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Sand 14, 72076 Tübingen, Germany
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Abstract
It has been shown previously that the control of a robot arm can be efficiently learned
using the XCSF learning classifier system, which is a nonlinear regression system based
on evolutionary computation. So far, however, the predictive knowledge about how
actual motor activity changes the state of the arm system has not been exploited. In
this paper, we utilize the forward velocity kinematics knowledge of XCSF to alleviate
the negative effect of noisy sensors for successful learning and control. We incorporate
Kalman filtering for estimating successive arm positions, iteratively combining sensory
readings with XCSF-based predictions of hand position changes over time. The filtered
arm position is used to improve both trajectory planning and further learning of the
forward velocity kinematics. We test the approach on a simulated kinematic robot
arm model. The results show that the combination can improve learning and control
performance significantly. However, it also shows that variance estimates of XCSF
prediction may be underestimated, in which case self-delusional spiraling effects can
hinder effective learning. Thus, we introduce a heuristic parameter, which can be
motivated by theory, and which limits the influence of XCSF’s predictions on its own
further learning input. As a result, we obtain drastic improvements in noise tolerance,
allowing the system to cope with more than 10 times higher noise levels.
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1 Introduction

Controlling a robot arm such that goals can be reached efficiently by the robot’s hand
(end-effector) requires an understanding of how motor commands affect the end-
effector position. Thus, the relationship between changes in limb angles to changes
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in end-effector positions (the so-called velocity kinematics) has to be known. Assum-
ing that the robot controller has no prior knowledge of the arm’s geometry, it has to
learn these mappings using simultaneous observations of limb angles and the end-
effector position. Stereo-vision sensors provide a 3D measurement of the position of
the robot’s hand, but with a relatively high degree of uncertainty. As we will see, the
noise introduced by end-effector position measurements may severely disrupt learning
at moderate noise levels. Thus, any successful real-world learning approach needs to
provide strategies to cope with this noise.

It is known that in a noise-free scenario, the velocity kinematics can be learned very
successfully using XCSF, an evolutionary system of a population of linear regressors.
The aim of this paper is to improve the noise robustness of an XCSF robot controller
using Kalman filtering. The key idea is that the estimation of the state change, which is
required in the Kalman prediction step, can be obtained using the velocity kinematics
mappings stored in XCSF.

1.1 Robot Arm Control with XCSF

Stalph and Butz (2012) have developed a system that successfully learns to control robot
arms with up to seven degrees of freedom, using an evolutionary function approxima-
tion system called XCSF. XCSF can be described as a derivative (Wilson, 2002) of the
XCS learning classifier system (Wilson, 1995). It approximates nonlinear functions by a
population of locally-weighted linear local approximators. Each approximator is usu-
ally referred to as a classifier whose condition determines its activity and thus its local
influence given a current input. The classifier prediction is a linear approximation of
the encountered input-output value combinations.

It was shown recently (Butz et al., 2008b; Stalph et al., 2010) that XCSF shares
many similarities with the locally-weighted projection regression (LWPR) algorithm
(Vijayakumar et al., 2005), which is well-known in the neuro-robotics literature (Peters
and Schaal, 2008; Sigaud and Peters, 2010; Sigaud et al., 2011). With this interpretation
in mind, XCSF classifiers may be considered as neural structures that specify local
receptive fields.

1.2 Exploiting Model Knowledge to Improve Noise Robustness

XCSF learns the forward velocity kinematics (mapping changes in joint angles to
changes in hand locations given the current arm configuration) from which the in-
verse velocity kinematics (mapping desired changes in hand location space to changes
in joint angles) is constructed in order to generate targeted movement commands. The
forward knowledge itself, however, has not been exploited in any way so far.

An obvious approach to increase noise robustness is to exploit temporal dependen-
cies: since the observations are made along trajectories of the robot arm, subsequent
samples are highly correlated. There is thus some potential for significant gains in the
signal to noise ratio by exploiting these correlations by means of filtering. It is necessary
to use adaptive filters, because fixed filters with a constant transfer function tend to
introduce temporal delay, which introduces systematic biases in learning.

We propose to use a well-established approach, known as Kalman filtering, which
assumes knowledge of the system’s dynamics. A Kalman filter operates recursively on
a stream of noisy input data to produce a statistically optimal estimate of the underlying
system state. Each iteration can be split into a prediction step and an update step. In
the prediction step, the system’s next state is predicted from its presumed state in the
previous time step and known control inputs. In the update step, the new system state es-
timate is obtained by fusing information obtained from sensors with the predicted state.

2 Evolutionary Computation Volume 21, Number 4



Evolutionary Computation /EVCO_a_00108-Kneissler July 23, 2013 22:57

Filtering Sensory Information with XCSF

The crucial contribution of this paper is to use forward kinematic velocity estimates
provided by XCSF as control input for the Kalman filter. This requires an estimate of
the prediction variance, as investigated in Drugowitsch and Barry (2007, 2008) and
Loiacono et al. (2008). When implementing the Kalman filter without any precautions,
we show that the system may learn from over-filtered sensory information and thus
may get stuck in a self-delusional loop, where XCSF over-believes its own predictions.
By effectively limiting the estimated prediction confidence, however, we can show that
the resulting XCSF system can deal with much larger measurement noise, still learning
its bidirectional forward prediction and inverse control structures effectively.

