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Projection Filtering With Observed State Increments
With Applications in Continuous-Time
Circular Filtering

Anna Kutschireiter

Abstract—Angular path integration is the ability of a system to
estimate its own heading direction from potentially noisy angular
velocity (or increment) observations. Non-probabilistic algorithms
for angular path integration, which rely on a summation of these
noisy increments, do not appropriately take into account the re-
liability of such observations, which is essential for appropriately
weighing one’s current heading direction estimate against incoming
information. In a probabilistic setting, angular path integration can
be formulated as a continuous-time nonlinear filtering problem
(circular filtering) with observed state increments. The circular
symmetry of heading direction makes this inference task inherently
nonlinear, thereby precluding the use of popular inference algo-
rithms such as Kalman filters, rendering the problem analytically
inaccessible. Here, we derive an approximate solution to circular
continuous-time filtering, which integrates state increment obser-
vations while maintaining a fixed representation through both state
propagation and observational updates. Specifically, we extend the
established projection-filtering method to account for observed
state increments and apply this framework to the circular filtering
problem. We further propose a generative model for continuous-
time angular-valued direct observations of the hidden state, which
we integrate seamlessly into the projection filter. Applying the
resulting scheme to a model of probabilistic angular path integra-
tion, we derive an algorithm for circular filtering, which we term
the circular Kalman filter. Importantly, this algorithm is analyti-
cally accessible, interpretable, and outperforms an alternative filter
based on a Gaussian approximation.

Index Terms—Bayesian methods, nonlinear filtering, circular
filtering, sensor fusion, continuous-time estimation, stochastic
processes.

I. INTRODUCTION

COMPASS is an immensely useful tool for a traveler try-
ing to find their way in a barren and featureless landscape.
Absent such a tool, the traveler must employ dead reckoning,
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using what they roughly know about how often and how much
they have turned, and summing up those turns to maintain an in-
ternal sense of their spatial orientation. Angular path integration,
i.e., estimation of heading direction or orientation based on angu-
lar self-motion cues, plays an essential role in spatial navigation
of humans, other animals and robots [1], [2]. Imperfect sensors
make angular path integration an inherently noisy process, and
inevitably lead to an accumulation of error in the heading esti-
mate over time. Other cues, such as those from visual landmarks,
can help correct the estimate’s error, despite being also noisy and
ambiguous. Importantly, properly combining path integration
with these external cues requires a reliability-weighted update of
the orientation estimate. Computing with uncertainties in such
a strategic way is a hallmark of dynamic Bayesian inference,
and calls for a probabilistic description. Our goal in this work
is to derive a dynamic probabilistic algorithm for angular path
integration.

It is well known that many organisms are able to maintain
an internal compass, which they update by self-motion cues.
Since the discovery of orientation-selective head-direction cells
in rats [3], and, more recently, the heading direction circuit in
Drosophila [4], theoretical efforts to unravel the mechanism
of angular path integration in the brain have highlighted the
role of angular velocity observations of self-initiated turns [5],
[6], e.g., from proprioceptive or vestibular feedback, or from
visual flow. Current theories suggest that these biological sys-
tems implement angular path integration by neural network
motifs called ring attractors [6], [7]. Such networks maintain
a heading direction estimate through sustained neural activity,
but lack the ability to simultaneously represent the estimate’s
certainty. However, the question of whether such biological
systems indeed only operate with single point estimates or
instead perform probabilistic inference has been hampered by
the lack of a probabilistic algorithm for path integration in the
brain. The reason for this is the complex set of conditions that
are required of such an algorithm: (i) the state-space is circular,
(ii) the path integration must operate with a continuous time
stream of inputs, (iii) it must maintain a fixed representation
of the underlying probability distribution, in line with the ex-
pectation that, within a certain area of computation, the brain
maintains a similarly fixed representation e.g., in terms of a
parametric [8] or sampling-based [9] representation, and (iv) in
addition to angular velocity observations, (noisy) direct angular
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observations (e.g., visual landmarks) may be present, which
need to be integrated accordingly.

One approach to designing an algorithm that satisfies these
conditions is to consider it in the broader context of continuous-
time filtering, which aims to continuously update a posterior
distribution over a dynamically evolving hidden state variable
from noisy observational data. From condition (i), a circular
state-space implies that the underlying filtering task is nonlinear,
which precludes the use of popular linear schemes such as the
Kalman filter [10], [11]. Furthermore, the solution to this so-
called circular filtering problem is analytically intractable [12],
and needs to be approximated. The approximation we derive here
goes beyond existing circular filtering algorithms [13]-[15] (see
also the review by Kurz ez al.[12]) by both considering increment
observations — like observations of angular velocity — and
by addressing a continuous stream of observations (condition
(ii)). Furthermore, while these previous approaches changed the
representations used between prediction and update steps, ours
uses a fixed representation, satisfying our condition (iii).

A recent promising approach to circular filtering [ 16] supports
continuous-time state transitions, but is limited to discrete-time
and direct (rather than increment) observations. Their method is
based on projection filtering [17], [18], a rigorous approach that
combines nonlinear filtering with information geometry. The
idea behind projection filtering is to approximate the posterior
between consecutive discrete-time observations with a paramet-
ric distribution. This approximation is chosen to minimize the
distance between the true and the approximated posterior, as
measured by the Fisher metric. By updating only the values of
the parameters, this approach automatically keeps a fixed repre-
sentation for the posterior in terms of a parametric distribution.
Furthermore, if the approximated posterior and the emission
probabilities of the observations are conjugate, updating poste-
rior parameters in light of further discrete-time direct observa-
tions is straightforward. Projection filtering can be generalized
to hidden processes that evolve on arbitrary submanifolds of
Euclidean space [19], which makes it applicable to the circular
filtering problem. Two challenges hamper the direct application
of projection filters to angular path integration. First, no variants
currently exist that handle increment observations, either in
discrete or continuous time, as we would require to process
angular velocity observations. In fact, increment observations
have generally received little attention in the filtering literature
(but see [20]). Second, there is currently no framework that com-
bines projection-filtering with angular-valued continuous-time
observations. We will address both challenges in this work.

We introduce a novel continuous-time nonlinear filtering al-
gorithm based on projection filtering, that includes increment
observations and can be applied to circular filtering and to angu-
lar path integration, and that meets conditions (i)—(iv) outlined
above. To do so, we first describe the general nonlinear filtering
problem with observed increment observations in Euclidean
space in Section II. In Section III, we review the projection filter-
ing framework [17], [18] as an approximate solution for nonlin-
ear filtering, and extend this approach to account for increment
observations. We demonstrate that applying this framework to a
linear filtering problem recovers the generalized Kalman filter.

