Furthermore, we discuss accuracy-
based mixing and outline a proof that shows convergence of LCS
Value Iteration with an accuracy-based classifier mixing. This work
is a significant step towards convergence of accuracy-based LCS that
use Q-Learning as the reinforcement learning component.

1 INTRODUCTION
The work in [4] describes how to model Learning Classifier Systems
(LCS) in the reinforcement learning framework. Even though it is
restricted to constant classifier populations, it is a crucial milestone
towards a unified theory of function approximation, reinforcement
learning and classifier replacement in the context of LCS. In
this paper we investigate some properties of the effects of using
LCS function approximation in combination with Value Iteration,
particularly w.r.t. convergence of the algorithm.

Learning Classifier Systems are a framework for solving Dynamic
Programming problems via a rule-based system, where the rules
are evolved using a steady-state niche-based GA. The question of
convergence of LCS Value Iteration is an important one, as Value
Iteration is a deterministic iteration that Q-Learning stochastically
approximates. XCSF [8], a derivate of the currently most used
classifier system XCS, uses Q-Learning as its reinforcement learning
component and is therefore directly affected by our investigations.
Even though we could attempt to model Q-Learning in LCS directly,
it is more appropriate to first handle the deterministic case and then
show that the stochastic approximation is appropriate in the sense of
it converging to the deterministic iteration at infinity.

After describing the formal framework of reinforcement learning,
LCS function approximation and LCS Value Iteration, we will
discuss some properties of vector fields that will guide subsequent
convergence investigations. These properties are then demonstrated
to apply to the Value Iteration operator as well as single classifiers.
With a similar approach we will investigate LCS Value Iteration with
i) constant mixing weights, ii) arbitrary mixing, and iii) accuracy-
based mixing, where we can prove convergence of the first case and
(based on a certain conjecture) the third case, and give an example
why the system might not converge for the second case.

1 Department of Computer Science, University of Bath, Bath BA2 7AY, UK,
email: {J.Drugowitsch,A.M.Barry}@bath.ac.uk

2 LCS VALUE ITERATION

This section gives the formal basis of reinforcement learning and
Value Iteration and shows how Value Iteration can be applied in LCS.

2.1 The Reinforcement Learning Framework

Let S be the finite set of states of size N = |S|, which we will
map without loss of generality to the set of natural numbers N. In
every state i ∈ S we can perform an action a from a set of actions
A, leading to a transition to the next state j ∈ S and a scalar
reward. The probability of a transition from i to j by performing
action a is given by pij(a), which is the transition function p :
S × S × A → [0, 1]. Every such transition is mediated by the
reward rij(a), given by the reward function r : S × S ×A→ R. A
policy µ : S → A gives the behaviour of an agent, as it determines
the action choice for every state. The aim is to find the policy that
maximises the discounted reward in the long run; that is for state
i, V ∗(i) = limn→∞ E

`Pn
t=0 γtritit+1(at)|i0 = i, at = µ∗(it)

´
,

where γ ∈ (0, 1] is the discount factor, and we assume the sequence
of states {i0, i1, . . . } and actions {a0, a1, . . . } to be generated
according to the optimal policy µ∗. V ∗ : S → R denotes the optimal
value function that returns the expected return for every state i, and
gives the optimal policy µ∗ by choosing the action that maximises
the expected value of the next state.

2.2 (Approximate) Value Iteration

One way to find the optimal value function V ∗ is to solve Bellman’s
Equation

V ∗(i) = max
a∈A

X
j∈S

pij(a) (rij(a) + γV ∗(j)) , i = 1, . . . , N, (1)

which relates the optimal value of a state to the maximum possible
reward and discounted optimal value of the next state.

Value Iteration is a method for finding the optimal value function
by repeatedly applying the Dynamic Programming (DP) update T to
a value vector V ∈ RN , holding the current value for every state in
S. The update T applied to V is defined by (e.g. [2, Ch. 2.2.1])

(TV)(i) = max
a∈A

X
j∈S

pij(a) (rij(a) + γV (j)) , i = 1, . . . , N.

That gives the iteration Vt+1 = TVt starting with some arbitrary
initial V−1 ∈ RN . Due to the properties of T , this iteration is
guaranteed to converge to the optimal value function V ∗ when it is
applied an infinite number of times.

