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Neurosciences Fondamentales, Université de Genève, Geneva, Switzerland

Abstract For decisions made under time pressure, effective decision making based on uncertain

or ambiguous evidence requires efficient accumulation of evidence over time, as well as

appropriately balancing speed and accuracy, known as the speed/accuracy trade-off. For simple

unimodal stimuli, previous studies have shown that human subjects set their speed/accuracy

trade-off to maximize reward rate. We extend this analysis to situations in which information is

provided by multiple sensory modalities. Analyzing previously collected data (Drugowitsch et al.,

2014), we show that human subjects adjust their speed/accuracy trade-off to produce near-optimal

reward rates. This trade-off can change rapidly across trials according to the sensory modalities

involved, suggesting that it is represented by neural population codes rather than implemented by

slow neuronal mechanisms such as gradual changes in synaptic weights. Furthermore, we show that

deviations from the optimal speed/accuracy trade-off can be explained by assuming an incomplete

gradient-based learning of these trade-offs.

DOI: 10.7554/eLife.06678.001

Introduction
In the uncertain and ambiguous world we inhabit, effective decision making not only requires efficient

processing of sensory information, but also evaluating when enough information has been

accumulated to commit to a decision. One can make fast, but uninformed and thus inaccurate,

decisions or one can elect to make slower, but well-informed, choices. Choosing this so-called speed-

accuracy trade-off (SAT) becomes even more complex if several sensory modalities provide decision-

related information. For example, the strategy for crossing a busy street will be very different in bright

daylight, when one can rely on both eyes and ears to detect oncoming vehicles, as compared to

complete darkness, in which case the ears will prove to be the more reliable source of information.

The SAT has been extensively studied for perceptual decisions based on information provided by

a single sensory modality. For the most commonly studied visual modality, it has been shown that

animals accumulate evidence near-optimally over time (Kiani and Shadlen, 2009). In this context, the

efficiency of the chosen SAT is assessed in comparison to diffusion models, a family of models that

trigger decisions as soon as a drifting and diffusing particle reaches one of two bounds (Ratcliff,

1978). In these models, which describe the SAT surprisingly well despite their simplicity (Ratcliff,

1978; Palmer et al., 2005; Ratcliff and McKoon, 2008), the drift represents the available sensory

information, and the diffusion causes variability in decision times and choices. The level of the bound

controls the SAT, with a higher bound leading to slower, more accurate choices. Instructed changes to
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the SAT have been shown to be well captured by changes to only the bound in a diffusion model

(Reddi and Carpenter, 2000; Reddi et al., 2003; Palmer et al., 2005). Without being explicitly

instructed to make either fast or accurate decisions, well-trained human subjects are known to adjust

their SAT to maximize their reward rate (Simen et al., 2009; Balci et al., 2011), or a combination of

reward rate and choice accuracy (Bogacz et al., 2010). These SAT adjustments are also well captured

by tuning the corresponding diffusion model bounds. Thus, we can define the SAT directly in terms of

these bounds: a constant SAT refers to behavior predicted by diffusion models with constant bounds,

and a SAT that changes across trials requires a diffusion model with bounds that vary on the same

time-scale.

Here, we extend the analysis of how human decision-makers adjust their SAT to situations in which

they receive information from multiple sensory modalities. We have previously shown that, even in the

case of multiple modalities and time-varying evidence reliability, humans are able to accumulate

evidence across time and modalities in a statistically near-optimal fashion (Drugowitsch et al., 2014).

This analysis was based on a variant of diffusion models that retains optimal evidence accumulation

even for multiple sources of evidence whose reliability varies differentially over time. As we focused on

evidence accumulation in that study, we were agnostic as to how the SAT varied across stimulus

conditions; thus, we left the model bounds, which controlled the SAT, as free parameters that were

adjusted to best explain the subjects’ behavior.

In this follow-up study, we use the previously devised model to analyze whether and how effectively

human subjects adjust their SAT if they have evidence from multiple modalities at their disposal.

