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ABSTRACT
It was previously shown that the control of a robot arm
can be efficiently learned using the XCSF classifier system.
So far, however, the predictive knowledge about how actual
motor activity changes the state of the arm system has not
been exploited. In this paper, we exploit the forward veloc-
ity kinematics knowledge of XCSF to alleviate the negative
effect of noisy sensors for successful learning and control. We
incorporate Kalman filtering for estimating successive arm
positions iteratively combining sensory readings with XCSF-
based predictions of hand position changes over time. The
filtered arm position is used to improve both trajectory plan-
ning and further learning of the forward velocity kinematics.
We test the approach on a simulated, kinematic robot arm
model. The results show that the combination can improve
learning and control performance significantly. However, it
also shows that variance estimates of XCSF predictions may
be underestimated, in which case self-delusional spiraling ef-
fects hinder effective learning. Thus, we introduce a heuris-
tic parameter, which limits the influence of XCSF’s predic-
tions on its own further learning input. As a result, we
obtain drastic improvements in noise tolerance coping with
more than ten times higher noise levels.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; G.1.2 [Numeri-
cal Analysis]: Approximation—approximation of surfaces
and contours, least squares approximation, nonlinear ap-
proximation; I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
The learning classifier system for function approximation

XCSF [27] – a derivative of the original XCS learning clas-
sifier system [23] – approximates functions by a population
of locally-weighted piece-wise linear approximators. Each
approximator is usually referred to as a classifier, whose
condition determines its activity and thus its local influ-
ence given a current input. The classifier prediction is a
linear approximation of the encountered input-output value
combinations. Recently, it was shown [9, 21] that XCSF
shares many similarities with the locally-weighted projec-
tion regression (LWPR) algorithm [22], which is well-known
in the neuro-robotics literature [17, 18]. In this perspective,
XCSF classifiers may be considered as neural structures that
specify local receptive fields. The linear predictions of the
currently active receptive fields of an XCSF population are
combined and weighted dependent on their relative strength.

Facing robotic control problems, XCSF was successfully
applied to arm control problems up to seven degrees of free-
dom [19]. XCSF’s capabilities were evaluated based on the
control performance of the system. In particular, XCSF
was trained to learn the forward velocity kinematics of the
controlled arm, mapping changes in joint angles to changes
in hand locations given the current arm configuration. Its
knowledge was only used to generate inverse control com-
mands, inverting the locally linear mappings for generating
directional hand movements. The forward knowledge, on
the other hand, has not been further exploited in any way
so far.

In this paper, we exploit the forward knowledge of the
XCSF system. While learning with XCSF, we filter the suc-
cessive perceptions of the simulated robot arm by means
of Kalman filtering techniques. To do so, XCSF’s knowl-



edge has to be exploited for deriving its current predictions
about action-effects, but also its current estimate of its cer-
tainty about its prediction. Thus, XCSF’s error estimate
needs to reflect the variance in its current prediction, as in-
vestigated elsewhere [12, 11, 16]. When implementing the
filtering technique without any precautions, we show that
the system may learn from over-filtered sensory information
and thus may get stuck in a self-delusional loop, where XCSF
over-believes its own predictions. When effectively limiting
the estimated prediction confidence, however, we can show
that the resulting XCSF system can deal with much larger
measurement noise, still learning its bidirectional forward
prediction and inverse control structures effectively.

We now first give an overview of XCSF for arm control.
Next, we specify the necessary modifications and the new
interaction cycle when XCSF applies Kalman filtering in
the arm control scenario. We scrutinize the performance
of XCSF on two simulated arm models with two and seven
degrees of freedom, respectively. As the main result, we
show that with proper settings XCSF can solve problems
with a higher magnitude of sensory noise. Summary and
future work considerations conclude the paper.

2. XCSF FOR ARM CONTROL
Learning Classifier Systems (LCSs) were originally intro-

duced by John H. Holland [13]. The accuracy-based XCS
learning classifier system was introduced by Stewart W. Wil-
son [23]. XCS was successfully applied in binary classifica-
tion tasks [23, 4], data mining problems [2, 25], and function
approximation problems [26, 27, 15, 7], among others [3]. In
the real-valued function approximation case, XCS is termed
XCSF, essentially constituting an iteratively learning regres-
sion system.

We focus on the XCSF system [27, 7] and its potential
for learning the forward velocity kinematics of a robot arm
for inverse control [5, 10, 19]. The considered XCSF setup
is based on the available implementation [20] and the de-
tailed descriptions available in the literature [5, 7, 19]. For
introducing the novel aspects into the system, several mod-
ifications were necessary. We now first specify the relevant
aspects and then detail the applied modifications.