Given that the set of states is large, calculating the value
for every state at every iteration is spatially and computationally
prohibitive. Applying function approximation to the value function
V is an approach to circumvent this problem. Let Ṽ : S → R
be a parametric function approximation of V that is completely
determined by a small set of scalar parameters. The aim at every
iteration becomes to minimise the difference between the update
according to Value Iteration and its current approximation, that is
Ṽt+1 = min ‖T Ṽt − Ṽ ‖, where the minimum is restricted to the
approximation space given by the approximation architecture. As
discussed in [6, 4], this iteration is only guaranteed to converge for
certain function approximation architectures, and might even diverge
when used with methods like linear regression or neural networks.
Therefore it is important to investigate whether it is compatible with
the function approximation in use.

2.3 LCS Function Approximation
Learning Classifier Systems use a special type of function
approximation by mixing the independent approximation of a finite
set of classifiers to form the overall approximation. Let us consider a
set of K classifiers, each identified by its index k ∈ {1, . . . ,K}.
Each classifier k matches a certain matched states set2 Sk ⊆ S.
The objective of each classifier is to minimise the approximation
error over its matched states. To ease notation, let ISk : S →
{0, 1} be the indicator function for Sk that returns ISk (i) = 1 if
i ∈ Sk and ISk (i) = 0 otherwise. Depending on the context, we
will use ISk also as a diagonal N × N matching matrix, given by
ISk = diag(ISk (1), . . . , ISk (N)). The approximation architecture
of a single classifier is linear, based on a set of scalar features
that characterise a state, and given by the set of L basis functions
{φl : S → R}l∈{1,...,L}. Together they form the feature vector φ :
S → RL that for state i ∈ S is given by φ(i) = (φ1(i), . . . , φL(i))′.
The classifier approximation of classifier k is parameterised by the
weight vector wk ∈ RL that gives the value approximation for state
i ∈ S by Ṽk(i) = w′kφ(i). If we combine the state feature vectors
into an N × L feature matrix Φ with φ(i)′ as it’s ith row, then we
can express the classifier approximation as a vector Ṽk ∈ RN , given
by Ṽk = Φwk.

To account for a non-uniform state sampling distribution
(determined by the current policy), we will consider the function
π : S → [0, 1] to represent the probability of sampling a particular
state. That defines the diagonal N × N diagonal matrix D =
diag(π(1), . . . π(N)), and the equally-sized diagonal matrix Dk =
ISkD for classifier k. For that classifier we want to minimise the
mean squared error (MSE) over all states in Sk, weighted by the
sampling distribution, and given by3

X
i∈S

ISk (i)π(i)
`
V (i)− w′kφ(i)

´2
= ‖V − Φwk‖2Dk

,

where V in the second term is the value function in vector notation.
As known from linear algebra, the minimum of the MSE is given by
the point of the approximation space of classifier k that is closest to
the value vector V . We get this point by orthogonal projection ΠDkV

2 Classifiers usually match feature vectors rather than states (and their
matching capabilities are restricted by the used representation), but we will
assume a bijective map between them, and can therefore treat them as being
exchangeable.

3 ‖ · ‖Dk
denotes the weighted norm that is for any vector z ∈ RN given

by ‖z‖2Dk
=
P

i∈S ISk
(i)π(i)z(i)2, that is, weighted by the diagonal of

the matrix Dk .

into the classifier’s approximation space4 {√DkΦwk : wk ∈ RL},
where ΠDk is the N ×N projection matrix for classifier k, given by
ΠDk = Φ(Φ′DkΦ)−1Φ′Dk . For any value function V that gives
the optimal approximation of classifier k by Ṽk = ΠDkV , with an
approximation error of ‖V −ΠDkV ‖2Dk

.
Having described the approximation of one classifier, we will

now discuss how the classifiers are mixed to give the overall
approximation Ṽ . Let ψk : S → [0, 1] be the mixing weights for
classifier k, satisfying ψk(i) = ISk (i)ψk(i) and

PK
k=1 ψk(i) = 1

for all i ∈ S. Let Ψk be the N × N non-negative diagonal mixing
matrix Ψk = diag(ψk(1), . . . ψk(N)). Due to the properties of
ψk, we have