Specifically, we find that subjects adjust their SAT on a trial by trial basis, depending on whether the

stimuli are unisensory or multisensory. Moreover, the changes in SAT result in reward rates that are

close to those achievable by the best-tuned model, a finding that is robust to changes in assumptions

about how the reward rate is computed. Finally, we demonstrate that small deviations from the

optimal SAT seem to stem from an incomplete reward rate maximization process. Overall, our

findings hint at decision-making strategies that are more flexible than previously assumed, with SATs

that are efficiently changed on a trial-by-trial basis.

Results and discussion
Our analysis is based on previously reported behavioral data from human subjects performing

a reaction-time version of a heading discrimination task based on optic flow (visual condition), inertial

motion (vestibular condition), or a combination of both cues (combined condition) (Drugowitsch

et al., 2014). Reliability of the visual cue was varied randomly across trials by changing the motion

coherence of the optic flow. Subjects experienced forward translation with a small leftward or

rightward deviation, and were instructed to report as quickly and as accurately as possible whether

they moved leftward or rightward relative to straight ahead.

First, we ask whether subjects can adjust their SAT from trial to trial. Having related changes in the

SAT to changes in diffusion model bounds, this is akin to asking if their behavior could arise from

a diffusion model with a bound that changes on a trial-by-trial basis. Our diffusion model necessitates

the use of a scaled bound, which is the constant actual bound per modality divided by the diffusion

standard deviation that depends on optic flow coherence. The use of such a scaled bound prohibits us

from fitting actual bound levels, but rather scaled versions thereof. For the same reason, we cannot

unambiguously predict the behavior that would emerge from a model with actual bounds matched

across modalities (i.e., a constant SAT). Therefore, we instead rely on a qualitative argument about

how such matched bounds would be reflected in the relation between decision speed and accuracy

across modalities.

As Figure 1A illustrates for subject B2, increasing the coherence of the optic flow caused subjects

to make faster, more accurate choices. This pattern was similar if only the visual modality (solid blue

lines, Figure 1A) or both modalities were present (solid red lines, Figure 1A). This result is

qualitatively compatible with the idea that subjects used a single SAT within conditions in which the

same modality (visual/vestibular) or modality combination (combined) provided information about

heading. Within the framework of diffusion models with fixed actual bounds on the diffusing particle,

such a single SAT predicts that, once the amount of evidence per unit time (in our case controlled by

the coherence) increases, choices ought to be on average either faster, more accurate, or both in

combination, but never slower or less accurate. However, our data violate this prediction, thus

showing that the SAT changes across conditions. Consider, for example, the choice accuracy and
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reaction times of subject B2 in both the visual-only (top blue circle, Figure 1A) and combined

condition (top red square, Figure 1A) trials at 70% motion coherence. Although the combined

condition provides more evidence per unit time due to the additional presence of the vestibular

modality, responses in the combined condition are less accurate than in the visual-only condition,

violating the idea of a single SAT (that is, a fixed diffusion model bound) across conditions. The same

pattern emerged across all subjects, whose choices in the combined condition were on average

significantly less accurate than in the visual condition (for 70% coherence; one-tailed Wilcoxon signed-

rank W = 54, p < 0.002). As these stimulus conditions were interleaved across trials, our results clearly

indicate that subjects were able to change their SAT on a trial-by-trial basis.

A less common variant of diffusion models bounds the posterior belief rather than the diffusing

particle. In this case, changing the amount of evidence per unit time only affects the response time but

not its accuracy, which remains unchanged. When increasing coherence, we observed a change of

both response time and choice accuracy within each condition (Figure 1A), supporting a bounded

diffusing particle rather than a bounded posterior belief. In rare cases, the two model variants predict

the same behavior (Drugowitsch et al., 2012), but this is not the case in our context.

Next, we explore whether these adjustments in the SAT serve to maximize subjects’ reward rate.