2.1 Learning Forward Velocity Kinematics
In general, XCSF learns to approximate multi-dimensional

functions using piece-wise, linear models. It evolves a popu-
lation of classifiers, where each classifier covers a particular
subspace of the input space, which may be termed the recep-
tive field of a classifier. Moreover, each classifier learns a lin-
ear model for approximating the function surface in its sub-
space. The linear model of a classifier is typically adapted
by means of recursive least squares [7, 14]. The receptive
field, that is, the condition part of a classifier, is evolved
over time by a steady-state genetic algorithm (GA). We use
general Gaussian kernel-based receptive fields, yielding el-
lipsoidal regions of influence for a classifier. The population
of classifiers overall yields a function approximation surface.
The goal of XCSF is to minimize the absolute or squared dif-
ference between this surface and the encountered function.

XCSF is easily modifiable to learn the velocity kinematics
of a robot arm. A robot arm may be characterized by its
configuration space C ⊂ Rn and its task space T ⊂ Rm of
the end-effector. While the task space is usually encoded in
a Cartesian coordinate system, the configuration space may

be encoded by joint angles. Due to the arm kinematics, a
configuration q ∈ C uniquely determines the corresponding
end-effector location in task space x ∈ T . This forward
kinematics mapping can be expressed as a typically non-
linear function

x = f(q). (1)

In the literature, XCSF has been mainly applied for learning
the forward velocity kinematics of a robot arm. Given the
current joint angle configuration q, the velocity kinematics
can be written as

ẋ = J(q)q̇ (2)

where J(q) = ∂f/∂q is the m × n Jacobian matrix. When
XCSF learns the velocity kinematics, it thus partitions the
configuration space C with its receptive fields to approxi-
mate the locally linear Jacobians J(q) given the specified
configuration q.

To control the robot arm, a goal direction needs to be
translated into necessary control commands. Given an arm
with redundant degrees of freedom, that is, n > m, the
inverse is not uniquely defined. That is, the inverse of
J is under-determined. Here, we pick the pseudo-inverse
or Moore-Penrose matrix [1], which represents the solution
with minimum norm of this inverse kinematics problem.
However, it was shown elsewhere [8, 19] that other redun-
dancy resolution techniques can be applied, such as applying
additional movement constraints.

To sum up, XCSF learns the mapping from configuration
space velocities q̇ to task space velocities ẋ, depending on
the current configuration q. XCSF is well-suited for this
task, since the algorithm is able to cluster a context space
while learning a function that operates on a different space,
but depends on the context. In our task the current config-
uration is the context and XCSF clusters the configuration
space with rotating hyper-ellipsoidal RFs [7]. In turn, each
classifier approximates the Jacobian matrix using linear re-
cursive least squares approximations. Given a particular
configuration, the classifiers whose conditions overlap with
the current configuration are considered; their linear Jaco-
bians are combined in a weighted manner; finally, the re-
sulting Jacobian matrix is inverted for generating a control
signal.

2.2 Error and Confidence Estimation
While XCSF traditionally estimates the mean absolute de-

viation of its prediction, a variance estimate is necessary to
combine the prediction with other, e.g., sensory information.
Thus, XCSF is modified by estimating the standard devia-
tion of a classifier prediction, rather than the mean absolute
deviation. This was proposed and investigated elsewhere for
the XCSF system in function approximation problems [16],
where it was shown that the performance of XCSF does gen-
erally not suffer from this system change.

In general, given k samples (q, x) a classifier has learned
from, the variance of the error of a single classifier in XCSF
may be estimated by using the sequence of values xi and
respectively generated predictions xpi :

σ̂2
k =

1

k

k∑
i=1

(xi − xpi )2. (3)

Note that xpi specifies the prediction that was generated



when the sample was encountered. It is thus based on the
knowledge of the classifier available until that point in time.
A disadvantage of this approach is that the estimate tends
to be pessimistic, in that the true σ2

k is likely to be smaller
because the improvement of the linear model due to later
samples is not taken into account. The advantage, however,
is that it is not necessary to calculate the prediction using all
previous samples in every time step. In consequence, it is not
required to keep a history of the previous samples. Rather,
the variance estimate can be updated iteratively online:

σ̂2
k+1 =

k σ̂2
k + (xk+1 − xpk+1)2

k + 1
. (4)

With this variance estimation, we are then able to com-
bine different sources of information to generate more state
estimations. In particular, we will combine the predictions
with the sensory feedback in an information-theoretic fash-
ion. We expect that the filtered sensor information will (i)
generate more accurate learning signals and will thus (ii)
improve behavioral control.

