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Abstract Humans and animals can integrate sensory evidence from various sources to make 
decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed 
across trials. Little is known about whether optimality is preserved when subjects can choose when 
to make a decision (reaction-time task), nor when sensory inputs have time-varying reliability. Using 
a reaction-time version of a visual/vestibular heading discrimination task, we show that behavior is 
clearly sub-optimal when quantified with traditional optimality metrics that ignore reaction times. 
We created a computational model that accumulates evidence optimally across both cues and time, 
and trades off accuracy with decision speed. This model quantitatively explains subjects's choices 
and reaction times, supporting the hypothesis that subjects do, in fact, accumulate evidence optimally 
over time and across sensory modalities, even when the reaction time is under the subject's control.
DOI: 10.7554/eLife.03005.001

Introduction
Effective decision making in an uncertain, rapidly changing environment requires optimal use of all 
information available to the decision-maker. Numerous previous studies have examined how integrating 
multiple sensory cues—either within or across sensory modalities—alters perceptual sensitivity (van 
Beers et al., 1996; Ernst and Banks, 2002; Battaglia et al., 2003; Fetsch et al., 2009). These studies 
generally reveal that subjects' ability to discriminate among stimuli improves when multiple sensory cues 
are available, such as visual and tactile (van Beers et al., 1996; Ernst and Banks, 2002), visual and 
auditory (Battaglia et al., 2003), or visual and vestibular (Fetsch et al., 2009) cues. The performance gains 
associated with cue integration are generally well predicted by models that combine information across 
senses in a statistically optimal manner (Clark and Yuille, 1990). Specifically, we consider cue integration 
to be optimal if the information in the combined, multisensory condition is the sum of that available 
from the separate cues (see Supplementary file 1 for formal statement) (Clark and Yuille, 1990).

Previous studies and models share a common fundamental limitation: they only consider situations 
in which the stimulus duration is fixed and subjects are required to withhold their response until the 
stimulus epoch expires. In natural settings, by contrast, subjects usually choose for themselves when 
they have gathered enough information to make a decision. In such contexts, it is possible that sub-
jects integrate multiple cues to gain speed or to increase their proportion of correct responses (or 
some combination of effects), and it is unknown whether standard criteria for optimal cue integration 
apply. Indeed, using a reaction-time version of a multimodal heading discrimination task, we demon-
strate here that human performance is markedly suboptimal when evaluated with standard criteria that 
ignore reaction times. Thus, the conventional framework for optimal cue integration is not applicable 
to behaviors in which decision times are under subjects' control.
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On the other hand, there is a large body of empirical studies that has focused on how multisensory 
integration affects reaction times, but these studies have generally ignored effects on perceptual 
sensitivity (Colonius and Arndt, 2001; Otto and Mamassian, 2012). Some of these studies have 
reported that reaction times for multisensory stimuli are faster than predicted by ‘parallel race’ models 
(Raab, 1962; Miller, 1982), suggesting that multisensory inputs are combined into a common repre-
sentation. However, other groups have failed to replicate these findings (Corneil et al., 2002; 
Whitchurch and Takahashi, 2006) and it is unclear whether the sensory inputs are combined opti-
mally. Thus, multisensory integration in reaction time experiments remains poorly understood, and 
there is no coherent framework for evaluating optimal decision making that incorporates both percep-
tual sensitivity and reaction times. We address this substantial gap in knowledge both theoretically and 
experimentally.

For tasks based on information from a single sensory modality, diffusion models (DMs) have proven 
to be very effective at characterizing both the speed and accuracy of perceptual decisions, as well 
as speed/accuracy trade-offs (Ratcliff, 1978; Ratcliff and Smith, 2004; Palmer et al., 2005) (where 
accuracy is used in the sense of percentage of correct responses). Here, we develop a novel form of 
DM that not only integrates evidence optimally over time but also across different sensory cues, pro-
viding an optimal decision model for multisensory integration in a reaction-time context. The model is 
capable of combining cues optimally even when the reliability of each sensory input varies as a func-
tion of time. We show that this model reproduces human subjects' behavior very well, thus demon-
strating that subjects near-optimally combine momentary evidence across sensory modalities. The 
model also predicts the counterintuitive finding that discrimination thresholds are often increased 
during cue combination, and demonstrates that this departure from standard cue-integration theory is 
due to a speed-accuracy tradeoff.

Overall, our findings provide a framework for extending cue-integration research to more natural 
contexts in which decision times are unconstrained and sensory cues vary substantially over time.

Results
We collected behavioral data from seven human subjects, A–G, performing a reaction-time version of 
a heading discrimination task (Gu et al., 2007, 2008, 2010; Fetsch et al., 2009) based on optic flow 

eLife digest Imagine trying out a new roller-coaster ride and doing your best to figure out if 
you are being hurled to the left or to the right. You might think that this task would be easier if your 
eyes were open because you could rely on information from your eyes and also from the vestibular 
system in your ears. This is also what cue combination theory says—our ability to discriminate 
between two potential outcomes is enhanced when we can draw on more than one of the senses.

However, previous tests of cue combination theory have been limited in that test subjects have 
been asked to respond after receiving information for a fixed period of time whereas, in real life,  
we tend to make a decision as soon as we have gathered sufficient information. Now, using data 
collected from seven human subjects in a simulator, Drugowitsch et al. have confirmed that test 
subjects do indeed give more correct answers in more realistic conditions when they have two 
sources of information to rely on, rather than only one.

What makes this result surprising? Traditional cue combination theories do not consider that 
slower decisions allow us to process more information and therefore tend to be more accurate. 
Drugowitsch et al. show that this shortcoming causes such theories to conclude that multiple 
information sources might lead to worse decisions. For example, some of their test subjects 
made less accurate choices when they were presented with both visual and vestibular information, 
compared to when only visual information was available, because they made these choices very 
rapidly.

By developing a theory that takes into account both reaction times and choice accuracy, 
Drugowitsch et al. were able to show that, despite different trade-offs between speed and 
accuracy, test subjects still combined the information from their eyes and ears in a way that was 
close to ideal. As such the work offers a more thorough account of human decision making.
DOI: 10.7554/eLife.03005.002
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alone (visual condition), inertial motion alone (vestibular condition), or a combination of both cues 
(combined condition, Figure 1A). In each stimulus condition, the subjects experienced forward trans-
lation with a small leftward or rightward deviation, and their task was to report whether they moved 
leftward or rightward relative to (an internal standard of) straight ahead (Figure 1B). In the combined 
condition, visual and vestibular cues were always spatially congruent, and followed temporally syn-
chronized Gaussian velocity profiles (Figure 1C). Reliability of the visual cue was varied randomly 
across trials by changing the motion coherence of the optic flow stimulus (three coherence levels). For 
subjects B, D, and F, an additional experiment with six coherence levels was performed (denoted as 
B2, D2, F2). In contrast to previous tasks conducted with the same apparatus (Fetsch et al., 2009; 
Gu et al., 2010), subjects did not have to wait until the end of the stimulus presentation, but were 
allowed to respond at any time throughout the trial, which lasted up to 2 s.

For all conditions and all subjects, heading discrimination performance improved with an increase 
in heading direction away from straight ahead and with increased visual motion coherence. Let h 
denote the heading angle relative to straight ahead (h > 0 for right, h < 0 for left), and |h| its magni-
tude. Larger values of |h| simplified the discrimination task, as reflected by a larger fraction of correct 
choices (Figure 2A for subject D2, Figure 3—figure supplement 1 for other subjects). To quantify 
discrimination performance, we fitted a cumulative Gaussian function to the psychometric curve for 
each stimulus condition and coherence. A lower discrimination threshold, given by the standard devi-
ation of the fitted Gaussian, indicates a steeper psychometric curve and thus better performance. For 
both the visual and combined conditions, discrimination thresholds consistently decreased with an 
increase in motion coherence (Figure 2B for subject D2, Figure 2—figure supplement 1 for other 
subjects), indicating that increasing coherence improves heading discrimination.