1.3 Paper Organization

We first give an overview of XCSF and how it is applied to learn arm control. Next
we introduce the basics of Kalman filtering. Then, we specify the modification of the
interaction cycle necessary to exploit temporal dependencies of samples in the arm
control scenario by means of Kalman filtering. We scrutinize the performance of XCSF
on two simulated arm models with 2 DOF and 7 DOF, respectively.

A key finding, which was already reported at the GECCO 2012 conference (Kneissler
et al., 2012) in a shorter version of this paper, is that XCSF with Kalman filtering can
solve problems at a higher magnitude of sensory noise, but only after introduction of
an additional threshold parameter. Here we additionally report the results of follow-up
experiments that confirmed the self-delusional effect as the reason for failure without
thresholding and find consistency with theoretical considerations, which provides a
formula to calculate the (so-far manually optimized) threshold value as a function
of the noise level. Finally, we investigate the possible sources for the failure of the
baseline XCSF-based arm control under noisy conditions separately and find that the
evolutionary algorithm of XCSF is the most vulnerable spot of the system. Summary
and future work considerations conclude the paper.

2 Robot Arm Control Using XCSF

2.1 Prior Work

Learning classifier systems (LCSs) were originally introduced by John H. Holland (Hol-
land and Reitman, 1978). The accuracy-based XCS learning classifier system was in-
troduced by Stewart W. Wilson (Wilson, 1995). XCS was successfully applied in binary
classification tasks (Wilson, 1995; Butz, 2006), data mining problems (Bernadó-Mansilla
and Garrell-Guiu, 2003; Wilson, 2000), and function approximation problems (Wilson,
2001, 2002; Lanzi et al., 2007; Butz, Lanzi, et al., 2008), among others (Bull, 2004). In the
real-valued function approximation case, XCS is termed XCSF, essentially constituting
an iteratively learning regression system.

We focus on the XCSF system (Wilson, 2002; Butz, Lanzi, et al., 2008) and its potential
for learning the forward velocity kinematics of a robot arm for inverse control (Butz
and Herbort, 2008; Butz and Stalph, 2011; Stalph and Butz, 2012). The considered XCSF
setup is based on the available implementation (Stalph and Butz, 2009) and the detailed
descriptions available in the literature (Butz and Herbort, 2008; Butz, Lanzi, et al., 2008;
Stalph and Butz, 2012).

2.2 Learning Forward Velocity Kinematics

In general, XCSF learns to approximate nonlinear multidimensional functions using
piecewise linear models. It evolves a population of classifiers, where each classifier
covers a particular subspace of the input space, which may be termed the receptive
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field of a classifier. Moreover, each classifier learns a linear model for approximating the
function surface in its subspace. The linear model of a classifier is typically adapted by
means of recursive least squares (Butz, Lanzi, et al., 2008; Lanzi et al., 2006). The receptive
field, that is, the condition part of a classifier, is evolved over time by a steady-state
genetic algorithm (GA). We use general Gaussian kernel-based receptive fields, yielding
ellipsoidal regions of influence for a classifier. While each single classifier approximates
a subset, the whole population approximates the complete function surface. Due to
evolutionary optimization, XCSF tends to implicitly minimize the absolute difference
between this surface and the encountered function (however, there is actually no such
explicit goal encoded algorithmically in XCSF).

XCSF can be used to learn the velocity kinematics of a robot arm. A robot arm may
be characterized by its configuration space C ⊂ R

n and the task space T ⊂ R
m of the

end-effector. While the task space is usually encoded in a Cartesian coordinate system,
the configuration space may be encoded by joint angles. Due to the arm kinematics,
a configuration q ∈ C uniquely determines the corresponding end-effector location in
task space x ∈ T . This forward kinematics mapping can be expressed as a typically
nonlinear function x = f (q). The forward velocity kinematics is obtained by taking the
derivative ẋ = J(q)q̇, where J(q) = ∂f/∂q is the m × n Jacobian matrix of f.

To control the robot arm, a goal direction ẋ needs to be translated into necessary
control commands q̇ by applying the inverse velocity kinematics. Here lies the strength
of XCSF: Due to the inherent ambiguity of the inverse kinematics, it is much easier to
learn the forward kinematics instead. Since XCSF models the target function locally
linear, the local Jacobian J(q), given the specified configuration q, can be extracted from
the population of XCSF classifiers at almost no computational cost.

It remains to invert J(q), resolving redundancy by introducing additional con-
straints. Here, we invert the Jacobian such that free DOFs are used to avoid extreme
angular values. However, it was shown elsewhere (Butz et al., 2009; Stalph and Butz,
2012) that other redundancy resolution techniques can equally well be applied, such as
applying additional movement constraints or computing the Moore-Penrose pseudo-
inverse (Ben-Israel and Greville, 2003).