2.3 XCSF Settings
In all experiments reported in this paper, we used the

XCSF setup that was reported in [7]. In particular, we use
XCSF with rotating, hyper-ellipsoidal conditions, that is,
general Gaussian kernels, which were first introduced in [6].
Moreover, each classifier learns a linear prediction by means
of recursive least squares approximation. In particular, the
parameters of XCSF were set as follows: N = 2000, α = 1,
β = 0.1, δ = 0.1, ν = 5, χ = 1, θdel = 20, θsub = 20. The
GA application threshold θGA = 200. The target error is set
to ε0 = 10−4. The mutation probability for each element of
the condition is set to one over the number of alleles, e.g.,
µ = 1/5 for the two-dimensional case and µ = 1/35 for
the seven degree of freedom arm. If mutated, center values
are mutated within the receptive field bounds, the stretches
are decreased or increased in size maximally doubling or
halving their current size; the angles are uniformly changed
by maximally 45◦. The initial radius of receptive fields is
taken uniformly random from [0.01, 1]. Uniform crossover,
GA subsumption, and tournament selection with τ = 0.4
are applied. Condensation [24] commences after 80% of the
learning iterations.

3. FILTERING SENSORY INFORMATION
With the capability of generating predictions and estimat-

ing the confidence in these predictions by means of variance
estimates, we now proceed in specifying how the sources of
information are combined online in the proposed setup. We
first provide general background about combining stochastic
information. Next, we detail Kalman filtering and partic-
ularize how it is applied in the XCSF setting. Finally, we
specify the exact iterative processing of sensory information,
predictions, and feedback over time.

3.1 Combining Stochastic Information
First, let us recapitulate a well known methodology for

extracting a higher fidelity signal by linear combination of
several low-fidelity input signals. Let us therefore assume
that we are given n random variables (Xi)i=1...n that all
share the same mean 〈Xi〉 = x̄ and have variances V (Xi) =
σ2
i . We further assume that the variances σ2

i are known to

us, but the mean x̄ is not and shall therefore be estimated
by a linear combination

x̂ =

∑
wiXi∑
wi

,

with some suitable weights wi, with the hope that x̂ gives
us a better (i.e. lower variance) representation of the true
value x̄.

It is obvious that 〈x̂〉 = x̄, but we can also calculate the
variance of x̂ in the extreme case of independent inputs:

Vind(x̂) =

∑
w2
i σ

2
i

(
∑
wi)

2 . (5)

In cases where the independence requirement does not
hold, we propose to use the weighted average of the vari-
ances instead (it can be shown that this always is an upper
bound on the value of the true combined variance):

Vavg(x̂) =

∑
wi σ

2
i∑

wi
. (6)

A natural choice for the weights is to set them propor-
tional to the information content of the corresponding ran-
dom variable, that is, wi = 1

σ2
i

. In this case, the two formulas

become identical up to an additional factor n:

Vind(x̂) =
1∑

1
σ2
i

(7)

Vavg(x̂) =
n∑

1
σ2
i

(8)

XCSF predicts function values as weighted linear combina-
tions of predictions of the subset of classifiers that match the
current context. In our implementation, we apply as weight
the ones given by the inverse of the variance estimate of each
classifier. The joint error variance for its prediction is then
computed according to (8).

3.2 Kalman Filtering
Filtering can be seen as a procedure for transforming a

noisy time series (x̃n) to a smoothed time series (x̄n) that
(hopefully) is closer to the sequence of ”true” values (xn).
Kalman filtering does that by elegantly combining the fol-
lowing two sources of information:

• the filtered value x̄n−1 from the previous time step,
corrected by the predicted change ∆xpn between steps,
and

• the sensor readings x̃n for the current time step.

The calculation of the new estimates x̄n and variance Vn
can be split into two steps.

Prediction step:

x̄n|n−1 = xn−1 + ∆p
x (9)

Vn|n−1 = Vn−1 + σ2
n−1 (10)

Update step:

x̄n = x̄n|n−1 + β (x̃n − x̄n|n−1) (11)

Vn = (1− β)Vn|n−1 (12)



For a proper combination of the sensory feedback and the
predicted internal state estimation, the smoothing parame-
ter β is used. It can be specified by weighing the respective
information contents. Thus, it is given by:

β =
Vn|n−1

Vn|n−1 + σ2
sensor

, (13)

where σsensor denotes the standard deviation of the sensory
noise. For β = 1, there is no filtering at all, while for β = 0
the new measurement is completely ignored. If the variance
of several consecutive delta position estimates σ2

n−k, . . . , σ
2
n

are all very small, the variance estimate Vn converges quickly
towards a value close to 0.