In Section IV, we revisit the continuous-time circular filtering
problem. Therein, we first derive a probabilistic algorithm for
angular path integration, i.e., when only increment observations
are present. We then account for direct angular-valued obser-
vations, in addition to increment observations, by proposing a
generative model based on a constant information-rate criterion
that supports seamless inclusion into the filtering algorithm.
Combining all of the above, we finally retrieve, as a special
case of the general framework, a circular filtering algorithm for
Gaussian-type increment and angular direct observations, which
we term the circular Kalman filter. We demonstrate in numeri-
cal simulations that this algorithm performs comparably to an
asymptotically-exact particle filter, and outperforms a Gaussian
approximation in the estimation of both heading direction as
well as its associated certainty.

II. THE FILTERING PROBLEM WITH INCREMENT
OBSERVATIONS

We consider multivariate filtering with observations generated
by increments of the hidden state, rather than the hidden state
itself. We assume that the hidden state variable X, € R" evolves
according to a stochastic differential equation (SDE) of the form:

dX, = f(Xy,t)dt + /2 dW,, (1)

with W; an R¥-Brownian motion (BM) process, a vector-
valued drift function f : RY x R — R”¥, and a matrix Eglc/ =
RN*N ' which determines the error covariance of the hidden
state process. In the following, we will use the shorthand
f;(x) := f(x,t) orskipits argument completely (whenever there
is no notational ambiguity). The density p;(x) := p(X; = x) of
this stochastic process evolves according to a partial differential
equation, the Fokker—Planck equation (FPE):

dp: = L1[p] dt, )

with

0
L1 [p Za— 1, )5 (x))

+Z

Equivalently, expectations of a scalar test function ¢; := ¢(Xy)
with respect to p;(x) evolve according to

dE [¢t] =E [q@“ dt, 4)

Jis Ox;0x; 8;10] Pr(x)- )

with the propagator

Lloux,0) = 60TV, 0 + 3Tr(H%), ()

where V denotes the gradient with respect to x, Tr(-) denotes

the trace operator and H, is the Hessian matrix with (Hy);; =
9o
Baci B:tv] :

the L? inner product.
We assume that the hidden state process X, in (1) cannot
be observed directly, but instead is partially observed through

Note that £ and £ are adjoint operators with respect to
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the process dUy, which is governed by the infinitesimal state
increments dX;:

dU, = CdX, + xY/2dv,
= Cf,(Xy)dt + CSY2dW, + B2av,.  (6)

where V, is an RM-BM process, and C' € R *N  The matrix
Y, € RM*M determines the level of noise in the increment
observations. Due to its dependency on the increment dX, the
observation process dU, is effectively governed by two noise
sources, dW; and dV;. The first is correlated with the noise
in the hidden state dynamics. The second is independent of it.
This is in contrast to classical filtering problems, which consider
the noise in hidden states and observations to be independent
(cf. Appendix A).

If Uy = {U, : 7 < t} denotes the filtration generated by the
process Uy, then the filtering problem is to compute the posterior
density p;(x) = p(X; = x|Uy.¢) or, equivalently, the posterior
expectation E[¢;] := E[¢(X¢)|Up:.¢]. In an uncorrelated noise
setting, the Kushner—Stratonovich equation describes the tem-
poral evolution of the posterior expectation E[¢;] [21]-[23]
(Appendix A). To find a similar formal solution for filtering with
observed state increments (i.e., correlated noise), we can account
for the correlations between observations and the hidden state by
introducing a slight modification in the Kushner—Stratonovich
equation, resulting in a generalized Kushner—Stratonovich equa-
tion (gKSE) [23, Ch. 3.8] (cf. Niisken et al. [20]). For our
particular problem, we show in Appendix B that the dynamics
of posterior expectations satisfy

dE 6] = E[L[¢4] dt + (cov (¢, £) + S.E [Veu])"
-CT M (dU, — CE[f] dt), (7)
with cov(¢y, £;) = E[of;] — E[¢,]E[f;], and
Y, =C2,CT + 3%, (®)

Note that the right-hand side of (7) does not only depend on
E[¢¢], but also on E[¢; f;], E[V¢:] and other expectations of
potentially nonlinear functions, which in general cannot be
computed from E[¢;] alone. Therefore, in order to completely
characterize the probabilistic solution, we would need one (7) for
every moment of the posterior, with each moment corresponding
to a specific choice of ¢,. Thus, except for a few very specific
generative models, such as linear ones, the dynamics of posterior
expectations in (7) will result in a system of an infinite number
of coupled SDEs, which in general is analytically intractable.
Remark 1: Equation (7) is the gKSE if state increments are
the only available type of observations. In Appendix B, we
extend it to the Kushner—Stratonovich equation when both state
increments and (Gaussian-type) direct observations are present.
In what follows, we will approximately solve the continuous-
time filtering problem with observed state increments by pro-
jecting the gKSE onto a submanifold of parametric densities
with a finite number of parameters, resulting in a finite system
of coupled SDEs for these parameters. For this, we will first
review the general projection method, which so far has only
been applied to classical filtering problems with uncorrelated
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state and observation noise, and then extend this framework to
filtering problems with observed hidden state increments.

III. PROJECTION FILTERING FOR OBSERVED
CONTINUOUS-TIME STATE INCREMENTS

A. The General Projection Filtering Method

Projection filtering is a method for approximate nonlinear
filtering that is based on differential geometry. In this subsection,
we outline briefly the differential geometric setup and derivation
of the projection filter, and refer the reader to the seminal papers
on projection filters [17], [18], [24], or the intuitive introduc-
tion to the subject matter presented in [25], for more detailed
derivations and in-depth discussion of the method.

In general, we can interpret the solution of a (stochastic)
differential equation (such as the FPE (2)) as a (stochastic) vector
field on an infinite-dimensional function space M of probability
density functions p,. If the vector field is stochastic (which is
usually the case in nonlinear filtering [22]), we consider it to be
given in Stratonovich form

dpy = Al[p;)dt + B'[p;] 0 dUy, 9

which is the standard choice for stochastic calculus on mani-
folds. Let us further assume a parametrization py(x) := p(x; )
with a finite set of parameters 8 = {01, ...0,,} € O, such that
the solution to (9) is reasonably well approximated by these
parametrized densities.

Projection filtering provides a solution to the filtering problem
by evolving the parameters 6, thereby constraining the approx-
imate posterior to evolve on a finite-dimensional submanifold
S = {py(x); @ € ©} of M, rather than on M itself. This implies
that we have to project the vector field in (9) onto the tangent
space TpS

(10)

TpS = Span <8p9 Opo ) cL',

90,7 00,

where the 8” ¢ denote the basis vectors of this tangent space.
Intuitively, an orthogonal projection minimizes at each timestep
the distance between the true posterior p; and its approximation
pp with respect to a Riemannian metric which, for probability
distributions, corresponds to the Fisher metric [26]

_p [0logpe(x) dlogpy(x)

This allows us to use the general orthogonal projection formula
3279

ZZ ”< 8p0>9 89

where IIg denotes the projection operator, the g™/ are the com-
ponents of the inverse Fisher metric, and

,7 o Z1L(x)Z2(x)
<Zl,Zg>9 = /Qd 7})9()()

is the inner product that is associated with the Fisher metric (see
Proposition 1 in Appendix C).