Sub-optimal cue combination?
Traditional cue combination models predict that the discrimination threshold in the combined condi-
tion should be smaller than that of either unimodal condition (Clark and Yuille, 1990). With a fixed 
stimulus duration, this prediction has been shown to hold for visual/vestibular heading discrimination 

in both human and animal subjects (Fetsch et al., 
2009, 2011), consistent with optimal cue combi-
nation. In contrast, the discrimination thresholds 
of subjects in our reaction-time task appear to be 
substantially sub-optimal. For the example sub-
ject of Figure 2A, psychometric functions in the 
combined condition lie between the visual and 
vestibular functions. Correspondingly, discrimina-
tion thresholds for the combined condition are 
intermediate between visual and vestibular thresh-
olds for this subject, and for high coherences, are 
substantially greater than the optimal predictions 
(Figure 2B).

This pattern of results was consistent across sub-
jects (Figure 2C, Figure 2—figure supplement 1). 
In no case did subjects feature a significantly 
lower discrimination threshold in the combined 
condition than the better of the two unimodal 
conditions (p>0.57, one-tailed, Supplementary 
file 2A). For the largest visual motion coherence 
(70%), all subjects except one showed thresholds 
in the combined condition that were significantly 
greater than visual thresholds and significant 
greater than optimal predictions of a conventional 
cue-integration scheme (p<0.05, Supplementary 
file 2A). These data lie in stark contrast to pre-
vious reports using fixed duration stimuli (Fetsch 
et al., 2009, 2011) in which combined thresholds 
were generally found to improve compared to 

A

B C

Figure 1. Heading discrimination task. (A) Subjects  
are seated on a motion platform in front of a screen 
displaying 3D optic flow. They perform a heading 
discrimination task based on optic flow (visual condi-
tion), platform motion (vestibular condition), or both 
cues in combination (combined condition). Coherence 
of the optic flow is constant within a trial but varies 
randomly across trials. (B) The subjects' task is to 
indicate whether they are moving rightward or leftward 
relative to straight ahead. Both motion direction (sign 
of h) and heading angle (magnitude of |h|) are chosen 
randomly between trials. (C) The velocity profile is 
Gaussian with peak velocity ∼1 s after stimulus onset.
DOI: 10.7554/eLife.03005.003
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the unimodal conditions, as expected by standard optimal multisensory integration models. To sum-
marize this contrast, we compare the ratio of observed to predicted thresholds in the combined con-
dition for our subjects to human and monkey subjects performing a similar task in a fixed duration 
setting (Fetsch et al., 2009). We found this ratio to be significantly greater for our subjects (Figure 2C; 
two-sample t test, t (77) = 3.245, p=0.0017). This indicates that, with respect to predictions of standard 
multisensory integration models, our subjects performed significantly worse than those engaged in a 
similar fixed-duration task.

A different picture emerges if we take not only discrimination thresholds but also reaction times 
into account. Short reaction times imply that subjects gather less information to make a decision, 
yielding greater discrimination thresholds. Longer reaction times may decrease thresholds, but at the 
cost of time. Consequently, if subjects decide more rapidly in the combined condition than the visual 
condition, they might feature higher discrimination thresholds in the combined condition even if they 
make optimal use of all available information. Thus, to assess if subjects perform optimal cue combi-
nation, we need to account for the timing of their decisions.

Average reaction times depended on stimulus condition, motion coherence, and heading direction. 
In general, reaction times were faster for larger heading magnitudes, and reaction times in the vestib-
ular condition were faster than those in the visual condition (Figure 3 for subject D2, Figure 3—figure 
supplement 1 for other subjects). In the combined condition, however, reaction times were much 
shorter than those seen for the visual condition and were comparable to those of the vestibular con-
dition (Figure 3). Thus, subjects spent substantially more time integrating evidence in the visual con-
dition, which boosted their discrimination performance when compared to the combined condition. 
Note also that discrimination thresholds in the combined condition were substantially smaller than 
vestibular thresholds, especially at 70% coherence (Figures 2 and 3). Thus, adding optic flow to a 

Figure 2. Heading discrimination performance. (A) Plots show the proportion of rightward choices for each heading and stimulus condition. Data  
are shown for subject D2, who was tested with 6 coherence levels. Error bars indicate 95% confidence intervals. (B) Discrimination threshold for each 
coherence and condition for subject D2 (see Figure 2—figure supplement 1 for discrimination thresholds of all subjects). For large coherences, the 
threshold in the combined condition (solid red curve) lies between that of the vestibular and visual conditions, a marked deviation from the standard 
prediction (dashed red curve) of optimal cue integration theory. (C) Observed vs predicted discrimination thresholds for the combined condition for all 
subjects. Data are color coded by motion coherence. Error bars indicate 95% CIs. For most subjects, observed thresholds are significantly greater than 
predicted, especially for coherences greater than 25%. For comparison, analogous data from monkeys and humans (black triangles and squares, 
respectively) are shown from a previous study involving a fixed-duration version of the same task (Fetsch et al., 2009).
DOI: 10.7554/eLife.03005.004
The following figure supplements are available for figure 2:

Figure supplement 1. Discrimination thresholds for all subjects and conditions. 
DOI: 10.7554/eLife.03005.005
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vestibular stimulus decreased the discrimination threshold with essentially no loss of speed. A similar 
overall pattern of results was observed for the other subjects (Figure 3—figure supplement 1). These 
data provide clear evidence that subjects made use of both visual and vestibular information to per-
form the reaction-time task, but the benefits of cue integration could not be appreciated by consid-
ering discrimination thresholds alone.

Modeling cue combination with a novel diffusion model
To investigate whether subjects accumulate evidence optimally across both time and sensory modali-
ties, we built a model that integrates visual and vestibular cues optimally to perform the heading dis-
crimination task, and we compare predictions of the model to data from our human subjects. The 
model builds upon the structure of diffusion models (DMs), which have previously been shown to 
account nicely for the tradeoff between speed and accuracy of decisions (Ratcliff, 1978; Ratcliff and 
Smith, 2004; Palmer et al., 2005). Additionally, DMs are known to optimally integrate evidence over 
time (Laming, 1968; Bogacz et al., 2006), given that the reliability of the evidence is time-invariant 
(such that, at any point in time from stimulus onset, the stimulus provides the same amount of informa-
tion about the task variable). However, DMs have neither been used to integrate evidence from several 
sources, nor to handle evidence whose reliability changes over time, both of which are required for our 
purposes.

In the context of heading discrimination, a standard DM would operate as follows (Figure 4A): 
consider a diffusing particle with dynamics given by ɺ = sin( )+ ( )x k h tη , where h is the heading direction, 

Figure 3. Discrimination performance and reaction times for subject D2. Behavioral data (symbols with error bars) 
and model fits (lines) are shown separately for each motion coherence. Top plot: reaction times as a function of 
heading; bottom plot: proportion of rightward choices as a function of heading. Mean reaction times are shown for 
correct trials, with error bars representing two SEM (in some cases smaller than the symbols). Error bars on the 
proportion rightward choice data are 95% confidence intervals. Although reaction times are only shown for correct 
trials, the model is fit to data from both correct and incorrect trials. See Figure 3—figure supplement 1 for 
behavioral data and model fits for all subjects. Figure 3—figure supplement 2 shows the fitted model parameters 
per subject.
DOI: 10.7554/eLife.03005.006
The following figure supplements are available for figure 3:

Figure supplement 1. Psychometric functions, chronometric functions, and model fits for all subjects. 
DOI: 10.7554/eLife.03005.007

Figure supplement 2. Model parameters for fits of the optimal model and two alternative parameterizations. 
DOI: 10.7554/eLife.03005.008
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k is a positive constant relating particle drift to heading direction, and η(t) is unit variance Gaussian 
white noise. The particle starts at x (0) = 0, drifts with an average slope given by ksin(h), and diffuses 
until it hits either the upper bound θ or the lower bound −θ, corresponding to rightward and leftward 
choices, respectively. The decision time is determined by when the particle hits a bound. Larger |h|'s 
lead to shorter decision times and more correct decisions because the drift rate is greater. Lower 
bound levels, θ , also lead to shorter decision times but more incorrect decisions. Errors (hitting bound 
θ when h < 0, or hitting bound −θ when h > 0) can occur due to the stochasticity of particle motion, 
which is meant to capture the variability of the momentary sensory evidence. The Fisher information 
in x(t) regarding h, a measure of how much information x(t) provides for discriminating heading 
(Papoulis, 1991), is Ix(sin(h)) = k2 per second, showing that k is a measure of the subject's sensitivity to 
changes in heading direction. This sensitivity depends on the subject's effectiveness in estimating 
heading from the cue, which in turn is influenced by the reliability of the cue itself (e.g., coherence).