3.3 Filtering with XCSF
It has to be remembered that the prediction and predic-

tion variance estimates of XCSF are always in flux dur-
ing learning. Thus, these estimates need to be handled
with care. In particular, it may well happen that XCSF
temporarily over-estimates its confidence in its own predic-
tions. If this occurs, XCSF may enter a rather vicious circle:
due to its low variance estimates in its predictions, it may
completely over-rule the actual sensory feedback. In effect,
learning may stall and XCSF may believe in its own predic-
tions – consequently preventing further learning. To avoid
this effect, we introduce a threshold θβ , which constitutes a
lower-bound on β in (13). The overall flow of information is
thus modified as follows.

Fig. 1 specifies the information flow in XCSF without fil-
tering, as it was previously employed, for example, in [5, 8,
19]. XCSF interacts with a “controller” module, which reads
sensory information from and executes motor commands in
the associated arm model. Motor noise and sensor noise
may be added in this process. Given the current joint angle
state of the arm qn−1, XCSF generates a set of matching
classifiers. Using this set and a given desired direction of
the hand ∆x∗n = g − x̃n−1 towards goal g, XCSF generates
a control command ∆q∗n by means of its locally linear, in-
verse velocity kinematics model. Motor noise is added to
this motor command, which is then sent to the arm model.
In return, the next angular state qn is perceived. Note that
noise may be added to the perceived angular states, which
may also be filtered. However, since the changes in angu-
lar states directly depend on the ∆qn motor control signal,
simple linear filtering may be applied in this case, indepen-
dent of XCSF. Thus, we do not add noise to the angular
states in this work. Additionally, the consequent location of
the end-effector xn is perceived and noise is added, yield-
ing x̃n. The information is thus complete to learn from the
described interaction using qn−1 as the context signal for
matching, and ∆qn = qn−qn−1 as well as ∆x̃n = x̃n− x̃n−1

for the prediction and resulting error and fitness updates.
The described original XCSF setup for learning and goal-

directed behavior control is modified as shown in Fig. 2.
The added Kalman filtering process essentially filters the
successive perceptions of end-effector locations x̃n by means
of XCSF’s forward velocity kinematics model. Previously,
the change in end effector state was directly determined by
the noisy location signal, that is, ∆x̃n = x̃n−x̃n−1. Now the
change in the end effector location is calculated by filtering
the location feedback x̃n with the state prediction generated
by the locally linear forward velocity kinematics model of
XCSF, that is, x̄n−1 + ∆xpn, additionally considering the

Figure 1: Classic setup for XCSF-based arm control
and learning.

Figure 2: Setup with Kalman filtering to improve
robustness against noise on the hand position sen-
sors, and thus to improve the noise-robustness of
XCSF during learning and arm control.

variance estimate σ2
n of the local model. In consequence,

XCSF can exploit its predictive knowledge controlling the
arm based on the filtered internal hand location estimate
x̄n and learning from the filtered location changes ∆x̄n in
each iteration n. Thus, we expect to reap the benefits of the
filtering process for both, learning and movement planning.

4. RESULTS
To evaluate the approach and scrutinize the dependency

on the threshold θβ , which controls the maximum influence
of XCSF’s predictive knowledge as detailed above, we tested
performance on an exemplary two degree of freedom robot
arm system, working in a two-dimensional plane. Finally,
we also provide results on an anthropomorphic seven degree
of freedom robot arm. All the reported results were carried
out on a kinematic arm simulation.

4.1 Experimental Setup
The planar 2-DoF arm with limb lengths l1 = 1.4, l2 = 0.9

and angular ranges q1, q2 ∈ [−π, π] was used to explore the
potential of the filtering approach. The maximum rotation
velocity per joint is restricted to 0.01 radians per iteration.
The kinematic specifications of the 7-DoF anthropomorphic
arm are illustrated in Fig. 3. The arm has a total length
of 100 cm. Rotation axes q1, . . . , q7 are drawn as dashed
lines; the two rotary joints are depicted with a circle. Joint
angles are restricted to q1 ∈ [−1.0, 2.9], q2 ∈ [−1.5, 1.5], q3 ∈
[−1.0, 1.0], q4 ∈ [−0.0, 2.8], q5 ∈ [−0.7, 1.0], q6 ∈ [−1.5, 1.5],



Figure 3: The seven degree of freedom anthropo-
morphic arm setup used in our simulation.

q7 ∈ [−0.5, 0.7]. Similar to a human arm, the shoulder has
three DoFs, the elbow allows for two DoFs, and the wrist
offers another two DoFs.