To find the parameter updates resulting from this projection,
we apply the projection (12) to the dynamics of the probability

(1)

12)

s Zl,ZQ € TpS. (13)
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density p; in Eq. (9). Since our approximate dynamics evolve
along tangent vectors to the manifold parametrized by 0, the
posterior py will stay on this manifold. Hence, the left-hand side
of (9) can be written in terms of the basis vectors of TS by
using the chain rule:

Ope

Iy [dpe] = 20,

Z249;. (14)

Further, by letting the projectlon act on the right-hand side of
this equation, and consecutively comparing coefficients in front
of the basis vectors %, we find the following Stratonovich
SDEs for the parameteré of the projected density following the

evolution in (9):
ij Opyg
= g (Al 50 )

y 0
+3 g7 <Bf[p9}, 810)?> o dU;.
i vre

This is the result of Brigo ef al. [18, Theorem 4.3].
To facilitate the comparison to the gKSE (7), we further
slightly rewrite this SDE:

i dlog pe
— ij T
Z:g (/de.A[pg] 5 )dt
+3 g /dzBT[ 121820\ S g, (1)
i g o Po 20 t
0log py
_ 1]
= S [a [ F552| a
y 01
+ 30 [5 { ;gfe” 0 dU,,

where Egy|[-] here denotes the expectation with respect to the
projected density pg, and .A and B denote the adjoint of A and
B! with respect to the L? scalar product. Rewriting the SDE in
such a way allows us to immediately identify the operators A
and B on the right-hand side of this equation with the operators
used for propagating expectations rather than densities.

To illustrate how to identify the operator A concretely, let us
consider the filtering problem without any observations, i.e., a
simple diffusion, which is formally solved by the Fokker—Planck
(2). Noting that the operator £! propagates the density through
time, we identify A" = £!. Similarly, we find .A = £ for the
adjoint. Thus, the projection can be immediately determined

from the time evolution of the expectation in (4), with ¢, =
Ologpg.
a80;

15)

a7

(18)

do; _ngE{ [mogm” dt.

Z

If state increments are observed, expectations are propagated
by using the gKSE (7), and identification of the operators .A and
B is possible after having transformed the gKSE to Stratonovich
form, as we will see in the next section. Since this is usually easier
to do than transforming the generalized Kushner equation for the

posterior density in Stratonovich form, (17) is a more convenient
choice for the parameter dynamics than (15).

Remark 2: The derivation in the seminal papers on projection
filtering [17], [18] follows a slightly different route but leads
to the same result (15). We also refer the reader to the very
accessible derivation presented in [25].

B. Projection With Observed State Increments

As we have seen, the adjunction between the SDE evolution
operators for densities and associated expectations allowed us to
use the expectation’s evolution equation to derive the projection
filter for a specific problem (18). The same applies if the evolu-
tion of the density (or equivalently, that of the expectations) is a
stochastic differential equation, as is the case for the KSE and
the gKSE (7), as long as these are given in Stratonovich form.
This allows us to formulate the projection filter for filtering with
observed state increments:

Theorem 1: The projection filter for the filtering problem with
observed state increments is given by the following SDE of the
parameters @ of a projected density py:

Z ij 810gp9
g 29,
(Ee [m oot PR

: 1
+ By {Tr (Z2icusm.cT) agjp”] )} dt

+29” 310gpef [y 2logre g
t z i 891

oyt

o dUy, 19)

with (Jy);; = f * denoting the Jacobian matrix, and with the
short-hand modlﬁed generator

EN[(;St] =

(Vo (x)T 18,8, C £, (x)

1 -
+ iTr(H@zC*lzuz;lcy (20)
Proof: As a first step, let us rewrite the gKSE (7) in
Stratonovich form (Corollary 3 in A2):

E [¢¢] = (6] — 5 (cov (0 115, C'ft||2
[ [210d] 5 (cov )

+Tr (iglccov (60, J5) zch) ﬂ dt
+ [cov (¢4, £;) + Z.E [V, ]]F CTE, Y 0 dU,.
(21)

This equation allows us to identify the operators A and B in
(17) as the operations acting on ¢, in front of dt and dUy,
respectively. By letting these operators act on ¢; = % in
(17), and evaluating the expectations under the projected density
pp, we obtain SDEs for the desired parameters. These can be

Authorized licensed use limited to: Harvard Library. Downloaded on February 06,2022 at 14:39:06 UTC from IEEE Xplore. Restrictions apply.



690

further simplified by using

E {c‘? log pg] 0
“1 o6, 00,
which yields (19). U
The 1D special case follows directly from (19).
Corollary 1: For univariate filtering problems, i.e. a ﬁltering
problem with N = M = lin(l)and(6) withC = ¢, 3, = 02

Y. =02and %, =72 = 202 + 02, the projection filter w1th

observed state increments reads:

do,; = Zg”{ "]Ee{ [algipeﬂ
(s = |5 S
ol (e

+ 02K, [ 0 alogpﬂ ﬂ o dU,.

d:rpg( ) =0,

x

5102;179] 2
ag

ox 00; @2)

C. Projection on Exponential Family Distributions

Analogous to [18], it is possible to derive explicit filter
equations for the natural parameters of a projected exponential
family distribution. Consider the following exponential family
parametrization:

po(x) := exp(OTT(X) —0(0)),

where 6 is the vector of natural or canonical parameters,
T\(x) is the vector of sufficient statistics and exp(¥(0)) is the
normalization.

Corollary 2: The projection filter for the filtering problem
with observed state increments is given by the following SDE
of the natural parameters 6 of a projected density py belonging
to the exponential family:

;= Yo" |5 [£1T:60)]

- 5 (B [IE O RIP (@00 - )]

(23)

+Ey [Tr (igchfzch) (T3(x) — m)] )} dt
+ 307 (Ba (i)

. CTi;l

—m)fl] + S.Eo [VTi(x))"

o dUy, (24)

where 1; = Ey[T;(x)] is the posterior expectation of the suffi-
cient statistic 7;(x). The parameters 7 are sometimes referred
to as dual or expectation parameters.

Proof: Making use of the duality relation between natural and
expectation parameters for exponential families,

9 4(6) = T,(x)

=1~ 5,

20, log pe(x) —ni,  (25)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

and the fact that 8 —n; = 0, (24) follows directly from the pro-
jection filter with observed state increments (19). U

Example 1 (Generalized Kalman—Bucy filter): In order to
demonstrate the general approach, let us consider a model with
linear state dynamics

dXt = CLXtdt—FO'I th,
dUt == CdXt + oy d‘/f

(26)
27)

Here, we will show that a projection on a Gaussian manifold
with

po(x) = N(x; pu, 07) (28)

results in dynamics for the parameters y; and o, that are consis-
tent with the generalized Kalman—Bucy Filter for observed state
increments [20, Sec. 4.2]. In fact, since (26) and (27) are both
linear, the posterior density is a Gaussian and thus the projection
filter becomes exact. For this particular problem, the projection
filter reads:

o2 0 01 9% 01
d(gj = Zg“ l:g_gE@ |:aXtax 8 P + 0'2 nge:l

90, Tox2 00,

ca?