To sum up, XCSF learns the mapping from configuration space velocities q̇ to
task space velocities ẋ, depending on the current configuration q. XCSF is well-suited
for this task, since the algorithm is able to cluster a context space while learning a
function that operates on a different space, but depends on the context. In our task, the
current configuration is the context and XCSF clusters are the configuration space with
hyper-ellipsoidal RFs (Butz, Lanzi, et al., 2008). In turn, each classifier approximates
the ẋ �→ q̇ mapping by estimating the local Jacobian matrix J (q) using linear recursive
least squares approximations. Given a particular configuration, the classifiers whose
conditions overlap with the current configuration are considered; their linear Jacobians
are combined in a weighted manner; finally, the resulting Jacobian matrix is inverted
for generating a control signal.

3 Exploiting Temporal Dependencies

3.1 Kalman Filtering

Filtering can be seen as a procedure for transforming a noisy time series (x̃n) to a
smoothed time series (x̄n) closer to the sequence of ”true” values (xn), in our case the
sequence of end-effector locations that are traversed in task space. Kalman filtering does
that by elegantly combining the following two sources of information:
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1. The filtered value x̄n-1 from the previous time step, corrected by the predicted
change between steps with mean �x

p
n and variance σ 2

n-1 (formed from the pre-
dictions of the individual classifiers, as we will describe in a later section), and

2. The sensor readings x̃n for the current time step.

At each time step n, the Kalman filter maintains an estimate of the end-effector
location that is given by its mean x̄n and its variance Vn. Assuming knowledge of this
estimate at time n − 1, it is updated in the light of the predicted change and the current
sensory reading in two steps.

Prediction step:

x̄n|n-1 = xn-1 + �x
p
n-1 (1)

Vn|n-1 = Vn-1 + σ 2
n-1 (2)

This step predicts the end-effector state at time n without taking into account the sensory
readings x̃n.

Update step:

x̄n = x̄n|n-1 + β (x̃n − x̄n|n-1) (3)

Vn = (1 − β) Vn|n-1 (4)

This step mixes sensory readings and the predicted internal state estimation, using
the smoothing parameter β, which is specified by weighing the respective information
contents:

β = Vn|n-1

Vn|n-1 + σ 2
sensor

, (5)

where σsensor denotes the standard deviation of the sensory noise. For β = 1, there is
no filtering at all, while for β = 0, the new measurement is completely ignored. If the
variance of several consecutive sensor variance estimates σ 2

n-k, . . . , σ
2
n are all very small,

the variance estimate Vn converges quickly toward a value close to 0.

3.2 Kalman Filtering with XCSF

The overall flow of information in an XCSF-based arm control learner without filtering
is shown in Figure 1(a). It is consistent with previous experiments, as conducted, for
example, by Butz and Herbort (2008); Butz et al. (2009); and Stalph and Butz (2012).
XCSF interacts with a controller module, which reads sensory information from and
executes motor commands in the associated arm model. Motor noise and sensor noise
may be added in this process. Given the current joint angle state of the arm qn-1, XCSF
generates a set of matching classifiers. Using this set and a given desired direction of the
hand �x∗

n = g − x̃n-1 toward goal g, XCSF generates a control command �q∗
n by means

of its locally linear, inverse velocity kinematics model. In our kinematic arm simulations,
motor noise is added to this motor command, which is then sent to the arm model. In
return, the next angular state qn is perceived. Additionally, the consequent location of
the end-effector xn is perceived and noise is added, yielding x̃n. The information is
thus complete to learn from the described interaction using qn-1 as the context signal
for matching, and �qn = qn − qn-1 as well as �x̃n = x̃n − x̃n-1 for the prediction and
resulting error and fitness updates.
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Figure 1: Setups for XCSF-based arm control and learning: traditional and modified
with Kalman filtering to improve robustness of XCSF during learning and arm control
against noise on the hand position sensors.

The described original XCSF setup for learning and goal-directed behavior control is
modified as shown in Figure 1(b). The added Kalman filtering process essentially filters
the successive perceptions of end-effector locations x̃n by means of XCSF’s forward
velocity kinematics model. Previously, the change in end-effector state was directly
determined by the noisy location signal, that is, �x̃n = x̃n − x̃n-1. Now the change in the
end-effector location is calculated by filtering the location feedback x̃n with the state
prediction generated by the locally linear forward velocity kinematics model of XCSF,
that is, x̄n-1 + �xP

n , additionally considering the variance estimate σ 2
n of the local model.

In consequence, XCSF can exploit its predictive knowledge controlling the arm based
on the filtered internal hand location estimate x̄n and learning from the filtered location
changes �x̄n in each iteration n. Thus, we expect to reap the benefits of the filtering
process for both learning and movement planning.

The dashed arrows in Figure 1(b) indicate a feedback loop that potentially leads
to an increasing overconfidence of the system in its own predictions. To understand
why, it has to be remembered that the prediction and prediction variance estimates
of XCSF are always in flux during learning. Thus, these estimates need to be handled
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with care. In particular, it may well happen that XCSF temporarily overestimates its
confidence in its own predictions. If this occurs, the system may enter a vicious cycle:
due to the low variance estimates in the predictions, actual sensory feedback may be
completely over-ruled. In effect, learning may stall and XCSF may solely rely on its
own predictions—consequently preventing further learning. To avoid this effect, we
introduce a threshold θβ , which constitutes a lower bound on β, and then Equation (5)
becomes

β = max
(

θβ,
Vn|n-1

Vn|n-1 + σ 2
sensor

)
. (6)

Note that for θβ = 0, Equation (6) becomes equivalent to Equation (5).