PK
k=1 Ψk = I , and Ψk = ISkΨk

5. The overall
approximation Ṽ given the classifier’s approximations {Ṽ1, . . . ṼK}
is then defined by Ṽ =

PK
k=1 ΨkṼk. Hence, for each state it is given

by the weighted average of all classifiers that match that state.
As derived in [3], mixing weights that under some assumptions

conform to the Maximum Likelihood Estimate are

ψk(i) =
ISk (i)ε−ν

kPK
p=1 ISp(i)ε−ν

k

, (2)

where εk is an estimate of the approximation error of classifier k, and
ν ∈ R+ is a mixing parameter that is usually set to ν = 1. Hence,
the classifiers are weighted inversely proportional to the quality of
their approximation. As the approximation error estimate depends on
the function to approximate and might change over time, the mixing
weights will also change over time, which we will account for by
denoting them by Ψk,t.

2.4 LCS Value Iteration
As described before, approximate Value Iteration is based on
approximating each step of a Value Iteration. Each classifier
maintains approximation Ṽk,t at time t, which gives the overall
approximation

Ṽt =

KX

k=1

Ψk,tṼk,t.

On this approximation we perform one DP update, giving the non-
approximated new value vector Vt+1 = T Ṽt. At that point we
want each classifier to approximate that value vector by minimising
‖Vt+1 − Ṽk‖Dk . This minimum is given by

Ṽk,t+1 = ΠDkVt+1 = ΠDkT Ṽt, k = 1, . . . ,K.

At the same time, each classifier keeps track of the approximation
error, which at time t+ 1 is given by6

εk,t+1 = Tr(Dk)−1‖T Ṽt −ΠDkT Ṽt‖2Dk
,

showing that the only time-variant value we need to consider is the
current overall approximation7 Ṽt. As classifier mixing is usually
calculated from the classifier errors, the mixing weights Ψk,t+1 are
subsequently also a function of Ṽt.

4 Here we use the fact that for any z ∈ RN , ‖z‖Dk
= ‖√Dkz‖

5 Such a set of mixing matrices is called admissible.
6 The error is normalised by Tr(Dk)−1 to make classifiers with different

matched state sets comparable.
7 Note that Ṽt is usually not explicitly represented but is recovered from

the classifier approximations Ṽk,t. That requires knowledge of the mixing
weights Ψk,t that are computed from the classifier errors εk,t. As we use
Ṽt to calculate the next errors εk,t+1, we need to create a temporary copy
of the current errors εk,t to be able to calculate Ṽt.

Combining all of the above steps into one update equation gives
the LCS Value Iteration update

Ṽt+1 =

KX

k=1

Ψk,t+1ΠDkT Ṽt. (3)

3 CONVERGENCE CONSIDERATIONS
We will describe some of the investigations that we can make
regarding convergence of LCS Value Iteration when using averaging
classifiers. For a more detailed discussion on the function
approximation of averaging classifiers see [3]. The reasons why we
restrict ourselves to averaging classifiers is given in [4, Sec. 4.2.1],
but can be summarised by the possibility of divergence for other
kinds of classifier approximation architectures.

3.1 Vector Field Properties
The algorithm is based on a mapping fromRN intoRN that describes
anN -dimensional vector field. We will investigate if this vector field
forms a contraction8, which would allow us to use the following
property of contraction mappings to show convergence (e.g. [7, Ch.
9.3]):

Theorem 3.1 (Contraction Mapping Theorem). Let P be a closed
real interval, that is P has one of the following forms: [a, b], [a,∞),
(−∞, b] or (−∞,∞). Let f : P → P be a contraction mapping
with contraction modulus C ∈ (0, 1). Then

1. f has a unique fixed point s in P ;
2. for any x0 ∈ P , the simple iteration xt+1 = f(xt) gives a

sequence converging to s.

The metric space (M,d) we are operating in is given byM = RN .
We will define the distance metric d as being the maximum norm,
given for any two vectors x, y ∈ RN by d(x, y) = ‖x − y‖∞ =
maxi=1,...,N |x(i)− y(i)| .