Now consider both a visual (vis) and a vestibular (vest) source of evidence regarding h, 
ɺ = ( ) sin( )+ ( )

vis vis vis
x k c h tη  and ɺ = sin( )+ ( )

vest vest vest
x k h tη , where kvis(c) indicates that the sensitivity to the cue 

in the visual modality depends on motion coherence, c. Combining these two sources of evidence by a 
simple sum, ɺ ɺ+

vis vest
x x , would amount to adding noise to ɺ

vest
x  for low coherences (kvis(c) ≈ 0), which is clearly 

suboptimal. Rather, it can be shown that the two particle trajectories are combined optimally by weighting 
their rates of change in proportion to their relative sensitivities (see Supplementary file 1 for derivation):

ɺ ɺ ɺ
2 2

2 2 2 2

( )
= +

( ) + ( ) +
.vis vest

comb vis vest

vis vest vis vest

k c k
x x

k c k k c k
x � (1)

This allows us to model the combined condition by a single new DM, ɺ = ( )sin( )+ ( )
comb comb comb

x k c h tη , 
which is optimal because it preserves all information contained in both xvis and xvest (Figure 4B; see 
‘Materials and methods’ and Supplementary file 1 for a formal treatment). The sensitivity (drift rate 
coefficient) in the combined condition,

2 2
( ) = ( ) + ,

comb vis vest
kk c k c � (2)

is a combination of the sensitivities of the unimodal conditions and is therefore always greater than the 
largest unimodal sensitivity.

A B

Figure 4. Extended diffusion model (DM) for heading discrimination task. (A) A drifting particle diffuses until it hits the lower or upper bound, corre-
sponding to choosing ‘left’ or ‘right’ respectively. The rate of drift (black arrow) is determined by heading direction. The time at which a bound is hit 
corresponds to the decision time. 10 particle traces are shown for the same drift rate, corresponding to one incorrect and nine correct decisions.  
(B) Despite time-varying cue sensitivity, optimal temporal integration of evidence in DMs is preserved by weighting the evidence by the momentary 
measure of its sensitivity. The DM representing the combined condition is formed by an optimal sensitivity-weighted combination of the DMs of the 
unimodal conditions.
DOI: 10.7554/eLife.03005.009
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So far we have assumed that the reliability of each cue is time-invariant. However, as the motion 
velocity changes over time, so does the amount of information about h provided by each cue, and with 
it the subject's sensitivity to changes in h. For the vestibular and visual conditions, motion acceleration 
a(t) and motion velocity v(t), respectively, are assumed to be the physical quantities that modulate cue 
sensitivity (‘Materials and methods’ and ‘Discussion’). To account for these dynamics, the DMs are 
modified to ɺ = ( ) sin( )+ ( )

vest vest vest
x a t k h tη  and ɺ = ( ) ( ) sin( )+ ( )

vis vis vis
x v t k c h tη . Note that once the drift rate 

in a DM changes with time, it generally loses its property of integrating evidence optimally over time. 
For example, at the beginning of each trial when motion velocity is low, ɺ

vis
x  is dominated by noise and 

integrating ɺ
vis

x  is fruitless. Fortunately, weighting the momentary visual evidence, ɺ
vis

x , by the velocity 
profile recovers optimality of the DM (‘Materials and methods’). This temporal weighting causes the 
visual evidence to contribute more at high velocities, while the noise is downweighted at low veloci-
ties. Similarly, vestibular evidence is weighted by the time course of acceleration. The new, weighted 
particle trajectories are described by the DMs ɺ ɺ= ( )

vis vis
X v t x  and ɺ ɺ= ( )

vest vest
X a t x . The two unimodal DMs 

are combined as before, resulting in the combined DM given by ɺ ɺ= ( )
comb comb

X d t x , where the sensitivity 
profile d(t) is a weighted combination of the unimodal sensitivity profiles,

2 2

2 2

2 2

( )
( ) + ( )

( ) ( )
( ) = .vis vest

comb comb

c k
v t a

c k c
d t t

k

k 	 (3)

(Figure 4B; see Supplementary file 1 for derivation). These modifications to the standard DM are 
sufficient to integrate evidence optimally across time and sensory modalities, even as the sensitivity to 
the evidence changes over time.

The model assumes that subjects know their cue sensitivities, kvis(c) and kvest, as well as the tem-
poral sensitivity profiles, a(t) and v(t), of each stimulus. In this respect, our model provides an upper 
bound on performance, since subjects may not have perfect knowledge of these variables, espe-
cially since stimulus modalities and visual motion coherence values are randomized across trials 
(‘Discussion’).

Quantitative assessment of cue combination performance
We tested whether subjects combined evidence optimally across both time and cues by evaluating 
how well the model outlined above could explain the observed behavior. The bounds, θ, of the mod-
ified DM, and the sensitivity parameters (kvis, kvest and kcomb), were allowed to vary between the visual, 
vestibular, and combined conditions. Varying the bound was essential to capture the deviation of the 
discrimination threshold in the combined condition from that predicted by traditional cue combination 
models (Figure 2). Indeed, this discrimination threshold is inversely proportional to bound and sensi-
tivity (see Supplementary file 1). Since the sensitivity in the bimodal condition is not a free parameter 
(it is determined by Equation 2), the height of the bound is the only parameter that could modulate 
the discrimination thresholds.

The noise terms ηvis and ηvest play crucial roles in the model, as they relate to the reliability of the 
momentary sensory evidence. To specify the manner in which such noise may depend on motion 
coherence, we relied on fundamental assumptions about how optic flow stimuli are represented by the 
brain. We assumed that heading is represented by a neural population code in which neurons have 
heading tuning curves that, within the range of heading tested in this experiment (±16°, Figure 5A), 
differ in their heading preferences but have similar shapes. This is broadly consistent with data from 
area MSTd (Fetsch et al., 2011), but the exact location of such a code is not important for our argu-
ment. For low coherence, motion energy in the stimulus is almost uniform for all heading directions, 
such that all neurons in the population fire at approximately the same rate (Figure 5A, dark blue 
curve). For high coherence, population neural activity is strongly peaked around the actual heading 
direction (Figure 5A, cyan curve) (Morgan et al., 2008; Fetsch et al., 2011).