Even though subjects did not receive an explicit reward for correct trials, we assumed that correct

decisions evoke an internal reward of magnitude one. Therefore, we computed reward rate as the

fraction of correct decisions across all trials, divided by the average time between the onset of

consecutive trials. We proceed in two steps: first, we ask whether subjects have a higher reward rate

across trials of the multisensory condition compared to both unimodal conditions. This is an important

question because we have found previously that subjects accumulate evidence optimally across

modalities (Drugowitsch et al., 2014), which implies that, with proper setting of the SAT, they should

be able to obtain higher reward rates in the multisensory condition compared to the unimodal

conditions. As shown in Figure 1B, reward rate is indeed greater, for all subjects, when both sensory

modalities are presented than for either modality alone (both unimodal vs combined: Wilcoxon

signed-ranks W = 0, p < 0.002). This confirms that subjects combined evidence across modalities to

improve their choices.

Figure 1. The SAT and reward rate for unimodal vs combined conditions. (A) Fraction of correct choices is plotted as

a function of mean reaction time for subject B2. Blue/cyan: visual condition; green/lime: vestibular condition; red/

orange: combined condition. Solid: data; dashed: model with parametric bound tuned to maximize reward rate.

Motion coherence varies across data points in the red/orange and blue/cyan curves. The tuned model generally

predicts slower and more accurate choices in the visual condition, leading to the longest-possible reaction time

(2 s stimulus time + non-decision time) for all but the highest stimulus coherence. (B) Reward rate for trials of the

combined condition is plotted against reward rate for trials of the visual condition (open blue symbols), the

vestibular condition (open green symbols) and both unimodal conditions in combination (gray filled symbols).

Reward rates are computed as number of correct decisions per unit time for the respective trial subgroups, and are

shown for each subject separately, with bootstrapped 95% confidence intervals.

DOI: 10.7554/eLife.06678.002
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We now turn to the question of whether subjects tune their SATs to maximize the reward rate. For

this purpose, we focus on the reward rate across all trials rather than for specific stimulus conditions,

as subjects might, for example, trade off decision accuracy in unimodal conditions with decision speed

in the combined condition. To determine how close subjects were to maximizing their reward rate, we

needed to compute the best achievable reward rate. To do this, we tuned the bounds of our modified

diffusion model to maximize its reward rate, while keeping all other model parameters, including the

non-decision times and choice biases, fixed to those resulting from fits to the behavior of individual

subjects. As a starting point, we allowed bounds to vary freely for each stimulus modality and each

motion coherence, to provide the greatest degrees of freedom for the maximization. As described

further below, we also performed the same analysis with more restrictive assumptions. We call the

reward rate resulting from this procedure the optimal reward rate. This reward rate was subject-

dependent, and was used as a baseline against which the empirical reward rates were compared.

Figure 2A shows the outcome of this comparison. As can be seen, all but one subject featured

a reward rate that was greater than 90% of the optimum, with two subjects over 95%. As

a comparison, the best performance when completely ignoring the stimulus and randomly choosing

one option at trial onset (i.e., all actual bounds set to zero) causes a significant 25–30% drop in reward

rate (subjects vs random: Wilcoxon signed-rank W = 55, p < 0.002). Thus, subjects featured near-

optimal reward rates that were significantly better than those resulting from rapid, uninformed

choices.

Our analysis of the subjects’ reward rate relative to the optimum is fairly robust to assumptions we

make about how this reward rate and its optimum are defined. Thus far, we have assumed implicit,

constant rewards for correct decisions and the absence of any losses for the passage of time or

incorrect choices. However, accumulating evidence is effortful, and this effort might offset the

eventual gains resulting from correct choices. In fact, previous work suggests that human decision

makers incur such a cost, possibly related to mental effort, in the range of 0.1–0.2 units of reward per

second for accumulating evidence (Drugowitsch et al., 2012). Importantly, this cost modulates both

the subjects’ and the optimal reward rate, causing the median reward rate across subjects to actually

rise slightly to 95.4% and 95.1% (costs of 0.1 and 0.2) of the optimum value (Figure 2B, second and

third columns), compared to the cost-free median of 93.7%.