For the following definitions we are required to order our vectors
in some way, which we will for any two vectors x, y ∈ RN define by

x ≤ y ⇔ x(i) ≤ y(i), i = 1, . . . , N.

Definition 3.1 (Increasing Vector Field). Let f be a vector field from
f : RN → RN . Then f is increasing, if and only if x ≤ y implies
that f(x) ≤ f(y) for all x and y in RN .

Definition 3.2 (Scalar Shift Vector Field). Let f be a vector field
from f : RN → RN , let γ ∈ R be a scalar such that γ ∈ [0, 1],
let m ∈ R be a scalar, and let e ∈ RN be a vector that is given
by e = (1, . . . , 1)′. Then we call f a scalar shift vector field with
scaling γ, if and only if f(x+me) = f(x) + γme for all x in RN .

If we have a vector field that is increasing and a scalar shift vector
field then we can use the following:

Lemma 3.2. Let f : RN → RN describe a vector field that is
both increasing and a scalar shift vector field with scaling γ. Then f

8 A function f is a contraction with contraction modulus C if and only if this
function is Lipschitz continuous with a Lipschitz constant of C < 1. A
function f on the metric space (M, d) is Lipschitz continuous if and only
if for some non-negative constant C ∈ R, d(f(x), f(y)) ≤ Cd(x, y), for
all x and y in M . The constant C is called the Lipschitz constant of that
function (e.g. [7, Ch. 9.3])

describes a non-expansion9 w.r.t. the maximum norm if γ = 1, and
a contraction w.r.t. the maximum norm with contraction modulus γ
otherwise.

Proof. The proof is similar to the one showing the contraction of
the DP update operator T in [2, Lemma 2.5]. Let x, y ∈ RN

be two vectors, and c be the maximum norm of x − y, that is
c = maxi=1,...,N |x(i)− y(i)|. Then we have

x(i)− c ≤ y(i) ≤ x(i) + c, i = 1, . . . , N.

Applying f , we can write, based on f ’s properties,

(f(x))(i)− γc ≤ (f(y))(i) ≤ (f(x))(i) + γc, i = 1, . . . , N.

Therefore,

|(f(x))(i)− (f(y))(i)| ≤ γc, i = 1, . . . , N.

Hence we have ‖f(x)− f(y)‖∞ ≤ γ‖x− y‖∞ which for γ = 1 is
a non-expansion, and for γ < 1 is a contraction with modulus γ.

Therefore, an update function that gives an increasing and scalar
shift vector field with scaling < 1 causes convergence if applied
iteratively. We will proceed by showing that these properties hold
for the DP update T , and then investigate if we can state the same
for the DP update in combination with LCS function approximation
using averaging classifiers.

3.2 The DP Update T

As the operator T forms the core of Value Iteration, we will discuss
some of its properties. The DP update operator T maps from RN to
RN and hence describes a vector field. A simple analysis (as given
in [2, Sec. 2.3]) of this field reveals the following properties:

Lemma 3.3. The vector field given by T is increasing and a scalar
shift vector field with scaling γ. Hence, it is a contraction to the
maximum norm with contraction modulus γ.

Proof. The proof for the increasing property and scalar shift property
of T is given in [2, Lemma 2.1] and [2, Lemma 2.2]. Its contraction
follows from Lemma 3.2.

Hence, the iteration Vt+1 = TVt will converge to the solution of
Bellman’s Equation V ∗ = TV ∗ (Eq. (1)), independent of the initial
V−1.

3.3 Averaging Classifiers
Averaging Classifiers are classifiers that use the single feature
φ(1) = 1 for their approximation. This results in a N × 1 feature
matrix Φ = (1, . . . , 1)′. For the projection ΠDk of classifier k
this gives ΠDk = Tr(Dk)−1ΦΦ′Dk. Applying that to some vector
V ∈ RN we get the approximation

(ΠDkV)(i) =

P
j∈Sk

π(j)V (j)P
m∈Sk

π(m)
, i = 1, . . . , N, (4)

which is the distribution-weighted average of V over the matched
states Sk. Like T , ΠDk also describes a vector field ΠDk : RN →
RN . Some helpful properties of this vector field are:

9 A function f is a non-expansion if and only if it is Lipschitz continuous
with a Lipschitz constant C ≤ 1.

Lemma 3.4. The vector field described by ΠDk is increasing.