Based on this representation, and assuming that the response variability of the neurons belongs to 
the exponential family with linear sufficient statistics (Ma et al., 2006) (an assumption consistent with 
in vivo data [Graf et al., 2011]), heading discrimination can be performed optimally by a weighted sum 
of the activity of all neurons, with weights monotonically related to the preferred heading of each 
neuron. For a straight forward heading, h = 0, this sum should be 0, and for h > 0 (or h < 0) it should 
be positive (or negative), thus sharing the basic properties of the momentary evidence, ɺx, in our DM. 
This allowed us to deduce the mean and variance of the momentary evidence driving ɺx, based on what 

http://dx.doi.org/10.7554/eLife.03005
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A

B C

Figure 5. Scaling of momentary evidence statistics of 
the diffusion model (DM) with coherence. (A) Assumed 
neural population activity giving rise to the DM mean 
and variance of the momentary evidence, and their 
dependence on coherence. Each curve represents the 
activity of a population of neurons with a range of 
heading preferences, in response to optic flow with a 
particular coherence and a heading indicated by the 
dashed vertical line. (B) Expected pattern of reaction 
times if variance is independent of coherence. If neither 
the DM bound nor the DM variance depend on 
coherence, the DM predicts the same decision time for 
all small headings, regardless of coherence. This is due 
to the DM drift rate, kvis(c)sin(h) being close to 0 for 
small headings, h≈0, independent of the DM sensitivity 
kvis(c). (C) Expected pattern of reaction times when 
variance scales with coherence. If both DM sensitivity 
and DM variance scale with coherence while the bound 
remains constant, the DM predicts different decision 
times across coherences, even for small headings. 
Greater coherence causes an increase in variance, 
which in turn causes the bound to be reached more 
quickly for higher coherences, even if the heading, and 
thus the drift rate, is small.
DOI: 10.7554/eLife.03005.010

we know about the neural responses. First, the 
sensitivity, kvis(c), which determines how optic 
flow modulates the mean drift rate of ɺx , scales 
in proportion with the ‘peakedness’ of the neural 
activity, which in turn is proportional to coher-
ence. We assumed a functional form of kvis(c) 
given by vis

vis
a c

γ , where avis and γvis are positive 
parameters. Second, the variance of ɺx is assumed 
to be the sum of the variances of the neural 
responses. Since experimental data suggest that 
the variance of these responses is proportional to 
their firing rate (Tolhurst et al., 1983), the sum of 
the variances is proportional to the area under-
neath the population activity profile (Figure 5A). 
Based on the experimental data of Britten et al. 
(Heuer and Britten, 2007), this area was assumed 
to scale roughly linearly with coherence, such that 
the variance of ɺx is proportional to 1+ vis

vis
b c

γ  with 
free parameters bvis and γvis, the latter of which 
captures possible deviations from linearity. We 
further assumed the DM bound to be inde-
pendent of coherence, and given by θσ,vis. Thus, 
the effect of motion coherence on the momen-
tary evidence in the DM was modeled by four 
parameters: avis, γvis, bvis, and θσ,vis.

The above scaling of the diffusion variance by 
coherence, which is a consequence of the neural 
code for heading, makes an interesting predic-
tion: reaction times for headings near straight 
ahead should be inversely proportional to coher-
ence in the visual condition, even though the 
mean drift rate, kvis(c)sin(h), is very close to 0. This 
is indeed what we observed: subjects tended  
to decide faster for higher coherences even when 
h ≈ 0 (Figure 3, Figure 3—figure supplement 1). 
This aspect of the data can only be captured by 
the model if the DM variance is allowed to change 
with coherence (Figure 5B,C).

To summarize, in the combined condition, the 
diffusion variance was assumed to be propor-
tional to 1+ comb

comb
b c

γ , while the bound was fixed 
at θσ,comb. By contrast, the diffusion rate (sensi-
tivity) cannot be modeled freely but rather needs 
to obey 2 2

( ) = ( )+
comb vis vest

k c k c k  in order to ensure 
optimal cue combination. The sensitivity kvest and 

bound θσ,vest in the vestibular condition do not depend on motion coherence and were thus model 
parameters that were fitted directly.

Observed reaction times were assumed to be composed of the decision time and some non-
decision time. The decision time is the time from the start of integrating evidence until a decision is 
made, as predicted by the diffusion model. The non-decision time includes the motor latency and the 
time from stimulus onset to the start of integrating evidence. As the latter can vary between different 
modalities, we allowed it to differ between visual, vestibular, and combined conditions, but not for 
different coherences, thus introducing the model parameters tnd,vis, tnd,vest, and tnd,comb. Although the 
fitted non-decision times were similar across stimulus conditions for most subjects (Figure 3—figure 
supplement 2), a model assuming a single non-decision time resulted in a small but significant 
decrease in fit quality (Figure 7—figure supplement 2A). Overall, 12 parameters were used to model 
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cue sensitivities, bounds, variances, and non-decision times in all conditions, and these 12 parameters 
were used to fit 312 data points for subjects that were tested with 6 coherences (168 data points for 
the three-coherence version). An additional 14 parameters (8 parameters for the three-coherence 
version; one bias parameter per coherence/condition, one lapse parameter across all condition) 
controlled for biases in the motion direction percept and for lapses of attention that were assumed to 
lead to random choices (‘Materials and methods’). Although these additional parameters were neces-
sary to achieve good model fits (Figure 7—figure supplement 2A), it is critical to note that they could 
not account for differences in heading thresholds or reaction times across stimulus conditions. As such, 
the additional parameters play no role in determining whether subjects perform optimal multisensory 
integration. Alternative parameterizations of how drift rates and bounds depend on motion coherence 
yielded qualitatively similar results, but caused the model fits to worsen decisively (Supplementary 
file 1; Figure 7—figure supplement 2A).

Critically, our model predicts that the unimodal sensitivities kvis(c) and kvest relate to the combined 

value by 2 2
( ) = ( ) +

predicted
comb vis vestk c k c k , if subjects accumulate evidence optimally across cues. To test this 

prediction, we fitted separately the unimodal and combined sensitivities, kvis(c), kvest and kcomb to the 
complete data set from each individual subject using maximum likelihood optimization (‘Materials and 
methods’), and then compared the fitted values of kcomb to the predicted values, ( )predicted

combk c . Predicted 
and observed sensitivities for the combined condition are virtually identical (Figure 6), providing 
strong support for near-optimal cue combination across both time and cues. Remarkably, for low 
coherences at which optic flow provides no useful heading information, the sensitivity in the combined 
condition was not significantly different from that of the vestibular condition (Figure 6). Thus, subjects 
were able to completely suppress noisy visual information and rely solely on vestibular input, as 
predicted by the model.

Having established that cue sensitivities combine according to Equation 2, the model was then fit 
to data from each individual subject under the assumption of optimal cue combination. Model fits 

are shown as solid curves for example subject D2 
(Figure 3), as well as for all other subjects (Figure 
3—figure supplement 1). Sensitivity parameters, 
bounds, and non-decision times resulting from 
the fits are also shown for each subject, condition, 
and coherence (Figure 3—figure supplement 2). 
For 8 of 10 datasets, the model explains more 
than 95% of the variance in the data (adjusted 
R2 > 0.95), providing additional evidence for near-
optimal cue combination across both time and 
cues (Figure 7A). The subjects associated with 
these datasets show a clear decrease in reaction 
times with larger |h|, and this effect is more pro
nounced in the visual condition than in the vestib-
ular and combined conditions (Figure 3, Figure 
3—figure supplement 1). The remaining two sub
jects (C and F) feature qualitatively different beha-
vior and lower R2 values of approximately 0.80 
and 0.90, respectively (Figure 3—figure supple-
ment 1). These subjects showed little decline in 
reaction times with larger values of |h|, and their 
mean reaction times were more similar across the 
visual, vestibular and combined conditions.