3.3 Error and Confidence Estimation

XCSF traditionally estimates the mean absolute deviation of its prediction. However,
a variance estimate is necessary to combine the prediction with other, for example,
sensory information. Thus, XCSF is modified by estimating the standard deviation of
a classifier prediction, rather than the mean absolute deviation. This was proposed
and investigated elsewhere for the XCSF system in function approximation problems
(Loiacono et al., 2008), where it was shown that the performance of XCSF generally
does not suffer from this system change.

In general, given k samples (q̇i , ẋi)i=1...k that a classifier has learned from, the vari-
ance of the error of a single classifier in XCSF may be estimated by using the sequence
of values ẋi and respectively generated predictions ẋp

i

σ̂ 2
k = 1

k

k∑
i=1

(
ẋi − ẋp

i

)2
. (7)

Note that ẋ
p
i specifies the prediction that was generated when the sample was encoun-

tered. It is thus based on the knowledge of the classifier available until that point in
time. A disadvantage of this approach is that the estimate tends to be pessimistic, in
that the true σ 2

k is likely to be smaller because the improvement of the linear model
due to later samples is not taken into account. The advantage, however, is that it is not
necessary to calculate the prediction using all previous samples in every time step. In
consequence, it is not required to keep a history of the previous samples. Rather, the
variance estimate can be updated iteratively online:

σ̂ 2
k+1 = k σ̂ 2

k + (
ẋk+1 − ẋp

k+1

)2

k + 1
. (8)

3.4 Combining Stochastic Estimates across Classifiers

XCSF predicts function values as weighted linear combinations of predictions of the
subset of classifiers that match the current context. In contrast to traditional XCSF,
where these weights are proportional to the classifiers’ fitness, we use the inverses of
the variance estimates as weights, as proposed by Drugowitsch and Barry (2007). The
joint error variance for its prediction, as used in the Kalman filter, is then computed
as the weighted sum, such that highly accurate classifiers contribute more to the final
prediction than inaccurate classifiers.

Application of the Kalman filter requires us to estimate the mean and variance of
the change in task space, ẋ, given a particular executed control q̇. While we have such
an estimate for each classifier separately, we here describe how to combine these local
estimates to provide a single, global estimate.

Evolutionary Computation Volume 21, Number 4 7
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First, let us recapitulate a well-known methodology for extracting a higher fidelity
signal by linear combination of several low-fidelity input signals. Let us therefore
assume that we are given n random variables (Xi)i=1...n (the estimate of each classifier
i) that all share the same mean 〈Xi〉 = x̄ and have variances V (Xi) = σ 2

i . We further
assume that the variances σ 2

i are known to us, but the mean x̄ is not, and shall therefore
be estimated by a linear combination x̂ = ∑

wi Xi/
∑

wi , with some suitable weights
wi, with the hope that x̂ gives us a better (i.e., lower variance) representation of the true
value x̄.

It is obvious that 〈x̂〉 = x̄, but we can also calculate the variance of x̂ in the extreme
case of independent inputs

Vind(x̂) =
∑

w2
i σ 2

i

(
∑

wi)
2 . (9)

In cases where the independence requirement does not hold, we propose to use the
weighted average of the variances instead (it can be shown that this always is an upper
bound on the value of the true combined variance):

Vavg(x̂) =
∑

wi σ
2
i∑

wi

. (10)

A natural choice is to make these weights proportional to those used to combine the
classifier predictions. As described at the beginning of this section, the latter are chosen
to be inversely proportional to the classifier’s variance estimates, such that wi = 1

σ 2
i

. As
a result, the two formulas become identical up to an additional factor n:

Vind(x̂) = 1∑ 1
σ 2

i

(11)

Vavg(x̂) = n∑ 1
σ 2

i

(12)

We have chosen to use the more conservative approach of Equation (12) in our simula-
tions.

4 Results

To evaluate the approach and scrutinize the dependency on the threshold θβ , which
controls the maximum influence of XCSF’s predictive knowledge as detailed above, we
tested performance on an exemplary 2 DOF robot arm system operating in a plane, as
well as an anthropomorphic 7 DOF robot arm in three dimensions. All the reported
results were carried out on a kinematic arm simulation.

4.1 XCSF Settings

In all experiments reported in this paper, we used the XCSF setup that was reported in
Butz, Lanzi, et al. (2008). In particular, we use XCSF with hyper-ellipsoidal conditions,
that is, general Gaussian kernels, which were first introduced in Butz et al. (2006).
Moreover, each classifier learns a linear prediction by means of recursive least squares
approximation. In particular, the parameters of XCSF were set as follows: N = 2,000,
α = 1, β = 0.1, δ = 0.1, ν = 5, χ = 1, θdel = 20, θsub = 20. The GA application threshold
is set to θGA = 200 and the target error is set to ε0 = 10-4. The mutation probability
for each element of the condition is set to one over the number of alleles, for example
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Figure 2: The anthropomorphic arm setup with seven DOFs.