Proof. Let V, V̄ ∈ RN be two vectors such that V ≤ V̄ , and let
us denote their non-negative difference by c = V̄ − V . Using V =
V̄ − c, we get ΠDk V̄ = ΠDkV + ΠDkc. By substituting Eq. 4 for
ΠDkc we can see that this term is non-negative in all its components
and therefore ΠDkV ≤ ΠDk V̄ .

Lemma 3.5. The operator ΠDk describes a scalar shift vector field
with scaling 1.

Proof. The result follows from expanding for (ΠDk (V +me))(i) for
an arbitrary vector V ∈ RN , state i ∈ {1, . . . , N}, scalar m ∈ R,
and vector e ∈ RN given by e = (1, . . . , 1)′.

That would be enough to show convergence of LCS Value Iteration
with a single classifier. However, we are more interested in the mixed
combination of several classifiers and will therefore investigate three
cases: i) constant mixing, ii) arbitrary mixing, and iii) accuracy-based
mixing.

3.4 Constant Mixing
Let us consider the case of constant mixing weights, that is Ψk,t =
Ψk for all t = 0, 1, . . . and all k ∈ {1, . . . ,K}. This allows us to
show:

Lemma 3.6. Let {Ψ1, . . .ΨK} be a set of admissible mixing
matrices, and let ΠDk be the projection operator for averaging
classifier k. Then

PK
k=1 ΨkΠDk is a non-expansion w.r.t. the

maximum norm.

Proof. We can show that
PK

k=1 ΨkΠDk is an increasing scalar shift
vector field with scaling 1 in the same way as we have proven Lemma
3.4 and 3.5. Hence, from Lemma 3.2 it follows that it is a non-
expansion w.r.t. the maximum norm.

This non-expansion leads to the result:

Theorem 3.7. Learning Classifier System Value Iteration with
averaging classifiers and fixed mixing weights converges to the
unique fixed point of the iteration.

Proof. The LCS Value Iteration update for fixed mixing weights is

Ṽt+1 =

KX

k=1

ΨkΠDkT Ṽt.

By Lemma 3.3, T is a contraction w.r.t. ‖ · ‖∞. By Lemma 3.6,PK
k=1 ΨkΠDk is a non-expansion w.r.t. the same norm. Therefore,PK
k=1 ΨkΠDkT is a contraction and by Theorem 3.1 the above

update converges to its unique fixed point.

3.5 Time-variant Arbitrary Mixing
Let us now consider what happens if we change the mixing weights
at every iteration. Given that the mixing weights are a function of
the previous overall value approximation, would it be possible to use
an arbitrary function and still get a contraction? We will again deal
with this question by investigating if the LCS function approximation
alone gives a non-expansion w.r.t. the maximum norm, which implies
convergence of its use together with Value Iteration.

Let us consider a simple example with 2 classifiers, a state space
S = {1, 2} and uniform sampling. The first classifier matches all

states, and the second classifier only matches the second state, that
is S1 = {1, 2} and S2 = {2}. Let the two vectors to approximate
be V = (0, 1)′ and V̄ = (2, 4)′. Due to their averaging nature,
the first classifier will give a value of 1

2
for V , and a value of 3

for V̄ . The second classifier matches the values of states 2 and will
therefore give 1 for V , and 4 for V̄ . As for state 2 we are mixing the
approximations of both classifiers, its overall approximation Ṽ (2)
will be in the range [0, 1] for V , and in the range [2, 4] for V̄ ,
depending on the mixing weights. Note that ‖V − V̄ ‖∞ = 3. As
we can chose arbitrary mixing weights, let us fix the approximation
of V̄ (2) at 4. We can now observe that the difference between the
approximations for V (2) and V̄ (2) is in the range [3, 4] depending
on the mixing weights for the approximation of V . Hence, it might be
larger than ‖V −V̄ ‖∞ and therefore might violate our non-expansion
property. This demonstrates that we cannot guarantee non-expansion
of the LCS function approximation for arbitrary mixing weights.