Figure 2. Reward rates of subjects relative to the optimal reward rate. The optimal reward rate is the best reward

rate achievable by a model with tuned decision bounds. (A) Each subject’s reward rate is shown as a fraction of the

optimal reward rate (blue bars). In addition, the expected reward rate is shown for immediate random decisions

(red bars). (B) Box-plots show relative reward rates for different assumptions regarding how reward rate is computed.

‘no cost’ corresponds to the case shown in panel A. ‘cost 0.1’ and ‘cost 0.2’ assume a cost per second for

accumulating evidence over time. ‘parametric bounds’ uses the original bounds from Drugowitsch et al. (2014),

rather than a separate bound parameter for each modality and coherence. The last two bars (‘unbiased’) remove the

subjects’ decision biases before computing the optimal reward rate. All box-plots show the maximum/minimum

relative reward rates (whiskers), the 25% and 75% percentiles (central bar), and the median (central line) value across

subjects. Data are shown for the subjects’ reward rates (blue) and for immediate random choices (red).

DOI: 10.7554/eLife.06678.003
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The optimal reward rates so far were obtained from a model in which we allowed independent

bounds for each stimulus modality and each motion coherence, which implies that subjects can rapidly

and accurately estimate coherence. Using instead the more realistic assumption (Drugowitsch et al.,

2014) that bounds only vary across modalities while coherence modulates diffusion variance but not

bound height, we reduce the number of parameters and thus degrees of freedom for reward rate

maximization. As a result, subjects’ reward rates relative to the optimum rise slightly (median 94.5%),

where the optimal model is now restricted to use the same bound across all coherences (Figure 2B,

fourth column). Furthermore, we have assumed the model to feature the same choice biases as the

subjects. These biases reduce the probability of performing correct choices, and thus the reward rate,

such that removing them from our model boosts the model’s optimal reward rate. As a consequence,

removing these biases causes a consistent drop in subjects’ relative reward rate (Figure 2B, last two

columns). Even then, reward rates are still around 90% of the optimum (median 87.8% and 88.7%

for free and parametric bounds, respectively). If instead of featuring the observed behavior, subjects

were to ignore the stimulus and randomly choose one option at trial onset, they would incur

a significant drop in reward rate for all of the different assumptions about how we define this optimum

(e.g., with/without accumulation cost, …) as outlined above (subject vs random, blue vs red in

Figure 2B: Wilcoxon signed-rank W = 55, p < 0.002, except cost 0.2: W = 54, p < 0.004).

Despite exhibiting near-optimal reward rates, all subjects feature small deviations from optimality.

These deviations may result from incomplete learning of the optimal SAT. We only provided feedback

about the correctness of choices in early stages of the experiment, until performance stabilized, and

subjects did not receive feedback during the main experiment. Nevertheless, subjects’ speed/accuracy

trade-off remained rather stable after removing feedback, which includes all trials we analyzed. Thus,

incomplete learning in the initial training period should be reflected equally in all of these trials. To test

the incomplete-learning hypothesis, we assumed that subjects adjusted their strategy in small steps by

using gradient-based information about how the reward rate changed in the local neighborhood of the

currently chosen bounds. For our argument, it does not matter if the gradient-based strategy was

realized through stochastic trial-and-error or more refined approaches involving analytic estimates of

the gradient, as long as it involved an unbiased estimate of the gradient. What is important, however, is

that such an approach would lead to faster learning along directions of steeper gradients (Figure 3A).

As a result, incomplete learning should lead to near-optimal bounds along directions having a steep

gradient, but large deviations from the optimal bound settings along directions having shallow

gradients.