μ = 1/5 for the two-dimensional case and μ = 1/35 for the 7 DOF arm. If mutated,
center values are mutated within the receptive field bounds, the stretches are decreased
or increased in size, at a maximum, doubling or halving their current size. The initial
radius of receptive fields is taken uniformly random from [0.01, 1]. Uniform crossover,
GA subsumption, and tournament selection with τ = 0.4 are applied. Condensation
(Wilson, 1998) commences after 80% of the learning iterations.

4.2 Experimental Setup

The planar 2 DOF arm with limb lengths l1 = 1.4, l2 = 0.9 and angular ranges q1, q2 ∈
[−π, π ] was used to explore the potential of the filtering approach. The maximum
rotation velocity per joint is restricted to 0.01 radians per iteration. The kinematic
specifications of the 7 DOF anthropomorphic arm are illustrated in Figure 2. The arm
has a total length of 100 cm. Rotation axes q1, . . . , q7 are drawn as dashed lines; the
two rotary joints are depicted with a circle. Joint angles are restricted to q1 ∈ [−1.0, 2.9],
q2 ∈ [−1.5, 1.5], q3 ∈ [−1.0, 1.0], q4 ∈ [−0.0, 2.8], q5 ∈ [−0.7, 1.0], q6 ∈ [−1.5, 1.5], q7 ∈
[−0.5, 0.7]. Similar to a human arm, the shoulder has 3 DOFs, the elbow allows for 2
DOFs, and the wrist offers another 2 DOFs.

During learning, the involved controller generates goal locations uniformly ran-
domly within the workspace of the arm. From the beginning, XCSF utilizes its internal
model to strive for the given goal. A goal is assumed to be reached if the arm end-
effector reaches a distance smaller than 5% of its arm length to the goal. If the goal is
reached or 300 iterations have passed without reaching the goal, a new goal location
was generated. In this way, well-balanced exploration was achieved, as proposed else-
where (Stalph and Butz, 2012). Moreover, 0.05 standard deviations in radians of angular
motor noise were added to the motor commands, as also done elsewhere (Stalph and
Butz, 2012). This is particularly necessary during the early stage to bootstrap XCSF’s
learning progress.

4.3 Quality Criteria

To track learning performance, offline testing phases were inserted. In an offline testing
phase, XCSF-learning was switched off, but filtering was performed as usual. Each
testing phase contained 100 episodes with randomly chosen start/goal-pairs (the same
in all testing phases, disjoint to the start/goal-pairs used in learning). The Kalman filter
was set to its initial state (infinite variance) at the beginning of each episode. When the
distance of the hand position to the current goal was less than 0.05, the episode was
considered successful. As during learning, if the goal is not reached within 300 time

Evolutionary Computation Volume 21, Number 4 9
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Figure 3: Learning progress (angular error and mean squared error) during the course
of a full training run. (a) XCSF without filtering at noise levels σsensor = 0 and 0.01; noise
deteriorates performance. (b) Kalman filtering with optimal β bounds at a noise level
σsensor = 0 and 0.05; performance only is only mildly deteriorated due to noise.

steps, the episode was aborted. During this testing period, we evaluated the following
two measures of the system’s path planning capability:

1. Quality. The percentage of successful episodes was multiplied with the average
path efficiency in order to obtain a performance measure in the range 0 . . . 100,
where 0 indicates complete failure and 100 stands for perfect planning. The path
efficiency of an episode is defined as the straight distance from start point to end
point of the trajectory divided by its actual length.

2. Angular Error. The average angle (in radians) between the direction toward
the target and the actually performed change in hand position (averaged over all
time steps of all episodes). Since the measure includes the effect of motor noise,
the theoretically optimal value of 0 is, in practice, never obtained.

4.4 Learning curves

In Figure 3, we give the time course of XCSF performance for typical cases. Figure 3(a)
is the baseline case without filtering. At a noise level of 0.01, learning of the baseline
system already fails completely. With Kalman filtering (Figure 3(b)) and a suitably
chosen θβ (see Section 4.5), XCSF still learns well, even when the noise level is increased
by a factor of 5.

Performances of different setups are subsequently compared by averaging the qual-
ity measures in the offline phases between 300k and 400k learning iterations (the final
phase of an XCSF run is a condensation phase, starting at iteration 400k, during which
redundant classifiers are eliminated).

4.5 Effect of Threshold Parameter θβ

4.5.1 2-DOF Arm
We systematically measured the effect of the proposed threshold θβ on performance
for different levels of position sensor noise. In the plots of Figure 4, the quality mea-
sure (averaged over 20 runs) is shown as a function of θβ for different levels of sensor
noise σsensor. We find that if the noise is almost negligible, values of θβ close to 1 are

10 Evolutionary Computation Volume 21, Number 4
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Figure 4: The quality measure (vertical axis) is plotted against parameter θβ (horizontal
axis) for different noise levels σsensor. (d)–(h) Quadratic fit to selected data points is
shown as shaded area; resulting optimal θβ values are marked with triangles on the
x axis.

advantageous. For higher levels of sensor noise, however, there is a clearly distinguish-
able optimum (triangles on the x-axis, determined by a quadratic fit to the data points
in the shaded area), which moves gradually to smaller values as σsensor increases. The
height of the hill gradually decreases, and beyond a noise level of 0.2, the performance
finally completely collapses for all choices of θβ .