Critically, the model nicely captures the obser-
vation that the psychophysical threshold in the 
combined condition is typically greater than that 
for the visual condition, despite near-optimal 
combination of momentary evidence from the 
visual and vestibular modalities (e.g., Figure 3, 
70% coherence, Figure 2—figure supplement 1, 

Figure 6. Predicted and observed sensitivity in the 
combined condition. The sensitivity parameter measures 
how sensitive subjects are to a change of heading. The 
solid red line shows predicted sensitivity for the 
combined condition, as computed from the sensitivities 
of the unimodal conditions (dashed lines). The combined 
sensitivity measured by fitting the model to each 
coherence separately (red squares) does not differ 
significantly from the optimal prediction, providing 
strong support to the hypothesis that subjects 
accumulate evidence near-optimally across time and 
cues. Data are averaged across datasets (except 0%, 
12%, 51% coherence: only datasets B2, D2, F2), with 
shaded areas and error bars showing the 95% CIs.
DOI: 10.7554/eLife.03005.011
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A

B

Figure 7. Model goodness-of-fit and comparison to 
alternative models. (A) Coefficient of determination 
(adjusted R2) of the model fit for each of the ten datasets. 
(B) Bayes factor of alternative models compared to  
the optimal model. The abscissa shows the base-10 
logarithm of the Bayes factor of the alterative models  
vs the optimal model (negative values mean that the 
optimal model out-performs the alternative model). 
The gray vertical line close to the origin (at a value  
of −2 on the abscissa) marks the point at which the 
optimal model is 100 times more likely than each 
alternative, at which point the difference is considered 
‘decisive’ (Jeffreys, 1998). Only the ‘separate k's‘ 
model has more parameters than the optimal model, 
but the Bayes factor indicates that the slight increase in 
goodness-of-fit does not justify the increased degrees 
of freedom. The ‘no cue weighting’ model assumes 
that visual and vestibular cues are weighted equally, 
independent of their sensitivities. The ‘weighting by 
acceleration’ and ‘weighting by velocity’ models assume 
that the momentary evidence of both cues is weighted 
by the acceleration and velocity profile of the stimulus, 
respectively. The ‘no temporal weighting’ model assumes 
that the evidence is not weighted over time according 
to its sensitivity. The ‘no cue/temporal weighting’ 
model lacks both weighting of cues by sensitivity and 
weighting by temporal profile. All of the tested 
alternative models explain the data decisively worse than 
the optimal model. Figure 7—figure supplement 1 
shows how individual subjects contribute to this model 
comparison, and the results of a more conservative 
Bayesian random-effects model comparison that supports 
same conclusion. Figure 7—figure supplement 2 
Figure 7. Continued on next page

Figure 3—figure supplement 1). Thus, the model 
fits confirm quantitatively that apparent sub-
optimality in psychophysical thresholds can arise 
even if subjects combine all cues in a statisti-
cally optimal manner, emphasizing the need for 
a computational framework that incorporates 
both decision accuracy and speed.

Alternative models
To further assess and validate the critical design 
features of our modified DM, we evaluated six 
alternative (mostly sub-optimal) versions of the 
model to see if these variants are able to explain 
the data equally well. We compared these vari
ants to the optimal model using Bayesian model 
comparison, which trades off fit quality with 
model complexity to determine whether addi-
tional parameters significantly improve the fit 
(Goodman, 1999).

With regard to optimality of cue integration 
across modalities, we examined two model 
variants. The first variant (also used to gen-
erate Figure 6) eliminates the relationship, 

2 2
( ) = ( )+

comb vis vest
k c k c k  (Equation 2), between 

the sensitivity parameters in the combined and 
single-cue conditions. Instead, this variant allows 
independent sensitivity parameters for the com
bined condition at each coherence, thus intro
ducing one additional parameter per coherence. 
Since this variant is strictly more general than the 
optimal model, it must fit the data at least as well. 
However, if the subjects' behavior is near optimal, 
the additional degrees of freedom in this var
iant should not improve the fit enough to justify 
the addition of these parameters. This is indeed 
what we found by Bayesian model comparison 
(Figure 7B, ‘separate k's’), which shows the opti
mal model to be ∼1070 times more likely than the 
variant with independent values of kcomb(c). This is 
well above the threshold value that is considered 
to provide ‘decisive’ evidence in favor of the opti
mal model (we use Fisher's definition of decisive 
[Jeffreys, 1998] according to which a model is 
said to be decisively better if it is >100 times 
more likely to have generated the data). The sec
ond model variant had the same number of param
eters as the optimal model, but assumed that the 
cues are always weighted equally. Evidence in the 
combined condition was given by the simple 

average, ( )ɺ ɺ ɺ1

2
= +

comb vis vest
X X X , ignoring cue sen

sitivities. The resulting fits (Figure 7B, ‘no cue 
weighting’) are also decisively worse than those 
of the optimal model. Together, these model 
variants strongly support the hypothesis that 
subjects weight cues according to their relative 
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sensitivities, as given by Equation 2. These effects 
were largely consistent across individual subjects 
(Figure 7—figure supplement 1A).

To test the other key assumption of our model—
that subjects temporally weight incoming evidence 
according to the profile of stimulus information—
we tested three model variants that modified 
how temporal weighting was performed without 
changing the number of parameters in the model. 
If we assumed that the temporal weighting of 
both modalities followed the acceleration profile 
of the stimulus while leaving the model 
otherwise unchanged, the model fit worsened 

decisively (Figure 7B, ‘weighting by acceleration’). Assuming that the weighting of both modalities 
followed the velocity profile of the stimulus also decisively reduced fit quality (Figure 7B, ‘weighting 
by velocity’), although this effect was not consistent across subjects (Figure 7—figure supplement 1A). 
If we completely removed temporal weighting of cues from the model, fits were dramatically worse 
than the optimal model (Figure 7B, ‘no temporal weighting’). Finally, for completeness, we also tested 
a model variant that neither performs temporal weighting of cues nor considers the relative sensitivity 
to the cues. Again, this model variant fit the data decisively worse than the optimal model (Figure 7B, 
‘no cue/temporal weighting’). Thus, subjects seem to be able to take into account their sensitivity to 
the evidence across time as well as across cues. All of these model comparisons received further sup-
port from a more conservative random-effects Bayesian model comparison, shown in Figure 7—figure 
supplement 1B,C.

Finally, we also considered if a parallel race model could account for our data. The parallel race 
model (Raab, 1962; Miller, 1982; Townsend and Wenger, 2004; Otto and Mamassian, 2012) postu-
lates that the decision in the combined condition emerges from the faster of two independent races 
toward a bound, one for each sensory modality. Because it does not combine information across 
modalities, the parallel race model predicts that decisions in the combined condition are caused by 
the faster modality. Consequently, choices in the combined condition are unlikely to be more correct 
(on average) than those of the faster unimodal condition. For all but one subject, the vestibular mo-
dality is substantially faster, even when compared to the visual modality at high coherence and control-
ling for the effect of heading direction (2-way ANOVA, p<0.0001 for all subjects except C). Critically, 
all of these subjects feature significantly lower psychophysical thresholds in the combined condition 
than in the vestibular condition (p<0.039 for all subjects except subject C, p=0.210, Supplementary 
file 2A). Furthermore, we performed standard tests (Miller's bound and Grice's bound) that compare 
the observed distribution of reaction times with that predicted by the parallel race model (Miller, 
1982; Grice et al., 1984). These tests revealed that all but two subjects made significantly slower deci-
sions than predicted by the parallel race model for most coherence/heading combinations (p<0.05 for 
all subjects except subjects F and B2; Supplementary file 2B), and no subject was faster than pre-
dicted (p>0.05, all subjects; Supplementary file 2B). Based on these observations, we can reject the 
parallel race model as a viable hypothesis to explain the observed behavior.

Discussion
We have shown that, when subjects are allowed to choose how long to accumulate evidence in a cue 
integration task, their behavior no longer follows the standard predictions of optimal cue integration 
theory that normally apply when stimulus presentation time is controlled by the experimenter. 
Particularly, they feature worse discrimination performance (higher psychophysical thresholds) in the 
combined condition than would be predicted from the unimodal conditions—in some cases even 
worse than the better of the two unimodal conditions. This occurs because subjects tend to decide 
more quickly in the combined condition than in the more sensitive unimodal condition and thus have 
less time to accumulate evidence. This indicates that a more general definition of optimal cue integra-
tion must incorporate reaction times. Indeed, subjects' behavior could be reproduced by an extended 
diffusion model that takes into account both speed and accuracy, thus suggesting that subjects accu-
mulate evidence across both time and cues in a statistically near-optimal manner (i.e., with minimal 
information loss) despite their reduced discrimination performance in the combined condition.

compares the proposed model to ones with alternative 
parameterizations.
DOI: 10.7554/eLife.03005.012
The following figure supplements are available for 
figure 7:

Figure supplement 1. Model comparison per subject, 
and random-effects model comparison. 
DOI: 10.7554/eLife.03005.013

Figure supplement 2. Model comparison for models 
with alternative parameterization. 
DOI: 10.7554/eLife.03005.014
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Previous work on optimal cue integration (e.g., Ernst and Banks, 2002; Battaglia et al., 2003; 
Knill and Saunders, 2003; Fetsch et al., 2009) was based on experiments that employed fixed-
duration stimuli and was thus able to ignore how subjects accumulate evidence over time. Moreover, 
previous work relied on the implicit assumption that subjects make use of all evidence throughout the 
duration of the stimulus. However, this assumption need not be true and has been shown to be vio-
lated even for short presentation durations (Mazurek et al., 2003; Kiani et al., 2008). Therefore, 
apparent sub-optimality in some previous studies of cue integration or in some individual subjects 
(Battaglia et al., 2003; Fetsch et al., 2009) might be attributable to either truly sub-optimal cue 
combination, to subjects halting evidence accumulation before the end of the stimulus presentation 
period, or to the difficulty in estimating stimulus processing time (Stanford et al., 2010). Unfortunately, 
these potential causes cannot be distinguished using a fixed-duration task. Allowing subjects to regis-
ter their decisions at any time during the trial alleviates this potential confound.