T 952
202

1
E, [Xt?& ggp"} } dt

+ 02Ey [ g ak’gp"] )} o dU,. (29)

ox 00,

We will use this to determine SDEs for the parameters fi; and

2w alogpe _ oz uf 610%176 _ (3c )
oy, with oy and 200 = 201 + = , respec-

tively, under the Gau551an assumptlon First, the components of
the Fisher information matrix of a Gaussian parametrized by its
expectation parameters are given by

1 1
up = 07?7 9o252 = Ea 9o2p = Guo?2 = 0. (30)

Since the matrix is diagonal, the components of its inverse are
9" =g, = of and aa— g,3,2 = 20}. This considerably
simplifies the projection in (29) for the time evolution of y; and
o¢. Explicitly carrying out the expectations in (29) under the
assumed Gaussian density, the SDEs for these parameters read:

_ ¢ 2 2
d/,l/t = at dt + m(aat + UI) . (dUt — acl dt)7
(31)
do? = |2a0? + 02 — (ao? + 02)?| dt. (32)

2 2
coy +o7

We found these 1td6 SDEs from their Strontonovich form by
noting for the first line that the quadratic variation between
o and the observations process Uy is zero. In other words, no
correction term according to the Wong—Zakai theorem [27] is
required, such that both It and Stratonovich form have the same
representation. Note that for a nonlinear generative model, this
will in general not be the case [18]. Equations (31) and (32) are
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identical to the generalized Kalman—Bucy filter [20, Eqgs. (62)
and (65)], thus demonstrating the validity of our approach.

Despite being able to reproduce existing results, the main pur-
pose of the projection filtering approach is to simplify potentially
hard filtering problems such that the parameter SDEs become
analytically accessible. This becomes particularly useful if a cer-
tain parametric form of the posterior is desired, for instance for
computational reasons, and can be very appealing if expectations
are easily carried out under the assumed posterior and the Fisher
matrix is straightforward to invert or even diagonal.

Example 2 (Multivariate Gaussian with diagonal covariance
matrix): From a computational perspective, projection on a
Gaussian density with diagonal covariance matrix can be ad-
vantageous in certain situations. In particular, such a solution
only requires equations for 2 N parameters, instead of N2 + N
for a general Gaussian with Fisher matrix components

iy = (2;1)”, Ipi,02,, = 0,
1 _ _ _ _
Z [(Et 1)m(2t l)jm + (Et 1)im(2t l)jn] )

which is in general hard to invert. For a Gaussian with diagonal
covariance matrix, these simplify to

ga,;j,anm =

1 10 1
g(zt )ii_20_27

it

gll.iyl—h, = (2;1)1j7 go’%,a%i =
while all other components evaluate to zero, making the Fisher
matrix diagonal and straightforward to invert. Since the di-
agonality of the covariance matrix effectively decouples the
dimensions, expectations can be carried out in each dimension
separately. Nevertheless, the specific form of the parameter
SDEs will crucially depend on the specific form of the non-
linear function f;(x). For instance, considering the linear case,
ie. f;(x) = Ax, yields

dpy = Apy + (2, + diag(o7;) A) CTSN(dU, — CAp, dt),

do? N
% = 20%(A - £,CTE1CA)y

—20H(ATCTS 1 CA) i+ (B0 — 2,078,108, )i

IV. CONTINUOUS-TIME CIRCULAR FILTERING

In this section, we will consider continuous-time circular
filtering with observed state increments as a concrete application
of the framework derived above. We will further extend it to
account for quasi continuous-time von Mises-valued observa-
tions (formally defined below), to provide a continuous-time
generalization of the discrete-time circular filtering problem that
is frequently encountered in spatial navigation problems.

A. Assuming Observed Angular Increments Only

We assume that the hidden state X; is parametrized on S*
by angle ¢; € [0, 27), effectively embedding S* in R? as a unit
circle. We further assume that ¢, follows a diffusion on the
circle:

doi = f(pe,t)dt +o,dWy, (33)

where W, is now an R'-BM process, and drift and diffusion
functions are as defined in Section II. The propagator L[] for
this process is the same as for the corresponding process in R!
as given in (5).

For state processes that evolve on submanifolds of R"”, as
the S considered here, Tronarp and Siarkkd [19] have shown
that projection filter equations are identical to the case where
the state variable X; evolves in Euclidean space. Since the
mathematical operations performed to derive the projection filter
with observed state increments in Theorem 1 are essentially
the same as in Tronarp and Sarkka [19] for the state diffusion,
their result carries over to our problem. Thus, Theorem 1 can
straightforwardly be applied to the circular filtering problem by
considering a circular projected density pg(¢), such as the von
Mises or a wrapped normal distribution.

Example 3 (Circular diffusion with observed state incre-
ments): In this example, we explicitly model angular path in-
tegration as the estimation of a circular diffusion based on ob-
served angular increments. Consider a model where the hidden
state evolves according to a Brownian motion on the circle, with
noisy observations of its increment

1

dpy = AWy, (34)
VFEe
1
AU, = dipy + —— dV. (35)

VEu

Here, ¢, could, for instance, correspond to the heading direction
of an animal (or a robot) that is navigating in darkness and only
has access to self-motion cues dU;, i.e., measurements of angular
increments, but not to direct heading cues such as landmark
positions. We chose to parametrize the diffusion constants in
terms of precisions, k, and k., to make units comparable to that
of the precision of the projected density, which we will denote
k¢. Thus, the parameter ., governs the speed of the hidden
state diffusion, and the parameter «,, modulates the reliability of
the observation process that is governed by the increments. The
gKSE for this model’s posterior expectation of a test function
o1 := ¢(p¢) in Stratonovich form reads:

Elo]=— 1 gl a
[¢t] - 2(/@)@ + Iiu) 8802 ¢t
Ky 0

As a result, the projection filter for the parameters 8 becomes
(ct. (19))

1 1 0% 0logpe
df; = —— U-Ey | =— dt
T Ky + Ky zi:g [2 f [8902 00;

o ol
+ruEg [aw;’?_p@} o dUt} .