In effect, these results show that XCSF benefits from Kalman filtering with an
appropriate θβ threshold, but may also suffer from delusional cycles, in which it starts
to believe too strongly in its own, inaccurate predictions (small θβ values in Figure 4).
The higher the actual noise of the sensors, the higher the need to prevent the system
from believing too strongly in its own predictions.

The results show that the introduction of a threshold in Kalman filtering is helpful
for a wide range of sensor noise levels. More than 20% SD of the actual arm length noise
must be added to the location sensor to deduce a change in performance.

Evolutionary Computation Volume 21, Number 4 11
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Figure 5: The quality measure on the 7-DOF arm is plotted against parameter θβ for
different noise levels σsensor. (f)–(j) Quadratic fit to selected data points is shown as
shaded area; resulting optimal θβ values are marked with triangles on the x axis.

4.5.2 7-DOF Arm
While it is comparatively simple to reach high precision for a two-joint planar arm, the
7D task generally shows lower baseline performance, since the task generally scales
exponentially in the dimension of the input space. Nonetheless, the XCSF learning
classifier system is able to learn a suitable representation sufficient for accurate control.

The result of an exhaustive search for optimal threshold parameters θβ in Fig-
ure 5 is qualitatively very comparable to the 2-DOF case: For very small sensor noise
σsensor ≤ 0.005 in Figure 5(a) through Figure 5(c), the filtering approach cannot improve
performance, which is confirmed by an optimal θβ = 1. With increasing sensor noise,
the hill of optimal θβ shifts to the left until performance collapses for noise levels beyond
0.1 in Figure 5(k) through Figure 5(l).

4.6 Noise Robustness

Finally, in Figure 6, we have assembled the summary of all experiments so far in
a pair of graphs. They show the quality measure for different noise levels for the
baseline system as well as the Kalman filtering systems with and without threshold
θβ (optimized according to Figures 4 and 5). It can be seen that pure Kalman filtering
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Figure 6: Performance is plotted against different levels of sensor noise for the three
systems under consideration: baseline XCSF, XCSF with Kalman filtering, and XCSF
with bounded Kalman filtering. With noisy sensors, the latter approach still allows for
accurate control where the baseline system fails.

Figure 7: The angular error is plotted against the noise level σsensor with (diamonds)
and without (squares) thresholded Kalman filtering. The data points have been fitted
by tanh functions. The insets show the gain factor in noise tolerance as a function of
admissible angular error.

reduces performance in the regime of moderate sensor noise levels. Only for higher noise
levels does it show a small benefit for the 2-DOF arm, but only when its performance
has already become unacceptably bad. The introduction of a filtering threshold θβ

completely changes the picture. For small σsensor, the baseline is reproduced and the
performance stays almost unaffected for a much wider range (until 0.02 instead of 0.005
for 2-DOF, until 0.01 instead of 0.002 for 7-DOF). Taking 60% as the acceptance limit
for the quality, we see that our proposed system can cope with higher noise levels
compared to the baseline system (10 times higher for 2 DOF, four times higher for 7
DOF).

In Figure 7, we compare in similar fashion the angular error for baseline and
thresholded Kalman filtering for 2-DOF and 7-DOF arms. Note that this data, which
was already published in Kneissler et al. (2012), was obtained using slightly different
XCSF settings (learning steps, population size, and other parameters) and using a faster
offline measurement procedure (only the first 30 steps of a period where evaluated for
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averaging the angular error). The solid and dashed curves were obtained by fitting a
tanh function to the angular error data points of the baseline and thresholded Kalman
filtering system, respectively (in the log(σsensor) domain). The insets show the resulting
gain factor in noise robustness plotted over the acceptance level of the angular error.
It can be seen that noise tolerance is up to 20 times higher in case of the 2-DOF arm.
For the 7-DOF arm, the maximal factor of approximately 10 is reached at the less
challenging end (high error levels accepted). When requiring higher performance, the
noise tolerance factor decreases to five.

4.7 Optimal Thresholds θβ

So far, we have treated the threshold θβ as a heuristically introduced, free parameter and
have optimized it by exhaustive search. Now, we derive a formula to get an estimate
for θβ as a function of σsensor based on reasonable assumptions.

Let us start by assuming that irrespective of the noise level, XCSF eventually is able
to establish a good distribution of classifiers, such that the estimation error becomes
uniformly distributed over the input space. Furthermore, let us assume that in the limit
of infinitely many samples observed, each of the estimators converges to its optimum
(as if it would have seen noise-free samples). This implies that for each noise level, the
root mean squared prediction error is limited uniformly by the same final error ε∞.