We model subjects' decision times by assuming an accumulation-to-bound process. In the multisen-
sory context, this raises the question of whether evidence accumulation is bounded for each modality 
separately, as assumed by the parallel race model, or whether evidence is combined across modalities 
before being accumulated toward a single bound, as in co-activation models and our modified diffu-
sion model. Based on our behavioral data, we can rule out parallel race models, as they cannot explain 
lower psychophysical thresholds (better sensitivity) in the combined condition relative to the faster 
vestibular condition. Further evidence against such models is provided by neurophysiological studies 
which demonstrate that visual and vestibular cues to heading converge in various cortical areas, 
including areas MSTd (Gu et al., 2006), VIP (Schlack et al., 2005; Chen et al., 2011b), and VPS (Chen 
et al., 2011a). Activity in area MSTd can account for sensitivity-based cue weighting in a fixed-duration 
task (Fetsch et al., 2011), and MSTd activity is causally related to multi-modal heading judgments 
(Britten and van Wezel, 1998, 2002; Gu et al., 2012). These physiological studies strongly suggest 
that visual and vestibular signals are integrated in sensory representations prior to decision-making, 
inconsistent with parallel race models.

Our model makes the assumption that sensory signals are integrated prior to decision-making and 
is in this sense similar to co-activation models that have been used previously to model reaction times 
in multimodal settings (Miller, 1982; Corneil et al., 2002; Townsend and Wenger, 2004). However, it 
differs from these models in important aspects. First, co-activation models have been introduced to 
explain reaction times that are faster than those predicted by parallel race models (Raab, 1962; Miller, 
1982). Our subjects, in contrast, feature reaction times that are slower than those of parallel race mod-
els in almost all conditions (Supplementary file 2B). We capture this effect by an elevated effective 
bound in the combined condition as compared to the faster vestibular condition, such that cue com-
bination remains optimal despite longer reaction times. Second, co-activation models usually combine 
inputs from the different modalities by a simple sum (e.g., Townsend and Wenger, 2004). This entails 
adding noise to the combined signal if the sensitivity to one of the modalities is low, which is detrimen-
tal to discrimination performance. In contrast, we show that different cues need to be weighted 
according to their sensitivities to achieve statistically optimally integration of multisensory evidence 
at each moment in time (Equation 2).

Another alternative to co-activation models are serial race models, which posit that the race corre-
sponding to one cue needs to be completed before the other one starts (e.g., Townsend and Wenger, 
2004). These models can be ruled out by observing that they predict reaction times in the combined 
condition to be longer than those in the slower of the two unimodal conditions. This is clearly violated 
by the subjects' behavior.

Optimal accumulation of evidence over time requires the momentary evidence to be weighted 
according to its associated sensitivity. For the vestibular modality, we assume that the temporal profile 
of sensitivity to the evidence follows acceleration. This may appear to conflict with data from multi-
modal areas MSTd, VIP, and VPS, where neural activity in response to self-motion reflects a mixture of 
velocity and acceleration components (Fetsch et al., 2010; Chen et al., 2011a). Note, however, that 
the vestibular stimulus is initially encoded by otolith afferents in terms of acceleration (Fernandez and 
Goldberg, 1976). Thus, any neural representation of vestibular stimuli in terms of velocity requires a 
temporal integration of the acceleration signal, and this integration introduces temporal correlations 
into the signal. As a consequence, a neural response that is maximal at the time of peak stimulus 
velocity does not imply a simultaneous peak in the information coded about heading direction. Rather, 
information still follows the time course of its original encoding, which is in terms of acceleration. 
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In contrast, the time course of the sensitivity to the visual stimulus is less clear. For our model we have 
intuitively assumed it to follow the velocity profile of the stimulus, as information per unit time about 
heading certainly increases with the velocity of the optic flow field, even when there is no acceleration. 
This assumption is supported by a decisively worse model fit if we set the weighting of the visual 
momentary evidence to follow the acceleration profile (Figure 7B, ‘weighted by acceleration’). 
Nonetheless, we cannot completely exclude any contribution of acceleration components to visual 
information (Lisberger and Movshon, 1999; Price et al., 2005). In any case, our model fits make clear 
that temporal weighting of vestibular and visual inputs is necessary to predict behavior when stimuli 
are time-varying.

The extended DM model described here makes the strong assumption that cue sensitivities are 
known before combining information from the two modalities, as these sensitivities need to be 
known in order to weight the cues appropriately. As only the sensitivity to the visual stimulus changes 
across trials in our experiment, it is possible that subjects can estimate their sensitivity (as influenced 
by coherence) during the initial low-velocity stimulus period (Figure 1C) in which heading information 
is minimal but motion coherence is salient. Thus, for our task, it is reasonable to assume that subjects 
can estimate their sensitivity to cues. We have recently begun to consider how sensitivity estimation 
and cue integration can be implemented neurally. The neural model (Onken et al., 2012. Near optimal 
multisensory integration with nonlinear probabilistic population codes using divisive normalization. 
The Society for Neuroscience annual meeting 2012) estimates the sensitivity to the visual input from 
motion sensitive neurons and uses this estimate to perform near-optimal multisensory integration with 
generalized probabilistic population codes (Ma et al., 2006; Beck et al., 2008) using divisive normal-
ization. We intend to extend this model to the integration of evidence over time to predict neural 
responses (e.g., in area LIP) that should roughly track the temporal evolution of the decision variable 
(xcomb(t), ‘Materials and methods’) in the DM model. This will make predictions for activity in deci-
sion-making areas that can be tested in future experiments.

In closing, our findings establish that conventional definitions of optimality do not apply to cue 
integration tasks in which subjects’ decision times are unconstrained. We establish how sensory evi-
dence should be weighted across modalities and time to achieve optimal performance in reaction-
time tasks, and we show that human behavior is broadly consistent with these predictions but not with 
alternative models. These findings, and the extended diffusion model that we have developed, pro-
vide the foundation for building a general understanding of perceptual decision-making under more 
natural conditions in which multiple cues vary dynamically over time and subjects make rapid deci-
sions when they have acquired sufficient evidence.

Materials and methods
Subjects and apparatus
Seven subjects (3 males) aged 23–38 years with normal or corrected-to-normal vision and no history of 
vestibular deficits participated in the experiments. All subjects but one were informed of the purposes 
of the study. Informed consent was obtained from all participants and all procedures were reviewed 
and approved by the Washington University Office of Human Research Protections (OHRP), Institutional 
Review Board (IRB; IRB ID# 201109183). Consent to publish was not obtained in writing, as it was not 
required by the IRB, but all subjects were recruited for this purpose and approved verbally. Of these 
subjects, three (subjects B, D, F; 1 male) participated in a follow-up experiment roughly 2 years after 
the initial data collection, with six coherence levels instead of the original three. The six-coherence 
version of their data is referred to as B2, D2, and F2. Procedures for the follow-up experiment were 
approved by the Institutional Review Board for Human Subject Research for Baylor College of Medicine 
and Affiliated Hospitals (BCM IRB, ID# H-29411) and informed consent and consent to publish was 
given again by all three subjects.