We now want to solve the circular filtering problem with
observed state increments by projecting on the von Mises density

(37)

pu,n(QO) = VM(SO; Mot Ht) = ) €xXp (Ht COS(@ - Mt)) s

27TI0(/€25
(38)
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Fig. 1. Circular filtering with observed angular increments. (a) The von Mises projection filter in (44) and (45) is able to track a diffusion process on the circle
based on observed increments, with mean i+ and precision r¢ (given by 7+ = 5(1) E:Z; ) matching that of a particle filter (curves are on top of each other). (b) While

the precision 7; estimated from the deviation between mean i, and true trajectory ¢, and the precision 74 estimated by the filter coincide for both the von Mises
projection filter and the particle filter, the Gaussian projection filter (“Gauss filter”) tends to underestimate its precision. (c) Empirical (upper panel) and estimated

(lower panel) precision for different values of the observations precision k., at time 7' = 10 k

wl. Note that in the upper panel, the empirical precision 74 of the

different filters is identical. Parameters for (a) and (b) are k, = 1, k,, = 10, times are in units of n;l. Simulations in (b) and (c) were averaged over 5000 runs.

parametrized by mean p; and precision k¢, using (37). Unlike
e.g., the wrapped normal distribution, which is another popular
choice for unimodal circular distributions, the von Mises distri-
bution is an exponential family distribution and could alterna-
tively be written in natural parametrization (23). Here, we chose
to parametrize it by ; and k¢, as it significantly simplifies the
computation of the Fisher metric and its inverse, which appears
on the right-hand side of (37). Noting that

B) .
~—logp, () = Kesin(p — ), (39)

Ot

B
~—logpu () = — F(ki) +cos(p — pe),  (40)

alit

where F'(k) = % denotes a ratio of Bessel functions, the

components of the Fisher metric (with respect to the p, x
parametrization) are given by:

Gup = K7 By [sin®(or — )] = ke F(re), (4D
G = By [(F (1) + cos(ipr — o))
_q o) e, 42)
Rt
Gurk = Grxp = 0. (43)

Since the Fisher metric is diagonal, the components of its inverse
are simply g"* = g1, g"* = g,.+ and g"* = g"* = 0.

Using these g;;’s and explicitly computing the expectations
on the right-hand side of (37) with respect to the von Mises
approximation, we find the projection filter equations for this
model:

dpy = —2 . qu,, (44)
Ky + Ky
1
= - — 4
dﬁt 2(I<J<P + Ku) .F(H/t) dt, ( 5)

where we defined the strictly positive function

F (k)
1— £ P2

Rt

F(ke) = ; (46)

and found the Itd form of du; from its Stratonovich form by
noting that the noise variance is constant, making this conversion
straightforward.

The projection filter defined by (44) and (45) for orientation
tracking in darkness has an intuitive interpretation: the mean
w¢ 1s updated according to the angular increment observations,
weighted by their reliability, as quanitified by x,. Even in
the presence of such observations, the estimate’s precision, xy,
decays towards zero, since F (k) is strictly positive. This decay
reflects the accumulation of noisy observations. Very informa-
tive angular velocity observations with large x,, may slow the
decay, but cannot fully prevent it. In other words, without direct
angular observations (which we will introduce in Section IV-B
below), the estimate will inevitably become less accurate over
time.

In Fig. 1(a), we illustrate in an example simulation that,
despite the presence of angular increment observations, the
estimate slowly drifts away from the true heading ¢;. As a
benchmark we use a particle filter, and further compare mean g1,
and precisionr; = F'(k;) of the projection filter to that estimated
by a Gaussian projection filter approximation (see Appendix
F for details on these benchmarks). Such a filter relies on the
assumption that the hidden state ¢; evolves on the real line, and
thus leads to a slight deviation in the dynamics of the estimated
precision k.

Numerically, our projection filter’s performance in this exam-
ple is indistinguishable from that of the particle filter (Fig. 1(b)
and (c)), and its estimated precision r; matches exactly the
empirical precision evaluated by averaging the estimation error
over 5000 simulation runs. The estimated precision of the Gaus-
sian approximation, in contrast, systematically underestimates
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its precision for large observation reliability, and overestimates
it when the angular increment observations become very noisy
(Fig. 1(c)).

Example 4 (Higher-order circular distributions): The pre-
vious example is one of the simplest examples of a circular
filtering problem, and results in an approximated posterior that
is always unimodal. This might be insufficient for certain settings
in which we would like to consider more sophisticated projected
densities. To show that our framework extends beyond such
simple models, let us consider a class of circular distributions
with exponential-family densities of the form

K

p(p) = Z@b) exp ; ay cos(kp) + by sin(kep)

47)

The case K = 1 recovers the previously used von Mises distri-
bution (38), but with a different parametrization. For K = 2, this
density is referred to as the generalized von Mises distribution,
whose properties have been studied extensively [28], [29]. As a
proof of concept, we will now use the projection filter for the
natural parameters (24) to project the solution to the generative
model in (34) and (35) onto a distribution with density (47).
The circular distributions with densities (47) belong to the
exponential family distributions, with natural parameter vector

0 = (a,b),witha={aj,...,ax}andb = {by,..., bk}, and
sufficient statistics given by
T (¢) = cos(ky), Ti™M(p) = sin(kyp).  (48)

The corresponding expectation parameters are defined by

nzos _ E9 [Tlgos] , nzzn _ ]EG [Tzzn} ) (49)

According to Corollary 2, the projection filter for the natural
parameters of an exponential family density requires us to apply
the right-hand side of the gKSE (36) to the sufficient statistics.
For this, we need to compute

a ] . sin

Ey {5‘@ % (@)| = —kEg [sin(kx)] = —knp™, (50)
0? |

Eq {WTE"S(W = —k’Ey [cos(kx)] = —k*ni*,  (51)
a sin ] cos

Eg [390 B | =k, (52)
82 ) T 9 s

B [y 1201 = i (53)

Furthermore, we note that the components of the Fisher matrix
gi; are given by
2

9ij = m IOg Z(a7 b)7

(54)
where the 0; refer to the ith element in the parameter vector 6 that
contains the elements of both a and b. Inverting this matrix to get
the inverse components g% is in general not straightforward. In
fact, already the Fisher metric needs to be computed numerically,
as the normalization Z(a, b) is inaccessible in closed form. We
will thus treat G~! symbolically and sort the parameters such

that G~ is composed of the blocks

B éc,c és,c
Gt=(2Z <
(GS’C Gs,s) ?
Then, the projection filter for the natural parameters can be
formally written as

(55)

da = G°° (— k> ©n®* dt

Ry + Ky

,Lk 0] nsin ° de,>
Ky + Ky

e 1 y
4+ ge© (_ k2 ® ’f]ém dt
Ky + Ky

+Lk® ,',,COS ° dUt) , (56)

Ky + Ry

db = G** (— k? © 0 dt

Ky + Ky
_ R, k ® ,r,sin ° dUt>
Ky + Ky

~ 1 .
4+ Gss ( k2 ® nszn dt
Ky + Ry

B xonpeso dUt> ,

Ky + Ky

(57)

where we denote with k = (1,..., k)" the vector of values k,
k? results from the element-wise squaring of k, 7 is the vector
of expectation parameters, and © the element-wise (Hadamard)
product. This example demonstrates that our framework could,
in principle, be applied to project the posterior onto more general
and inevitably more complicated densities, should the need
arise. Although we do not show this here explicitly, an instance
where this might increase filtering accuracy is one where the
initial density po(¢) is multimodal. The example also shows
that, in general, a projection filtering approach might not be the
most practical approach. Here in particular, computation of the
Fisher matrix components might only be possible numerically,
and in that case is computationally expensive. This highlights
the need for a careful choice of the posterior density and its
corresponding parametrization, where (ideally) expectations of
sufficient statistics are available in closed-form.