During learning, the involved controller generates goal
locations uniformly randomly within the workspace of the
arm. From the beginning, XCSF utilizes its internal model
to strive for the given goal. A goal is assumed to be reached
if the arm end-effector reaches a distance smaller than 5% of
its arm length to the goal. If the goal is reached or 200 itera-
tions have passed without reaching the goal, a new goal loca-
tion was generated. In this way, well-balanced exploration
was achieved, as proposed elsewhere [19]. Moreover, 0.05
standard deviations in radians of angular motor noise were
added to the motor commands, as also done elsewhere [19].
This is particularly necessary early during learning to foster
sufficient exploration.

4.2 Quality Criterion
To track learning performance, offline testing phases were

inserted. In an offline testing phase, XCSF-learning was
switched off, but filtering was performed as usual. Each
testing phase contained 100 episodes with randomly cho-
sen start/goal-pairs (the same in all testing phases). The
Kalman filter was set to its initial state (infinite variance)
at the beginning of each episode. Each episode consisted
of 30 time steps. During this testing period, we evaluated
the angle between the direction towards the target and the
actually performed change in hand position as a quality cri-
terion. The measure includes the effect of motor noise but
excludes uncertainty due to sensor noise. We report the
mean of this angle (averaged over all steps of all episodes of
a testing phase) as a measure for the quality of the system’s
path planning capability.

4.3 Validity of Error Variance Estimation
First, we investigated how much our conservative online

prediction error measure overestimates the true value. As
demonstrated in Fig. 4, during the main phase of learning
up to about 110 k learning steps, the online estimate agrees
very well with the true error variance (which was measured
in the offline phase). Thus, XCSF estimates its prediction
error rather accurately, when compared to the sample real
error between filtered estimate and actual real value.
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Figure 4: The online predicted and offline measured
error variance (noise level σsensor = 0.01) shows that
XCSF is able to correctly approximate this value.

4.4 Effect of Threshold Parameter θβ

Next, we measured the effect of the proposed threshold θβ
on performance for different levels of position sensor noise.
In the plots of Fig. 5 the mean angular quality measure (av-
eraged over ten independent experiments and over the offline
phases between 300 k and 400 k learning steps) is shown as
a function of θβ for different levels of sensor noise σsensor.
We find that if the noise is almost negligible, values of θβ
close to 1 are advantageous. For higher levels of sensor noise,
however, there is a clearly distinguishable optimum, which
moves gradually to smaller values as σsensor increases (high-
lighted with arrows). When further increasing the noise level
above a critical value (around 0.05), the place of the opti-
mum ceases shifting and, instead, the depth of the valley
starts reducing. For even higher noise levels, the perfor-
mance finally completely collapses for all choices of θbeta.

In effect, these results show that XCSF benefits from
Kalman filtering with appropriate θβ threshold, but may
also suffer from delusional cycles, in which it starts to be-
lieve too strongly in its own, inaccurate predictions (small
θβ values in Fig. 5). The smaller the actual noise in the sys-
tem, the higher the need to prevent XCSF from believing too
strongly in its own predictions. Moreover, the results show
that XCSF can deal with a considerable amount of noise
when incorporating Kalman filtering principles. Only when
adding more than 20% standard deviation of the actual arm
length noise to the location sensor, hardly any performance
improvement is deducible any longer.

4.5 Noise Robustness
In Fig. 6, we give the time course of XCSF performance

for typical cases. Fig. 6(a) is the baseline case without fil-
tering. At a noise level 0.01, learning of the baseline system
already fails completely. With Kalman filtering (Fig. 6(b))
and optimal θβ (from Fig. 5) XCSF still learns well at this
noise level and even when the noise level is increased by a
factor of 5.