The apparatus, stimuli, and task design have been described in detail previously (Fetsch et al., 
2009; Gu et al., 2010), and are briefly summarized here. Subjects were seated comfortably in a 
padded racing seat that was firmly attached to a 6-degree-of-freedom motion platform (MOOG, Inc). 
A 3-chip DLP projector (Galaxy 6; Barco, Kortrijk, Belgium) was mounted on the motion platform 
behind the subject and front-projected images onto a large (149 × 127 cm) projection screen via a 
mirror mounted above the subject’s head. The viewing distance to the projection screen was ∼70 cm, 
thus allowing for a field of view of ∼94° × 84°. Subjects were secured to the seat using a 5-point racing 
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harness, and a custom-fitted plastic mask immobilized the head against a cushioned head mount. 
Seated subjects were enclosed in a black aluminum superstructure, such that only the display screen 
was visible in the darkened room. To render stimuli stereoscopically, subjects wore active stereo 
shutter glasses (CrystalEyes 3; RealD, Beverly Hills, CA) which restricted the field of view to ∼90° × 70°. 
Subjects were instructed to look at a centrally-located, head-fixed target throughout each trial. 
Sounds from the motion platform were masked by playing white noise through headphones. Behavioral 
task sequences and data acquisition were controlled by Matlab and responses were collected using 
a button box.

Visual stimuli were generated by an OpenGL accelerator board (nVidia Quadro FX1400), and 
were plotted with sub-pixel accuracy using hardware anti-aliasing. In the visual and combined condi-
tions, visual stimuli depicted self-translation through a 3D cloud of stars distributed uniformly within 
a virtual space 130 cm wide, 150 cm tall, and 75 cm deep. Star density was 0.01/cm3, with each star 
being a 0.5 cm × 0.5 cm triangle. Motion coherence was manipulated by randomizing the three- 
dimensional location of a percentage of stars on each display update while the remaining stars 
moved according to the specified heading. The probability of a single star following the trajectory 
associated with a particular heading for N video updates is therefore (c/100)N, where c denotes mo-
tion coherence (ranging from 0–100%). At the largest coherence used here (70%), there is only a 3% 
probability that a particular star would follow the same trajectory for 10 display updates (0.17 s). 
Thus, it was practically not possible for subjects to track the trajectories of individual stars. This ma-
nipulation degraded optic flow as a heading cue and was used to manipulate visual cue reliability in 
the visual and combined conditions. ‘Zero’ coherence stimuli had c set to 0.1, which was practically 
indistinguishable from c = 0, but allowed us to maintain a precise definition of the correctness of the 
subject's choice.

Behavioral task
In all stimulus conditions, the task was a single-interval, two-alternative forced choice (2AFC) heading 
discrimination task. In each trial, human subjects were presented with a translational motion stimulus 
in the horizontal plane (Gaussian velocity profile; peak velocity, 0.403 m/s; peak acceleration, 0.822 m/s2; 
total displacement, 0.3 m; maximum duration, 2 s). Heading was varied in small steps around straight 
ahead (±0.686°, ±1.96°, ±5.6°, ±16°) and subjects were instructed to report (by a button press) their 
perceived heading (leftward or rightward relative to an internal standard of straight ahead) as quickly 
and accurately as possible. In the visual and combined conditions, cue reliability was varied across 
trials by randomly choosing the motion coherence of the visual stimulus from among either a group of 
three values (25%, 37%, and 70%, subjects A–G) or a group of six values (0%, 12%, 25%, 37%, 51%, 
and 70%, subjects B2, D2, F2). A coherence of 25% means that 25% of the dots move in a direction 
consistent with the subject's heading, whereas the remaining 75% of the dots are relocated randomly 
within the dot cloud. In the combined condition, visual and vestibular stimuli always specified the same 
heading (there was no cue conflict).

During the main phase of data collection, subjects were not informed about the correctness of their 
choices (no feedback). In the vestibular and combined conditions, platform motion was halted smoothly 
but rapidly immediately following registration of the decision, and the platform then returned to its 
original starting point. In the visual condition, the optic flow stimulus disappeared from the screen 
when a decision was made. In all conditions, 2.5 s after the decision, a sound informed the subjects 
that they could initiate the next trial by pushing a third button. Once a trial was initiated, the stimulus 
onset occurred following a randomized delay period (truncated exponential; mean, 987 ms). Prior to 
data collection, subjects were introduced to the task for 1–2 week ‘training’ sessions, in which they 
were informed about the correctness of their choices by either a low-frequency (incorrect) or a high-
frequency (correct) sound. The training period was terminated once their behavior stabilized across 
consecutive training sessions. During training, subjects were able to adjust their speed-accuracy trade-
off based on feedback. During subsequent data collection, we did not observe any clear changes in 
the speed-accuracy trade-off exhibited by subjects.

Data analysis
Analyses and statistical tests were performed using MATLAB R2013a (The Mathworks, MA, USA).

For each subject, discrimination thresholds were determined separately for each combination of 
stimulus modality (visual-only, vestibular-only, combined) and coherence (25%, 37%, and 70% for 
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subjects A–G; 0%, 12%, 25%, 37%, 51%, and 70% for subjects B2, D2, F2) by plotting the proportion 
of rightward choices as a function of heading direction (Figure 2A). The psychophysical discrimination 
threshold was taken as the standard deviation of a cumulative Gaussian function, fitted by maximum 
likelihood methods. We assumed a common lapse rate (proportion of random choices) across all stim-
ulus conditions, but allowed for a separate bias parameter (horizontal shift of the psychometric func-
tion) for each modality/coherence. Confidence intervals for threshold estimates were obtained by 
taking 5000 parametric bootstrap samples (Wichmann and Hill, 2001). These samples also form the 
basis for statistical comparisons of discrimination thresholds: two thresholds were compared by com-
puting the difference between their associated samples, leading to 5000 threshold difference samples. 
Subsequently, we determined the fraction of differences that were below or above zero, depending 
on the directionality of interest. This fraction determined the raw significance level for accepting the 
null hypothesis (no difference). The reported significance levels are Bonferroni-corrected for multiple 
comparisons. All comparisons were one-tailed. Following traditional cue combination analyses (Clark 
and Yuille, 1990), the optimal threshold σpred,c in the combined condition for coherence c was predicted 
from the visual threshold σvis,c and the vestibular threshold σvest by 2 2 2 2 2

, , ,= /( + )pred c vis c vest vis c vestσ σ σ σ σ . 
Confidence intervals and statistical tests were again based on applying this formula to individual 
bootstrap samples of the unimodal threshold estimates. Supplementary file 2A reports the p-values 
for all subjects and all comparisons.

For each dataset, we evaluated the absolute goodness-of-fit of the optimal model (Figure 7A) by 
finding the set of model parameters φ that maximized the likelihood of the observed choices and reac-
tion times, and then computing the average coefficient of determination, ( )2 2 21

2
( ) ( )+ ( )psych chronR R R=φ φ φD . 