B. Quasi Continuous-Time Von Mises Observations

So far we have focused on filtering algorithms that rely
exclusively on observed angular increments. Such algorithms
are bound to accumulate noise, such that their precision will
decay to zero in the long run. To counteract this effect, let
us now consider how to additionally include observations that
are generated directly from the hidden state, rather than only
its increments. Specifically, we will in this section propose an
observation model for (quasi-)continuous time von Mises valued
observations with Z, € S*, which we will refer to as direct
angular observations, because they are governed by the hidden
state ¢, directly. This model will allow us to formulate a von
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Mises projection filter for both angular observations, and angular
increment observations in the continuous-time circular filtering
problem.

In classical continuous-time filtering settings, continuous-
time observations Y; are usually considered to follow a Gaus-
sian diffusion process, whose drift component is governed by
the hidden state X, [23]. Equivalently, one could consider
‘time-discretized’ (or ‘quasi-continuous’) observations Zy =

% with sampling time step At, according to

Zy ~ N (h(Xy), 02A87Y) (58)
which is the usual setting of discrete-time filtering (with fixed
At), with h(x) being a potentially nonlinear function. Notably,
the Fisher information Z(X;) about the state of the hidden vari-
able X, that is conveyed by these quasi-continuous observations
Z, grows linearly with sampling time step At (see Proposition
2 in Appendix D). The consequence of this scaling is rather
intuitive: decreasing the sampling time step At will result in
overall more observations per unit time, which, in turn, are
individually less informative about the state X;. This renders
the information rate (information per unit time) independent of
the chosen time step.

Analogously, we now consider observations that are drawn
from a von Mises distribution centered around a nonlinear S*-
valued transformation h : ST — S! of the true hidden state Ot

Zy ~ VM(h(or), a(ks, At)). (59)

We would like this observation model to have the same linear
information scaling properties as the Gaussian observations
encountered in the classical filtering problems, i.e. when hidden
state noise and observation noise are uncorrelated. Thus, we
need to choose the function a(%, At) such that the information
content about the state y; scales linearly with step size At and
observation precision & .
Theorem 2: If ok, At) is chosen such that

ok, At) = £ (KAL), (60)

where ¢! is the inverse of £(x) = F(x) (and F(z) = %
as defined earlier), then the information about the state of the
random variable ¢, scales linearly with sampling time step and
observation precision, i.e., Z(¢:) x k, At.

Proof: The information content about the random variable ¢

is given by the Fisher information

9 2
T(e) =Bz, | (55 louVMZanio).) ) lo= o] (61
Ii(a)
Io()
We require that the information content per time step At is

constant and proportional in x., which can be achieved if «
varies with At and k, according to

= I'(¢1)°a

x aF(a). (62)

alky, At)F(a(k,, At)) < K, At. (63)
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Fig. 2. Time scaling of quasi-continuous angular observations. Both
(a) the Fisher information per observation and (b) the Fisher information
rate are linear and constant, respectively, in the sampling time step At
when using a(k,, At) = £ 1(k,At) (“Ideal”). For comparison, we also
plot a(kz, At) = kAt (small kAt approximation, “Squareroot”) and
a(kz, At) = kAt (Gaussian approximation, “Linear”). (¢) Sample simula-
tion with the constant position of the state ¢; = ¢ estimated from quasi-
continuous observations with different a functions and sampling time steps
At. Ideally, the estimated precision 74 should be independent of the chosen
simulation time step At. This is satisfied by all simulations except for the linear
approximation for small <, At (dark orange), and the square root approximation
for large . At (light green). In these simulations, we used time units of seconds
(s), and set k, = 100/s and K, = 100/s (by design, . has units of Fisher
information per unit time), without loss of generality. Precision estimates were
averaged over 10 simulation runs. Black and grey arrow in panel (b) correspond
to the two time step sizes shown in panel (c).

This can be achieved if a(k,, At) = £ 1(k, At), with

(64)

(]

Once a step size At is chosen, £ 1(k,At) can be computed
numerically. For sufficiently small x.At, e.g., in the contin-
uum limit, this function can be approximated by £ ! (k,At) ~
2k, At, while it becomes £ (k. At) =~ kAt for large r, At
(Fig. 2). The latter is consistent with the intuition that, for highly
informative observations, the single observation likelihood is
well approximated by a Gaussian (which breaks down in the
limit At — 0).

What we have considered here is in essence a modified
discrete time observation model, which implies that we can take
advantage of filtering methods available for circular filtering
with discrete-time observations [12], [13]. However, by allowing
the precision a(k, At) to vary with time step, we additionally
ensure that the information rate stays constant: decreasing the
time step will result in more observations per unit time, which is
accounted for by less informative individual observations. Thus,
the observation model defined in (59) and (60) constitutes a quasi
continuous-time observation model.

C. Adding Quasi Continuous-Time Observations to the
Circular Projection Filter

If the measurement function 2 () in (59) is the identity, we
can add the direct observations to our filter by straightforwardly
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length of the vector indicates observation reliability «(k.dt). The update step for Bayesian inference on the circle is equivalent to a vector addition in the 2D
plane. The lower panel demonstrates that a conflicting observation leads to a decreased certainty of the estimate directly after the update, corresponding to a shorter
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units of k1. (¢) Estimated versus empirical precision up to 7" = 10 x_! for the different filters at x, = 10. The precisions shown in (b) and (c) are averages
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across 5000 simulation runs.

making use of Bayes’ theorem at every time step. Specifically,
since we assumed our approximated (projected) density to be
von Mises at all times, the measurement likelihood

P(Zi|pr) = VM(Zs; o1, k2, At)) (65)

is conjugate to the density before the update p;- () := p(p; =
0| Zot—ar) = VM(p; ti—, ¢ ). In other words, the posterior
pi(p) := p(pr = p|Zo.+) is guaranteed to be a von Mises den-
sity as well:

pe(p) o< p(Zt|pe) pe- () (66)
= exp
-
CoS ¢y cos 4y COS [ht—
(sin gbt) (a(ﬁz’ dt) (Sin Zt> T ht- (sin ,ut_) )
(67)

As expected from an exponential family distribution, the nat-
ural parameters 6; = r(cos jut,sin ;) " are updated according
to

0, = 0, + k., At) <C°S Zt) . (68)

sin Zt

This operation is equivalent to a summation of vectors in R2,
where the natural parameters refer to Eucledian coordinates, and
(1, k) are the corresponding polar coordinates (Fig. 3(a)). In the
continuum limit, we write

40, = \/2r.dt (COS Zt) , (69)

sin Zt
where we used that a(k, dt) — v/2k.dt for dt — 0. A coor-

dinate transform from 0 to (u, k) recovers the update equations
for mean p; and k; that result from quasi-continuous time

observations

V2K dt

du, = darctan (62, 6,) = - sin(Zy — ), (70)
t
drky = dy/ 03 + 03 = \/2k,dt cos(Zy — uz). (71)

The recovered update equations are appealingly simple for
identity (or linear) observation functions, as such functions allow
us to leverage Bayesian conjugacy properties. For nonlinear
observation functions, in contrast, the posterior after the update
is in general not in the same class of densities (and in this
particular case not a von Mises distribution anymore). To apply
the projection filtering framework to project such a nonlinear
observation model back onto the desired manifold of densities,
one would need to know the vector field for the density p; that
incorporates the observation-induced update, a derivation that is
beyond the scope of this work.!