Consequently, the choice of function that determines the mixing
weights is significant for the contraction property of LCS Value
Iteration. How does it have to be formed such that we can guarantee
non-expansion? In the previous example we have put full weight on
the second classifier to approximate V̄ (2) but not to approximate
V (2). We assume that having some schema that weights the same
classifiers in similar ways will let us show non-expansion of the
function approximation. The following accuracy-based mixing is
such a schema.

3.6 Accuracy-based Mixing
Let us introduce operator C that describes overall approximation
given accuracy-based mixing. As described before, the mixing
weights are based on the matching classifiers’ approximation errors
εk : RN → R+, which are for classifier k given by

εk(V) = Tr(Dk)−1‖TV −ΠDkTV ‖2Dk
.

The mixing weights ψk : S×RN → [0, 1] are determined according
to Eq. (2), and are as a function of the state and the current value
function estimate given by

ψk(i, V) =
ISk (i)εk(V)−ν

PK
p=1 ISp(i)εp(V)−ν

.

We will write CV for applying this mixing strategy to a set of
averaging classifiers that approximate the vector V , given by

(CV)(i) =

KX

k=1

ψk(i, V)(ΠDkV)(i) i = 1, . . . , N.

To show that the vector field C : RN → RN forms a non-expansion,
we will proceed as before by investigating if it is an increasing scalar
shift vector field. Let us first prove the following:

Lemma 3.8. For any vector V ∈ RN , scalar m ∈ R, and vector
e ∈ RN given by e = (1, . . . , 1)′ we have

T (V +me)−ΠDkT (V +me) = TV −ΠDkTV, k = 1, . . . ,K.

Proof. From Lemma 3.3 we know that T describes a scalar shift
vector field with scaling γ. Hence we can write

T (V +me)−ΠDkT (V +me) = TV −ΠDkTV +γ(I−ΠDk)me.

Additionally, by Lemma 3.5, ΠDk is a scalar shift vector field with
scaling 1, and ΠDk (0e) = 0e. Hence,

(I −ΠDk)me = me−ΠDk (0e+me) = me−me = 0.

As TV −ΠDkTV determines the classifier error, by above lemma
that error is invariant under scalar shift of V , and subsequently so
are the mixing weights. Hence, given that the relative differences
between the values of the states that the classifier matches are correct,
the error approximation is also correct. We hypothesise that therefore
we can get good approximate error estimates even before the final
value function is known.

We can use the invariance of the mixing weights under scalar shift
to show the following:

Lemma 3.9. The vector field given by C is a scalar shift vector field
with scaling 1.

Proof. By Lemma 3.8, εk(V +me) = εk(V), where V ∈ RN is any
vector, m ∈ R is a scalar, and e ∈ RN is the vector e = (1, . . . , 1)′.
Hence, the same can be said for the mixing weight function ψk, that
is for any state i ∈ S, ψk(i, V + me) = ψk(i, V). Lemma 3.5
shows that ΠDk (V +me) = ΠDkV +me. Hence, if we expand for
C(V +me) and observe that

PK
k=1 ψk(i, V)m = m we can see that

C(V +me) = CV +me.

Having established the scalar shift property of C, we will now
investigate if it is increasing. From the definition of the mixing
weights ψk we can see that for ν = 0, ψk is independent of the
current value function estimate and therefore time-invariant. Hence,
we can apply Lemma 3.6 to show that C is increasing. However,
as is discussed in [3], ν = 0 is possibly the worst setting for this
parameter. Thus, we are more interested in the properties of C for
ν > 0.

It is well known that a differentiable continuous function of a
single variable is increasing if and only if its first gradient is non-
negative (e.g. [1, Ch. 11.2]). As derived in [5], the same principle
applies to vector fields with a non-negative Jacobian. For C the
components of the Jacobian are given by10

∂CiV

∂V (l)
=

KX

k=1

ψk(i, V)
ISk (l)π(l)

Tr(Dk)

× `1 + 2νεk(V)−1(V (l)− Vk)(CiV − Vk)
´
,

where CiV = (CV)(i) is the ith component of the result of CV , and
Vk stands for any component of ΠDkV . Given that the above gives
a non-negative result for all i = 1, . . . , N and l = 1, . . . ,K, the
vector field described by C is increasing.