To measure the steepness of the gradient for different near-optimal bounds, we used the reward

rate’s curvature (that is, its second derivative) with respect to each of these bounds. If these bounds

were set by incomplete gradient ascent, we would expect bounds associated with a strong curvature

to be near-optimal (red dimension in Figure 3A; large curvature, close to optimal bound in inset) and

bounds in directions of shallow curvature to be far away from their optimum (blue dimension in

Figure 3A; small curvature, distant from optimal bound in inset). In contrast, strongly mis-tuned

bounds associated with a large curvature (points far away from either axis in Figure 3B) would violate

this hypothesis. If we plot reward rate curvature against the distance between estimated and optimal

bounds, the data clearly show the predicted relationship (Figure 3B). Specifically, reward rate

curvature is generally moderate to strong in the vestibular-only and combined conditions, and most of

these bounds are found to be near-optimal. In contrast, curvature is rather low for the visual condition,

and many of the associated bounds are far from their optimal settings. This is exactly the pattern one

would expect to observe if deviations from optimality result from a prematurely terminated gradient-

based learning strategy. This analysis rests on the assumption that the manner in which reward rate

varies with changes in the bounds is well approximated by a quadratic function. If this were the case,

then the estimated loss in reward rate featured by the subjects when compared to the tuned model

should also be well approximated by this quadratic function. These two losses are indeed close to

each other for most subjects (Figure 3C), thus validating the assumption.

Previous studies have suggested that deviations from optimal bound settings may arise if subjects

are uncertain about the inter-trial interval (Bogacz et al., 2010; Zacksenhouse et al., 2010). With such

uncertainty, subjects should set their bound above that deemed to be optimal when the inter-trial

interval is perfectly known. A similar above-optimal bound would arise if subjects are either uncertain

about the optimal bound, or have difficulty in maintaining their bounds at the same level across trials.

This is because the reward rate drops off more quickly below than above the optimal bounds
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(Figure 4A). Thus, if the subject’s bounds fluctuate across trials, or the subjects are uncertain about

the optimal bounds, they should aim at setting their bounds above rather than below this optimum.

Indeed, this would minimize the probability that the bound would fluctuate well below the optimal

value, which would result in a very sharp drop in reward rate. However, our data indicate that, in

contrast to previous findings from single-modality tasks (Simen et al., 2009; Bogacz et al., 2010),

subjects consistently set their bounds below the optimum level (Figure 4B). In other words, they make

faster and less accurate decisions than predicted by either of the above considerations. Figure 1A

(data vs tuned) illustrates an extreme case for subject B2, in which the best reward rate is achieved in

some conditions by waiting until stimulus offset. While not always as extreme as shown for this

subject, a distinct discrepancy between observed and reward rate-maximizing behavior exists for all

subjects, and is a reflection of the fact that near-optimal reward rates can be achieved with remarkably

different joint tunings of reaction times and choice accuracy.

What are the potential neural correlates of the highly flexible decision bounds and associated SATs

that are reflected in the subjects’ behavior? One possibility is the observed bound on neural activity

(Roitman and Shadlen, 2002; Schall, 2003; Churchland et al., 2008; Kiani et al., 2008) in the lateral

intraparietal cortex in monkeys, an area that seems to reflect the accumulation of noisy and

ambiguous evidence (Yang and Shadlen, 2007). It still needs to be clarified if similar mechanisms are

involved in our experimental setup, in which we observed modality-dependent trial-by-trial changes in

the SAT. In contrast to suggestions from neuroimaging studies (Green et al., 2012), such trial-by-trial

changes are unlikely to emerge from slow changes in connectivity. A more likely alternative, that is

compatible with neurophysiological findings, is a neuronal ‘urgency signal’ that modulates this trade-

off by how quickly it drives decision-related neuronal activity to a common decision threshold (Hanks

et al., 2014). Although only observed for blocked designs, a similar modality-dependent urgency

signal could account for the trial-by-trial SAT changes of our experiment, and qualitatively mimic

a change in diffusion model bounds. Currently, our model can only predict changes in scaled decision

boundaries, which conflate actual boundary levels with the diffusion standard deviation. It does not

predict how the actual bound level changes, which is the quantity that relates to the magnitude of

such an urgency signal. In general, quantitatively relating diffusion model parameters to neural activity