Example 5 (The circular Kalman filter): Letusrevisitangular
path integration, which we introduced in Example 3 as a circular
diffusion with observed angular increments, and extend it to
include direct angular observations Z; with likelihood (65). Such
angular observations could, for instance, correspond to directly
accessible angular cues, such as visual landmarks. Combining
(44) and (45) with (70) and (71) to include the quasi-continuous
updates results in

u 2k dt .
O VR T S,
Ky + Ry Rt
1
. 2 — 7).
dky 2(kyp + Hu)]:(“t) dt + \/2r.di cos(p; — Z)
(73)

! As outlined earlier, for a Gaussian setting this would be the update part of the
Kushner—Stratonovich equation. To the best of our knowledge, no such equation
exists for von Mises-valued observations.
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Due to the simplicity of these equations, as well as their structural
similarity to the generalized Kalman filter, while taking full
account of the circular state and measurement space, we coin
the SDEs (72) and (73) the circular Kalman filter (circKF).

Considering that v/2 . dt is modulated by the direct observa-
tion’s reliability &, the final terms in the filter’s update equations
nicely reflect the reliability-weighting that is already present in
classical filtering problems: more reliable direct observations,
relative to the current certainty ~;, have a stronger impact on
the mean ;. Furthermore, if the current observation Z; is
similar to the current estimate j4, this estimate is hardly updated,
while the estimate’s certainty x; increases. In contrast, if direct
observations and current estimate are in conflict, the certainty
k¢ might temporarily decrease (Fig. 3(a)). What makes this last
feature particularly interesting is that it only occurs in the circKF,
butnotinits Euclidean counterpart, the standard Kalman filter. In
the latter an update induced by direct observations always leads
to an increase in certainty. Numerically, the circKF features a
performance close to that of a particle filter over a wide range
of parameters, while outperforming a Gaussian projection filter
(Fig. 3(b) and (c)). The reason for the deviation of the circKF
from the optimal solution is that the von Mises distribution
is still an approximation of the true posterior, which leads to
slight deviations in the updates when the direct observations are
integrated. These deviations are offset by the more than 10-fold
decrease in computation time of the circKF that we observed
in simulations: a single run in Fig. 3(c) with the particle filter
took 3.14 4+ 0.11 s, while it only took 0.113 4 0.005 s with the
circKF on a MacBook Pro (Mid 2019) running 2.3 GHz 8-core
Intel Core 19 using NumPy 1.19.2 on Python 3.9.1.

V. CONCLUSION

In this paper, we derived a continuous-time nonlinear filter
with observed state increments, based on a projection filtering
approach. Using this framework, we revisited the problem of
probabilistic angular path integration. By additionally proposing
a quasi continuous-time model for von Mises-valued direct
observations, we were able to formulate a circular filtering
algorithm that accounts for both increment and direct angular
observations. Notably, this algorithm fulfills the following four
conditions: (i) it operates on a circular state-space and (ii) in
continuous time, (iii) it maintains a consistent representation
during state propagation and observation update, as ensured by
the projection filtering method, and (iv) it performs the proper
integration of both increment and direct observations. Even
though we have only fully worked out the algorithm for univari-
ate circular filtering problems, we have formulated the overall
projection filtering framework for more general multivariate
problems. As by the results in [19], we expect our framework
to carry over to multivariate circular filtering problems, such as
reference vector tracking on the unit sphere.

A possible shortcoming of this approach is that the class of
generative models it can deal with is fairly limited. The gener-
alized Kushner—Stratonovich equation is only valid if the error
covariance of the observation process does not explicitly depend
on the value of the hidden state. This constrains the generative
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model in the following way: first, we can only allow additive
noise in the state process, as any multiplicative noise would
enter the increment observation process U, as state-dependent
noise. Second, only linear transformations of state increments
can be considered. As demonstrated in Example 4, another
shortcoming of the projection-filtering method in general is that
this approach is only computationally feasible for problems that
are analytically accessible, i.e., where expectations under the
projected density can be computed rapidly, or in closed form. In
this paper, we thus focused on projected densities where these
expectations could be efficiently computed.

Despite these limitations, the analytical accessibility and in-
terpretability of our main result, in particular the circular Kalman
filter, make it an attractive algorithm for unimodal circular
filtering problems. First, it is straightforward to implement in
software. Since its representation stays fixed through all times,
it relies on only two equations which can be integrated straight-
forwardly, e.g. with an Euler—Maruyama scheme [30]. As we
have seen in our numerical experiments, this makes this filter
much faster than established methods, such as particle filters.
Second, the interpretation of the dynamics are intuitively com-
prehensible. Third, since it is a continuous-time formulation, it
automatically scales with respect to chosen sampling step size
(as long as it is sufficiently small). This is an advantage over
continuous-discrete filtering problems, which usually consider
a fixed sampling step size, and need to be reformulated should
the sampling rate in the observations change or vary across time.
Lastly, animals navigate the world based on a continuous stream
of sensory information, which motivates the use of continuous-
time models when trying to understand how the brain operates
under uncertainty. Thus, one possible application could be a
conceptual description of how the brain performs angular path
integration [31].

APPENDIX
A. Nonlinear Filtering in a Nutshell

Let us briefly review the classical nonlinear filtering setting,
i.e., filtering with observations that follow a diffusion process
with noise uncorrelated to that of the hidden state process, in
order to compare this with filtering with observed state incre-
ments. In line with standard literature [23], let Y; denote the
process of RM -valued direct observations. Then the generative
model commonly referred to in classical nonlinear filtering is
given by

dX, = f(X,,t)dt + B2 dW,, (74)

dY, =h(Xy,t)dt + 2./?dV,, (75)

with V; and W, independent standard Brownian motion pro-
cesses,and h : RY x R — R a potentially nonlinear, vector-
valued observation function. All other quantities have been
defined below Eq. (1). Note that the observations process is a
diffusion with error covariance ¥, dt. The goal of nonlinear
filtering is to compute dynamics of the posterior expectations
E[¢:] := E[¢p(X)|Yo:.e], where Yo, = {Y,:7 <t} denotes
the filtration generated by the process Y. Formally, this is solved
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by the Kushner—Stratonovich equation (KSE, [23, Th. 3.30]):

dE [¢] =E [L[¢¢]] dt-+cov (¢, hy)" B, (dY, — E[h] dt),
(76)

with cov (¢, hy) = E[éy, hy] — E[p¢]E[hy].