Finally in Fig. 7 we have assembled the summary of all
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Figure 5: The angular error measure (vertical axis)
is plotted against parameter θβ (horizontal axis) for
different noise levels σsensor. (a)-(g) Optimal θβ val-
ues are marked with arrows.

experiments with the two degree of freedom arm in a single
graph. It shows the angular performance for different noise
levels for the baseline system as well as the Kalman filtering
systems with and without threshold θβ . It can be seen that
pure Kalman filtering reduces performance in the regime of
moderate sensor noise levels. Only for higher noise levels
it shows some benefit, but only when its performance has
already become unacceptably bad. The introduction of a
filtering threshold θβ completely changes the picture. For
small σsensor, the baseline is reproduced and the performance
stays acceptable for a much wider range. Taking an angular
quality of 0.2 as acceptance limit, we see that our proposed
system can cope with a noise level of 0.1 while the baseline
system starts failing at 0.05 already.

4.6 7-DoF Anthropomorphic Arm
We now take the analysis one step further and run the

same experiments on the anthropomorphic, seven degree of
freedom arm that acts in a three-dimensional space. The in-
creased dimensionality not only increases the learning com-
plexity, but also affects the control performance. While it
is comparably simple to reach high precision for a two joint
planar arm, the 7D task generally shows higher error mea-
sures. Nonetheless, the XCSF learning classifier system is
able to learn a suitable representation that is sufficient for
accurate control.
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Figure 6: Learning progress during the course of a
full training run. (a) XCSF without filtering and
noise levels σsensor = 0 and 0.01; noise deteriorates
performance. (a) Kalman filtering with optimal β
bounds; good performance is achieved for σsensor =
0.01 and even higher noise magnitude of 0.05.

Figure 7: Comparison of baseline performance (no
filtering), Kalman filtering, and Kalman filtering
with optimal θβ. The latter approach allows for ac-
curate control with more than ten times higher noise
levels.
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Figure 8: The angular error measure on the 7-DoF
arm is plotted against parameter θβ for different
noise levels σsensor. (a)-(g) Optimal θβ values are
marked with arrows.

Again, the optimal θβ bounds are unknown and intense
search reveals similar results than previous experiments for
the 2-DoF arm. For very small sensor noise σsensor = 0.001
in Fig. 8(a) the filtering approach cannot improve perfor-
mance, which is confirmed by an optimal θβ = 1. With
increasing sensor noise, the valley of optimal filtering shifts
to the left until performance collapses for noise levels be-
yond 0.1 in Fig. 8(g)-(i). The general trend of the optimal
θβ bound is summarized in Fig. 9 for the 2-DoF arm and
the 7-DoF arm.

The Comparison of baseline XCSF, XCSF with Kalman
filtering, and XCSF with Kalman filtering including the ap-
proximately optimal bound β in Fig. 10 reveals that success-
ful control is achieved with large magnitudes of sensor noise
when XCSF’s knowledge is used to refine subsequent sensor
readings.

5. SUMMARY AND CONCLUSION
The goal of this work was to improve the performance

of XCSF in arm control scenarios. To do so, we have in-
troduced information content based weighting of classifier
predictions. Moreover, the prediction error variance needed
to be estimated online, as was proposed previously in [16].
To incorporate Kalman filtering, the evolving forward ve-
locity kinematics model of XCSF was used to generate state
predictions and thus filter the incoming sensory informa-
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Figure 9: Optimal threshold parameter θβ as func-
tion of noise level σsensor for the 2DoF robot arm in
2D and the 7DoF arm in 3D.

Figure 10: The control error is plotted against differ-
ent levels of sensor noise for the three systems under
consideration: baseline XCSF, XCSF with Kalman
filtering, and XCSF with bounded Kalman filtering.
With noisy sensors, the latter approach still allows
for accurate control where the baseline system fails.

tion. The performance results have shown that XCSF may
run into a self-delusional spiral, in which it may over-filter
the incoming sensory information. With the setting of an
appropriate threshold to prevent this effect, it was shown
that XCSF can face partially more than ten-times higher
noise levels, dependent on the considered performance crite-
rion. Similar results for the anthropomorphic, seven degree
of freedom arm model confirmed the advantage of this ap-
proach.

At the moment, we study options of replacing the thresh-
old θβ with more inherent XCSF measures, by estimating
the variance even more pessimistically than at the moment.
Also, the relation to Bayesian information processing with
XCSF is explored further. We expect that this approach
will be applicable also to other prediction scenarios involving
noisy sensors and possibly actuators. The setup, however,
will generally be the same and the message of this paper ap-



pears to apply in a general sense: given XCSF is predicting
sensory information changes over time, its learning perfor-
mance, its predictive capabilities, and possibly (dependent
on the setup) its inverse control capabilities can be improved
by exploiting the predictive knowledge of XCSF, filtering the
incoming sensory information online.
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