The Kalman estimate for the variance Vn, and thus also the mixing constant β, will
then converge as well, say against V∞, β∞. We can calculate these steady-state solutions
by using Equation (2) and setting Vn-1 = Vn = V∞ and σn-1 = ε∞ in Equations (4) and (5):

V∞ = (1 − β∞)(V∞ + ε2
∞) (13)

β∞ = V∞ + ε2
∞

V∞ + ε2∞ + σ 2
sensor

(14)

This system leads to a quadratic equation for β∞ with a single positive solution:

β∞ = 2

1 +
√

1 +
(

2σsensor
ε∞

)2
(15)

Since the average error in the early phases can be expected to be >ε∞, the corre-
sponding Kalman mixing factor should always be larger than β∞. It is thus reasonable
to choose the threshold θβ := β∞ in order to avoid self-delusions without degradation
of the system’s learning capability.

Figure 8(a) shows that the experimentally found optimal θβ fits well with Equation
(15) for ε2

∞ = 10-5. Figure 8(b) shows that for both arm setups, the performance of
the system is not degraded when the theoretical threshold β∞ is used instead of the
optimized values.

4.8 Analysis of the Self-Delusion Effect

To investigate the effect of self-delusional loop that was introduced by feeding the
XCSF predictions back to the Kalman filter, we allowed each individual of the XCSF
population to maintain three independent predictors; one was trained using the clean
position samples (before addition of sensor noise), the second was trained using noisy
samples (before Kalman filtering) and the third was obtained from the output of the

14 Evolutionary Computation Volume 21, Number 4



Evolutionary Computation /EVCO_a_00108-Kneissler July 23, 2013 22:57

Filtering Sensory Information with XCSF

Figure 8: (a) Theoretical β∞ for ε2
∞ = 10-5 and optimized values of threshold parameters

θβ as function of noise level σsensor. (b) Performance comparison: using theoretical value
θβ = β∞ (solid lines) instead of optimized θβ (dashed lines).

Figure 9: Comparison of thresholded Kalman filtering (FF) and two modified systems:
In CC, the input to the Kalman filter comes from predictors that have been trained on
clean samples; in FN the error variance estimation is estimated on predictors trained
on noisy (unfiltered) samples. We plot the quality measure as function of the threshold
θβ for the two different arms and for two selected levels of sensor noise.

thresholded Kalman filtering. In Figure 9, we compare three sets of simulations that
differ in the way that the Kalman filter was used: in setup CC, the Kalman filter was
fed with output from the predictors trained on clean samples; setup FF used the filtered
predictors; in setup FN the prediction of hand position change came from the filtered
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predictors while the error variance prediction came from the noisy predictors of the
matched XCSF subpopulation. A number of observations can be made.

• Effect of Self-Delusion Loop. We suspected in Section 3.2 that the failure of
a system with unbounded Kalman gain β is due to the feeding of information
from predictors that have been trained on filtered samples back into the filter.
This is confirmed by observing that the performance of system FF drops to the
level of the baseline (or even below for the 7-DOF arm) when the threshold
parameter θβ approaches 0. In the setups CC, it stabilizes to a performance
above the baseline for θβ → 0.

• Role of Error Variance Estimation in Self-Delusion Spiraling. The curves
FN, in which only the position prediction comes from predictors that have been
trained on filtered samples, but not the variance estimates, agrees with those
of CC and FF for high θβ , and remains constant for small θβ . For low levels of
sensor noise, its performance is not too far from the maximum of curve FF. Thus,
partially breaking the loop by avoiding variance feedback effectively prevents
delusional-spiraling and leads to a Kalman filtering system that performs well
without thresholding (and thus without the need for optimizing the ad hoc
parameter θβ). Unfortunately, the performance of the FN system quickly drops
with increasing σsensor and is scarcely above baseline in Figure 9(c,d).

• Influence of Thresholding. On the right side of the optimum, from the curves
for the setups FF are quite close to the curves for CC. Only toward lower θβ hold
the performance drop for FF, while it remains constant or further increases for
CC. This can be taken as an indication that the thresholding does not interfere
strongly with the Kalman filtering itself. Furthermore, there appears to exist
a critical value for θβ below which the negative effect of self-delusion starts
getting noticeable and eats up the gains that could still be achieved by stronger
filtering.

4.9 Investigation of Contributions of Different Parts of the System

The positive effect of filtering in the arm-controlling scenario is a combination of three
separate sources:

• Planning. The desired movement direction can be determined more accu-
rately using the filtered hand position instead of the noisy position signal from
the sensors.

• Inverse Kinematics. The Jacobian used to translate desired movement into
desired joint angle changes is more accurate when extracted from predictors
trained on filtered samples.

• Genetic Algorithm. The error variance of predictors trained on noisy samples
is contaminated with the sensor noise. In the filtering system, a predictor’s er-
ror variance is thus closer to the noise-independent part of the prediction error
(which measures to non-linearity of the target function for well-trained esti-
mators). Therefore, its fitness estimate (derived from estimated error variance)
is much better suited to guide the evolutionary algorithm.
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2-DOF 7-DOF

Figure 10: Contribution and interdependency of the three sources for performance
degradation due to sensor noise. The performance for eight different setups is plot-
ted along the y axis. The setup name is a combination of the letters C (for clean) and
N (for noisy). The first letter stands for the hand position required for determining the
direction toward the goal in planning. The second letter indicates if the predictors for
estimating the inverse kinematics have been trained with clean or noisy samples. The
third letter indicates which signal is used to estimate classifier fitness, used for guiding
the evolutionary algorithm. Thus, in setup CCC, there is no sensor noise; the data point
NNN illustrates the performance of the baseline system for noisy sensor signals. (In all
experiments: σsensor = 0.1.)