Figure 3. Evidence for bound mistuning due to incomplete gradient-based learning. (A) The effects of incomplete gradient ascent on the relation

between projected bound distance and local curvature (that is, second derivative of the reward rate at estimated bound) are illustrated for a fictional

maximization problem with only two bounds. The grey trajectory shows a sequence of gradient ascent steps on the reward rate function, whose shape is

illustrated by two iso-reward rate contours (black) around its maximum (cross). Stopping this gradient ascent procedure (large grey filled circle) before it

reaches the optimum causes this stopping point to be close to the optimal bound in directions of large curvature (red), and farther away from the

optimum in directions of shallow curvature (blue). (B) Curvature at the estimated bound location is plotted against the distance between the estimated

and optimal bound (see text for details). This plot includes 7 (3 coherence condition) or 13 (6 coherence condition) data points per subject, one for each

modality/coherence combination. Data for the visual, vestibular and combined conditions are shown in shades of blue/cyan, green, and red/yellow,

respectively, and motion coherence is indicated by color saturation. (C) The reward rate loss (i.e., optimal model reward rate minus subject’s reward rate)

as estimated from the model (abscissa) is plotted against the loss predicted by the quadratic approximation used in the analysis in (A)–(B), for each subject

(ordinate). If the reward rate has a quadratic dependence on the bounds, then all the data points would lie along the diagonal. Small deviations from the

diagonal indicate that the reward rate is indeed close-to-quadratic in these bounds.

DOI: 10.7554/eLife.06678.004
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strongly depends on how specific neural pop-

ulations encode accumulated evidence, which

has only been investigated for cases that are

substantially simpler (e.g., Kira et al., 2015) than

the ones we consider here.

Further qualitative evidence for neural mech-

anisms that support trial-by-trial changes in the

SAT comes from monkeys performing a visual

search task with different, visually cued, response

deadlines (Heitz and Schall, 2012). Even though

the different deadline conditions were blocked,

analysis of FEF neural activity revealed a change

in baseline activity that emerged already in the

first trial of each consecutive block, hinting at

flexible mechanisms that pre-emptively govern

changes in SAT. In general, such changes in SAT

are likely to emerge through orchestrated

changes in multiple neural mechanisms, such as

changes in baseline, visual gain, duration of

perceptual processing, and the other effects

observed by Heitz and Schall (2012), or through

combined changes to perceptual processing and

motor preparation, as suggested by Salinas et al.

(2014).

The observed SATs support the hypothesis

that gradient-based information is used by

subjects during the initial training trials to try to

learn the optimal bound settings. We do not

make strong assumptions about exactly how this

training information is used, and even a very

simple strategy of occasional bound adjustments

in the light of positive or negative feedback is, in

fact, gradient-based (albeit not very efficient)

(e.g., Myung and Busemeyer, 1989). The clear-

est example of a strategy that is not gradient-

based is one that does not at all adjust the SAT,

or one that does so randomly, without regard to

the error feedback that was given to subjects

during the initial training period. Such strategies

are not guaranteed to lead to the consistent

curvature/bound distance relationship observed

in Figure 3B. For a single speed/accuracy trade-

off, adjusting this trade-off has already been

thoroughly investigated, albeit with conflicting

results (Myung and Busemeyer, 1989; Simen

et al., 2006; Simen et al., 2009; Balci et al.,

2011). Greater insight into the dynamics of

learning this trade-off will require further experi-

ments that keep the task stable throughout

acquisition of the strategy, and reduce the

number of conditions and potential confounds to explain the observed changes in behavior.

In summary, we have shown that subjects performing a multisensory reaction-time task tune their

SAT to achieve reward rates close to those achievable by the best-tuned model. This near-optimal

performance is invariant under various assumptions about how the reward rate is computed, and is,

even under the most conservative assumptions, in the range of 90% of the optimal reward rate.