At present, our analysis has not identified whether the components
of the Jacobian are non-negative and this part of the investigation is
future work. Discovering that some of the components are negative
does not imply that LCS Value Iteration diverges, as the non-
negativity of the components is only a sufficient but not a necessary
condition. Neither can we reject convergence if C is found to be non-
increasing, as an increasing vector field is sufficient to apply Lemma
3.2, but not proven to be necessary for convergence.

As we have not yet been able to produce a proof that the vector
field given by C is increasing, but neither were we able to find
examples where it violates that property, we will state it as a
conjecture, pending further investigation.

Conjecture 3.10. The vector field given by C is increasing.

This leads to the following result:

10 For the derivation of the Jacobian of C see [5]

Theorem 3.11. If Conjecture 3.10 holds, then LCS Value Iteration
with accuracy-based mixing converges to its fixed point Ṽ ∗ =
CT Ṽ ∗.

Proof. As by Lemma 3.9, C is a scalar shift vector field with scaling
1, and by Conjecture 3.10 it is increasing, it forms by Lemma 3.2 a
non-expansion w.r.t. the maximum norm. Therefore, by Lemma 3.3,
CT forms a contraction, and by Theorem 3.1 the LCS Value Iteration
Ṽt+1 = CT Ṽt converges to its unique fixed point.

4 CONCLUSION
We have described the LCS Value Iteration algorithm and have given
a proof of its convergence for constant mixing and accuracy-based
mixing, where the latter is based on a conjecture about LCS function
approximation. Furthermore, we have shown that the choice of the
mixing function is significant for the convergence of the algorithm.

Convergence of LCS Value Iteration is an important property, as
it is the first step towards studying the stability of using Q-Learning
in LCS. Even though we are currently only dealing with constant
populations of classifiers, showing convergence to a population-
dependent fixed point allows us to use this work even when we are
changing the population while we are performing the iteration. In
that case, the fixed point would change, but every iteration after that
change would bring us closer to the new fixed point. Naturally, we
also have to consider that the new population depends on the previous
value function estimate, and analysing this interaction is a topic of
future research.

Having guaranteed convergence to a unique solution is a strong
property that makes classifier systems better candidates for real-
world application, such as, for example, optimal control. Hence,
following this track of research for LCS will be fruitful for a wide
range of applications that have not previously been considered before
due to the lack of theoretical guarantees.

Acknowledgements Thanks to Jonty Needham for being patient
enough to listen to a large number of naı̈ve math questions, and to
answer some of them in an understandable, and sometimes not-so-
understandable way.

References
[1] Howard Anton, Calculus, John Wiley & Sons, New York, 5th edn., 1995.
[2] Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic

Programming, Athena Scientific, Belmont, MA, 1996.
[3] Jan Drugowitsch and Alwyn M. Barry, ‘A Formal Framework and

Extensions for Function Approximation in Learning Classifier Systems’,
Technical Report CSBU-2006-01, Dept. Computer Science, University
of Bath, (January 2006). ISSN 1740-9497.

[4] Jan Drugowitsch and Alwyn M. Barry, ‘A Formal Framework for
Reinforcement Learning with Function Approximation in Learning
Classifier Systems’, Technical Report CSBU-2006-02, Dept. Computer
Science, University of Bath, (January 2006). ISSN 1740-9497.

[5] Jan Drugowitsch and Alwyn M. Barry, ‘Towards Convergence of
Learning Classifier Systems Value Iteration’, Technical Report CSBU-
2006-03, Dept. Computer Science, University of Bath, (April 2006).
ISSN 1740-9497.

[6] Geoffrey J. Gordon, ‘Stable Function Approximation in Dynamic
Programming’, in Proceedings of the Twelfth International Conference
on Machine Learning, eds., Armand Prieditis and Stuart Russell, pp.
261–268, San Francisco, CA, USA, (1995). Morgan Kaufmann.

[7] W. A. Sutherland, Introduction to metric and topological spaces,
Clarendon Press, Oxford, UK, 1975.

[8] Stewart W. Wilson, ‘Classifiers that Approximate Functions’, Neural
Computing, 1(2-3), 211–234, (2002).