In order to investigate the individual contributions of the three effects and their
dependencies, we trained two predictors for each classifier: one trained on clean
samples, the other trained on noisy samples (before/after addition of sensor noise).
This was done in a modified baseline system (no filtering) in which we separately
controlled which of the two sets of predictors was used at the three places described
above. The result is given in Figure 10; it shows all eight possible combinations, la-
beled CCC. . .NNN (standing for planning, inverse kinematics, and genetic algorithm,
as above). It shows, consistently for both arm setups, that the component that is most
severely affected by noise is the genetic algorithm. The inverse kinematics is more
critical than the planning in the 2-DOF case and the converse is true for the 7-DOF arm.

To verify in how far we can overcome the effect of noise by filtering, for the three
described sources, we made similar changes to a system with thresholded Kalman
filtering, allowing a third set of predictors that were trained on filtered samples. The
input to the Kalman filter was always taken from the predictors that were fed with
filtered samples. The threshold θβ was set to optimal values according to Figure 8(a).

In Figure 11, we give the performance as a function of the sensor noise level σsensor.
As can be seen, the genetic algorithm is affected the earliest of all three (i.e., note
the steep drop of curve CCN in the range 0.002 ≤ σsensor ≤ 0.01) while planning and
inverse kinematics appear to be deteriorated only at much higher noise levels (around
σsensor ≈ 0.1). Compared to the baseline curve NNN, we see that the effect on the
evolutionary algorithm is the only reason for failure under moderately noisy conditions.
Only later does the CCN curve depart from NNN, which occurs when a negative effect
on planning and inverse kinematics becomes noticeable (at σsensor ≈ 0.02).

Curiously, the deterioration due to noise in the genetic algorithm appears to become
stable at σsensor ≥ 0.05, and even extreme noise levels (in the order of magnitude of the
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Figure 11: Role of Kalman filtering for the three sources for performance degradation
due to sensor noise. The performance with threshold Kalman-filtering is plotted over
noise level σsensor for seven different setups. The setup name is encoded as a combination
of the letters C (for clean), N (for noisy), and F (for filtered). The position in the setup
name is encoded as in Figure 10. Thus, NNN is the baseline system, the effect of filtering
on the evolutionary algorithm alone can be seen by comparing CCN with CCF, etc.

total arm length) do not cause further performance loss. This is different for the effect of
noise on planning and inverse kinematics: performance gradually drops to 0 when noise
is applied to these components of the system. So while the evolutionary subsystem is
already affected by low noise levels (compared to the rest of the system), it appears not
to fail completely, irrespective of how much noise is present.

The dotted lines show that filtering drastically improves performance for all three
sources. With the exception of curve CCF (genetic algorithm) in the 7-DOF case (Fig-
ure 10(b)), quality stays stable up to or even beyond a noise level of 0.1.

5 Summary and Conclusion

The goal of this work was to improve the performance of XCSF in noisy arm control sce-
narios. To do so, we have introduced information content based weighting of classifier
predictions and an online estimation of the prediction error variance. To incorporate
Kalman filtering, the evolving forward velocity kinematics model of XCSF was used to
generate state predictions and thus filter the incoming sensory information. The per-
formance results suggest that XCSF indeed runs into a self-delusional spiral, in which
it may overfilter the incoming sensory information. With the setting of an appropriate
threshold to prevent this effect, it was shown that XCSF can cope much better with
sensor noise (up to 20th times higher noise levels, depending on circumstances and
performance criterion).

In further investigations, the self-delusional feedback loop was confirmed as the
source for the complete failure of Kalman filtering without thresholding. We identified
the evolutionary algorithm as the limiting factor for performance degradation due to
sensory noise. The other components of the system were found to be inherently much
more noise-tolerant. By the means of thresholded Kalman-filtering, the noise-resistance
of the evolutionary algorithm becomes comparable to the other components of the
system. The dependency of the threshold parameter on the noise level could be derived
theoretically, allowing this setting to be tuned automatically.
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This finding encourages us to further explore the relation to Bayesian information
processing with XCSF. We aim to derive a fitness criterion for the predictors that is
inherently less deteriorated by sensor noise, promising an overall improvement of
fitness guidance in XCSF.

We expect that the presented approach is also applicable to other prediction scenar-
ios involving noisy sensors and possibly actuators. The setup, however, will generally
be the same and the message of this paper appears to apply in a general sense: given that
XCSF is predicting sensory information changes over time, its learning performance,
its predictive capabilities, and possibly (dependent on the setup), its inverse control
capabilities, can be improved by exploiting the predictive knowledge of XCSF, filtering
the incoming sensory information online.
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