Deviations from optimality are unlikely to have emerged from a strategy of setting bounds to make

Figure 4. Subjects’ bound settings relative to the

optimal bound. (A) The curves show how the reward

rate changes with a simultaneous, linear change of all

bounds. From left to right, bound levels increase from

zero to the (reward-rate maximizing) optimal bound

levels (unity values on the abscissa), and continue to

bound levels well above this optimum. Different colors

correspond to different assumptions about the cost for

accumulating evidence over time. The optimal bound

levels (unity values on the abscissa) that maximize the

reward rate depend on these costs, and thus differ

between the three curves. The empirical bound level

estimates for individual subjects do not lie on the

straight line that is defined by the simultaneous, linear

change of all optimal bounds. To evaluate where these

empirical bounds lie with respect to the optimal

bounds, we found the closest point (along contours of

equal reward rate) on this line for the empirical bounds.

These points are shown for subject A for different costs

by the filled circles. (B) The closest points are illustrated

for all subjects, for different accumulation costs. As can

be seen, for any assumption for this cost, the subjects’

bounds are well below the optimal settings.

DOI: 10.7554/eLife.06678.005
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them robust to perturbations. Instead, our data support the idea that decision bounds have been

tuned by a gradient-based strategy. Such tuning is also in line with the observation of near-optimal

reward rates, which are unlikely to result from a random bound-setting strategy. Overall, our study

provides novel insights into the flexibility with which human decision makers choose between speed

and accuracy of their choices.

Materials and methods
Seven subjects (3 male) aged 23–38 years participated in a reaction-time version of a heading

discrimination task with three different coherence levels of the visual stimulus. Of these subjects, three

(subjects B, D, F; 1 male) participated in a follow-up experiment with six coherence levels. The

six-coherence version of their data is referred to as B2, D2, and F2. More details about the subjects

and the task can be found in Drugowitsch et al. (2014). Not discussed in this reference is the inter-

trial interval, which is the time from decision to stimulus onset in the next trial. This interval is required

to compute the reward rate, and was 6 s on average across trials.

Unless otherwise noted, we used a variant of the modified diffusion model described inDrugowitsch

et al. (2014) to fit the subjects’ behavior, and we tuned its parameters to maximize reward rates. Rather

than using a constant decision bound for each modality and parameterizing how the diffusion variance

depends on the coherence of visual motion (as in Drugowitsch et al., 2014), the model variant used

here allowed for a separate bound/variance combination per modality and coherence. Thus, it featured

7 bound parameters for the 3-coherence experiments, and 13 bound parameters for the 6-coherence

experiments. This variant was chosen to increase the model’s flexibility when maximizing its reward rate.

The original model variant with constant bounds and a changing variance led to qualitatively

comparable results (Figure 1A, ‘tuned’, and Figure 2B, ‘parametric bounds’).

For each subject, we adjusted the model’s parameters to fit the subject’s behavior as in

Drugowitsch et al. (2014), through a combination of posterior sampling and gradient ascent. Based

on these maximum-likelihood parameters, we then found the model parameters that maximized

reward rate by adjusting the bound/variance parameters using gradient ascent on the reward rate,

while keeping all other model parameters fixed. To avoid getting trapped in local maxima, we

performed this maximization 50 times with random re-starts, and chose the parameters that led to the

overall highest reward rate. When performing the maximization, we only modified the parameters

controlling the bounds, while keeping all other parameters fixed to the maximum-likelihood values.

The latter differed across subjects, such that this maximization led to different maximum reward rates

for different subjects. For the ‘no bias’ variant in Figure 2B, we set the choice biases to zero before

performing the reward rate maximization.

In all cases, the reward rate was computed as the fraction of correct choices across trials, divided by

the average trial time, which is the time between the onsets of consecutive trials. Any non-zero evidence

accumulation cost (Figures 2, 4) was first multiplied with the average decision time (that is, reaction time

minus estimated non-decision time) across all trials, and then subtracted from the numerator.