Here, 2 ( )psychR φ  and 2 ( )
chron

R φ  denote the adjusted R2 values for the psychometric and chronometric func-
tions, respectively, across all modalities/coherences. The value of R2psych for the psychometric function 
was based on the probability of making a correct choice across all heading angles, coherences, and 
conditions, weighted by the number of observations, and adjusted for the number of model parame-
ters. The same procedure, based on the mean reaction times, was used to find R2chron, but we addition-
ally distinguished between mean reaction times for correct and incorrect choices, and fitted both 
weighted by their corresponding number of observations (see SI for expressions for 2 ( )psychR φ  and 

2 ( )
chron

R φ ).
We compared different variants of the full model (Figure 7B) by Bayesian model comparison based 

on Bayes factors, which were computed as follows. First, we found for each model M and subject s 
the set of parameters φ that maximized the likelihood, ( )*

, = arg max data of subj | ,
s

p sM Mφφ φ . 
Second, we approximated the Bayesian model evidence, measuring the model posterior probability 
while marginalizing over the parameters, up to a constant by the Bayesian information criterion, 

( ) ( )1
2

ln | BIC ,p s s≈ −M M  with ( ) ( )*
,BIC , = –2ln | , + ln sss M p s k NM MMφ . Here, kM is the number of 

parameters of model M, and Ns is the number of trials for dataset s, respectively. Based on this, we 
computed the Bayes factor of model M vs the optimal model Mopt by pooling the model evidence 
over datasets, resulting in ( ) ( )( )ln | – ln .|

pts o
p s p s∑ M M  These values, converted to a base-10 loga-

rithm, are shown in Figure 7B. In this case, a negative log10-difference of 2 implies that the optimal 
model is 100 times more likely given the data than the alternative model, a difference that is consid-
ered decisive in favor of the optimal model (Jeffreys, 1998).

To determine the faster stimulus modality for each subject, we compared reaction times for the 
vestibular condition with those for the visual condition at 70% coherence. We tested the difference in 
the logarithm of these reaction times by a 2-way ANOVA with stimulus modality and heading direction 
as the two factors, and we report the main effect of stimulus modality on reaction times. Although we 
performed a log-transform of the reaction times to ensure their normality, a Jarque–Bera test revealed 
that normality did not hold for some heading directions. Thus, we additionally performed a Friedman 
test on subsampled data (to have the same number of trials per modality/heading) which supported 
the ANOVA result at the same significance level. In the main text, we only report the main effect of 
stimulus modality on reaction time from the 2-way ANOVA. Detailed results of the 2-way ANOVA, the 
Jarque–Bera test, and the Friedman test are reported for each subject in Supplementary file 2C.

The extended diffusion model
Here we outline the critical extensions to the diffusion model. Detailed derivations and properties of 
the model are described in the Supplementary file 1.
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Discretizing time into small steps of size Δ allows us to describe the particle trajectory x(t) in a DM 
by a random walk, 

1:
( ) =

n
n t

x t xδ
∈∑ , where each of the steps δxn ∼ (ksin(h)Δ, Δ), called the momentary 

evidence, are normally distributed with mean ksin(h)Δ and variance Δ (1:t denotes the set of all steps up 
to time t). This representation is exact in the sense that it recovers the diffusion model, = sin( )+ ( )x k h tɺ η , in 
the limit of Δ→0.

For the standard diffusion model, the posterior probability of sin(h) after observing the stimulus for 
t seconds, and under the assumption of a uniform prior, is given by Bayes rule

( ) ( )1:
:

2
1

( ) 1
sin( ) | | ( ) N sin( ) , ,|n

n
t

t

x t
h x x sin h hp

k k
p

tt∈

 ∝   
∝ ∏δ δ � (4)

where δx1:t is the momentary evidence up to time t. From this we can derive the belief that heading is 
rightward, resulting in

( ) ( ) ( )1: 1: 1:

0

> 0 | sin( )
( )

= sin( ) > 0 | = d = ,|n t t

x t
x p h x xp h p h h

t

    

π
δ δ δ Φ∫ � (5)

where Φ(·) denotes the standard cumulative Gaussian function. This shows that both the posterior of 
the actual heading angle, as well as the belief about ‘rightward’ being the correct choice, only depend 
on x(t) rather than the whole trajectory δx1:t.

The above formulation assumes that evidence is constant over time, which is not the case for our 
stimuli. Considering the visual cue and assuming that its associated sensitivity varies with velocity v(t), 
the momentary evidence ( ), sin( ) ,( )

vis n n vis
x N v k c h~ Δ Δδ  is Gaussian with mean vnkvis(c)sin(h)Δ, where vn 

is the velocity at time step n, and variance Δ. Using Bayes rule again to find the posterior of sin(h), it is 
easy to shown that xvis(t) is no longer sufficient to determine the posterior distribution. Rather, we need 
to perform a velocity-weighted accumulation, ,1:

( ) =
vis n vis nn t

X t v xδ
∈∑  to replace xvis(t), and replace time 

t with 2

1:
( ) =

nn t
V t v Δ

∈∑ , resulting in the following expression for the posterior

( ) ( ),1: 2

1
sin( ) | = sin( ) | ( ), ( ) = N sin( ) | , .

( ) (

( )

( ( ) ))
vis

vis t vis

vis vis

X
p h p h X t V t h

k V t k V t

t
x

c c
δ

     
� (6)

Consequently, the belief about ‘rightward’ being correct can also be fully expressed by Xvis(t) and 
V(t). This shows that optimal accumulation of evidence with a single-particle diffusion model with time-
varying evidence sensitivity requires the momentary evidence to be weighted by its momentary sensi-
tivity. A similar formulation holds for the posterior over heading based on the vestibular cue, however 
the vestibular cue is assumed to be weighted by the temporal profile of stimulus acceleration, instead 
of velocity.

When combining multiple cues into a single DM, ( )= ( ) ( ) sin( )+ ( )
comb comb comb

X d t d t k h tɺ η , we aim to 
find expressions for kcomb and d(t) that keep the posterior over sin(h) unchanged, that is

( ) ( ),1: ,1: ,1:sin( ) | = sin( ) | , .comb t vis t vest th x p h xp xδ δ δ � (7)

δxcomb,1:t is the sequence of momentary evidence in the combined condition, following 

( ), N sin( ) ,( )
comb n n comb

x d k c h~ Δ Δδ . Expanding the probabilities reveals the equality to hold if the 

combined sensitivity is given by k2comb(c) = k2vis(c) + kvest2, and d(t) is expressed by Equation 3, 
leading to Equation 1 for optimally combining the momentary evidence (see Supplementary file 1 
for derivation).

Model fitting
The model used to fit the behavioral data is described in the main text. We never averaged data across 
subjects as they feature qualitatively different behavior, due to different speed-accuracy tradeoffs. 
Furthermore, for subjects performing both the three-coherence and the six-coherence version of the 
experiment, we treated either version as a separate data set. For each modality/coherence combina-
tion (7 combinations for 3 coherences, 13 combinations for 6 coherences) we fitted one bias parameter 
that prevents behavioral biases from influencing model fits. The fact that performance of subjects 
often fails to reach 100% correct even for the highest coherences and largest heading angles was 
modeled by a lapse rate, which describes the frequency with which the subject makes a random choice 
rather than one based on accumulated evidence. This lapse rate was assumed to be independent of 
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stimulus modality or coherence, and so a single lapse rate parameter is shared among all modality/
coherence combinations.

All model fits sought to find the model parameters φ that maximize the likelihood of the observed 
choices and reaction times for each dataset. As in Palmer et al. (2005), we have assumed the likeli-
hood of the choices to follow a binomial distribution, and the reaction times of correct and incorrect 
choices to follow different Gaussian distributions centered on the empirical means and spread ac-
cording to the standard error. Model predictions for choice fractions and reaction times for correct and 
incorrect choices were computed from the solution to integral equations describing first-passage 
times of bounded diffusion processes (Smith, 2000). See Supplementary file 1 for the exact form of 
the likelihood function that was used.

To avoid getting trapped in local maxima of this likelihood, we utilized a three-step maximization 
procedure. First, we found a (possibly local) maximum by pseudo-gradient ascent on the likelihood 
function. Starting from this maximum, we used a Markov Chain Monte Carlo procedure to draw 
44,000 samples from the parameter posterior under the assumption of a uniform, bounded prior. After 
this, we used the highest-likelihood sample, which is expected to be close to the mode of this posterior,  
as a starting point to find the posterior mode by pseudo-gradient ascent. The resulting parameter 
vector is taken as the maximum-likelihood estimate. All pseudo-gradient ascent maximizations were 
performed with the Optimization Toolbox of Matlab R2013a (Mathworks), using stringent stopping 
criteria (TolFun = TolX = 10−20) to prevent premature convergence.
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