Our argument about the speed of convergence of steepest gradient ascent is based on the

assumption that bounds are updated according to θn = θn−1 + α∇f ðθn−1Þ, where θn−1 and θn are the

bound vectors before and during the nth steepest gradient ascent step, f ðθÞ and ∇f ðθÞ are the reward

rate and its gradient for bounds θ, and α is the step size. The speed of this procedure (i.e., the bound

change between consecutive steps) depends for each bound on the size of the corresponding

element in the reward rate gradient. For optimal bounds, this gradient is zero, which makes the

gradient itself unsuitable as a measure of gradient ascent speed. Instead, we use the rate of change of

this gradient close to the bounds θ̂ estimated for individual subjects. This rate of change, called the

curvature, is proportional to the gradient close to θ̂, and therefore also proportional to the speed at

which θ̂ is approached. Close-to and at the optimal reward rate, which is a maximum, this curvature is

negative. As we were more interested in its size than its sign, Figure 3 shows the absolute value of this

curvature. We estimated this curvature at θ̂ by computing the Hessian of f ðθ̂Þ by finite differences

(D’Errico, John [2006]. Adaptive Robust Numerical Differentiation. MATLAB Central File Exchange.

Retrieved 3 July 2014), where we used the model that allowed for a different bound level per modality

and coherence (7 and 13 bound parameters/dimensions for 3 and 6 coherence experiment,

respectively). Before computing the distance between estimated and reward rate-maximizing bounds,

we projected bound parameter vectors into the eigenspace of this Hessian, corresponding to the

orientations of decreasing curvature strength. The absolute bound difference was then computed for
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each dimension (i.e., modality and coherence) of this eigenspace separately, with the corresponding

curvature given by the associated eigenvalue (Figure 3B).

In Figure 3B, each bound dimension (i.e., modality and coherence, see figure legend) is associated

with a different color. As described in the previous paragraph, this figure shows bound differences and

curvatures not in the space of original bound levels, but rather in a projected space. To illustrate this

bound coordinate transformation in the figure colors, we performed the same coordinate transform on

the RGB values associated with each dimension, to find the colors associated with the dimensions of the

projected space. The projected colors (filled cirles in Figure 3B plot) closely match the original ones

(Figure 3B legend), which reveals that the curvature eigenspace is well aligned to that of the bound

parameters. This indicates that the reward rate curvatures associated with each of the bound parameters,

that is, each modality/coherence combination, are fairly independent. Due to the close match between

projected and original colors, we do not mention the color transformation in the legend of Figure 3.

Our analysis is also valid if subjects do not follow the reward rate gradient explicitly. They could, for

example, approximate this gradient stochastically on a step-by-step basis. As long as the stochastic

approximation is unbiased, our argument still holds. One such stochastic approximation would be to

test if a change in a single bound (corresponding to a single trial) improves the noisy estimate of the

reward rate, that is, if f ðθnÞ> f ðθn−1Þ+ ε, where only a single element (i.e., bound) is changed between

θn−1 and θn, and ε is zero-mean symmetric random noise. In this case, larger changes, which are more

likely to occur in directions of larger gradient, are more likely accepted. As a result, faster progress is

made along steeper directions, which is the basic premise upon which our analysis is based.

To illustrate how the reward rate changed with bound height (Figure 4), we assumed that all (7 or 13)

bound parameters varied along a straight line drawn from the origin to the reward rate-maximizing

parameter settings. To project the maximum-likelihood bound parameters from the subject fits onto this

line (dots in Figure 4A,B), we followed the iso-reward rate contour from these parameters until they

intersected with the line. We also tried an alternative approach by projecting these parameters onto the

line by vector projection, which resulted in a change of the reward rate, but otherwise led to qualitatively

similar results as those shown in Figure 4B. In both cases, the subjects’ bound parameters were well

below those found to maximize the reward rate.
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