B. Derivation of the Generalized Kushner—Stratonovich
Equation for the Posterior Expectation (7) and (21)

Let us revisit the generative model in (1) and (6):

dX, = £(Xy, t) dt + B2 dW,, (77)

dU, = Cf(Xy,t)dt + CLY?2dW, + 2/2dv,,  (78)

with W, and V, independent vector-valued Brownian motion
processes, as defined earlier. Here, we derive the gKSE (7) by
treating this model as a correlated noise filtering problem, which
allows us to directly apply established results [23, Corollary
3.38].

Lemma 1: The generalized Kushner—Stratonovich equation
(gKSE) for the evolution of the conditional expectation of a
test function E[¢:] = E[¢#(X})|Yo.+] in the presence of state
increment observations dUy is given by (It6 form)

dE [¢1] = E[L[¢¢]] dt + (cov (61, ) + S.E[Vey])"

-CTy 1 (dU, — CE[fy] dt). (79)

Proof: To simplify calculations, we first require that the ob-
servations process has an error covariance that equals the iden-

tity, and thus we rescale the process dU; by s/? = (Cx,.CT +

Eu)l/Q,

dU, = 2124u,. (80)

Egs. (77) and (80) define a filtering problem where the noise in
hidden process X; and observation process U, are correlated,
with quadratic covariation

X, 07, =2, 7512 (81)

Thus, the result of [23, Corollary 3.38] (KSE for correlated noise
filtering problems) is directly applicable to our problem. For
more details on [23, Corollary 3.38], we kindly refer to the
proof based on the innovations method provided therein. An
alternative proof based on the change of measure approach is
presented in [20].

Note that the KSE for correlated noise [23, Eq. 3.72] is similar
to the classical KSE for uncorrelated noise problems (76), except
for a correction term, given by a vector field B[¢],

dE [¢¢] = E [L[¢:]]
dt + (cov (6, 5,208, + [B[@]})T
- (dU — £, CE [f] dt). (82)

The vector field B[¢] can be read out from the dynamics of the
quadratic covariation between the process ¢; and the rescaled
observations process U;. Using Itd’s lemma, we can write:

doy =

(Vo) - dX, + %Tr (X, Hy) dt, (83)

and thus
dlp, UT], = (Vo) d[X, U], (84)
= (Vo) T2, 0T Y 2dt =: Blgy|Tdt.  (85)
Further identifying h, = 3, 120 f;, we find
dE [¢] = E[L[¢4]] dt + (cov (¢, £;) + S.E [Ve])"
LOTSV2(dU, — SSV2CR L) dE).  (86)
Rescaling dU, = 3, /24U, yields (79). O

Remark 3: By combining (76) and (79) it is possible to derive
a generalized Kushner equation when both types of observations
are present, i.e., when we consider both the process Y (75) and
the process Uy (78) as the observations:

dE [¢t] =E [£[¢t]] dt + cov ((bt, ht)T E;l (dYt —E [ht] dt)
+ (cov (¢4, £1) + S, E [V, €T 1/2
(dU, — ;Y2CE[f)] dt). (87)

In this case, the expectations [E[-] are with respect to the filtration
YQ;t and U():t, i.e., E[¢t] = ]E[(ZS(Xt)D/Ota U();t].

Corollary 3: In Stratonovich form, the generalized Kushner—
Stratonovich equation (gKSE) for the evolution of the condi-
tional expectation of a test function E[¢;] = E[¢(X})|Yo.¢] in
the presence of increment observations dU; reads:

0] = B [£16:]] - 5 (cov (0012, *012)

+ Tr (i;lC -cov (¢, Jy) EICT) )] dt

+ (cov (¢, £) + S, E [V )T €TS Y o dUy,
(33)
with
E [£[¢d] = EILlod] — E [(V6) E, 07, O8]
- %Tr (EIIE [H,) EICTijC) (89)

For one- dlmenswnal problems With N=M=1,C=c¢%,

02, %, =02and ¥, = 62 = ?02 + 02, (88) simplifies to
o2 2
o] = | ZELlo] - 5z (cov (60, 2)

+ogcov (qbt, iﬁ)) ]dt

P
+ J—Cz [cov (61, f2) + 02E {am@] } odlU,. (90)

u

Proof: We convert between It6 and Stratonovich calculus
using the Wong—Zakai theorem [27]:
1
B! - dU; = B 0 dU; — §d[BT,U]t, 1)
where the symbol o denotes Stratonovich calculus, and [BT, Y],
is the quadratic covariation between the processes Y; and B;.
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We identify (cf. (79))

BT = (cov (61, ;) + S E[Ve )T CTS,, (92)
and write
dE [¢;] = E[L[¢s]] dt — BICE[f,] dt + BT - dU, (93)
=TE[L[¢ps]] dt — BICE[f;] dt + BT o dU,
- %d[BT, Ul;. (94)

To obtain the change in quadratic covariation d[B”, U], it is
helpful to find dB; by It6’s lemma

dB{ = (dE[¢:f)] — E[¢¢] dE[f;] —
—dE [¢4] dE [f;] + dE [V¢,] X,

dE [¢] E [£;]
yorst (95)

The evolution of the expectations is obtained by straightforward
application of the gKSE (79), substituting ¢; with the functions
¢ fy, £y and %@. This will result in terms that multiply dUy,
which are those relevant for computing the change of the co-
variation process, d[BT, U];. Further note that the quadratic
covariation of the observation process evolves according to
d[UT,U]; = Tr(X,)dt. Some tedious but straightforward al-
gebra and term rearrangements then result for the quadratic
covariation in

dBT,U), = {cov (¢t,||i;1/20ft|\2>
+Tr (CTiglc -cov (¢, ;) Ez)
+ 2cov <(EmCTi;1C £)7, wt)
— 2cov (¢, £;) CTS L CE[£,]"
+Tr (ZI]E (H,) zchiglc) ]dt (96)
Plugging this into (94), and again some algebra, yields
aE [¢:] = [E (L[] — E [(V90)T5,CTE. CH|
—%Tr (EIIE [H,) zchiulc)} dt

o o)
Ty (i;lc ~cov (¢4, Jp) EICT” dt

(cov (¢4, ;) + L.E [V )T CTE, o dU,. (97)

This equation can be further simplified by noting that T —
¥, CTY1C = C~1'%,%,1C. Further, we can substitute

E [£loi]] = BILlod) ~ E (Vo) 2,075, O

- %Tr (EI]E (H,) zchiglc) 98)

in the first line, which yields (88). (90) follows from (88) as the
1D special case. 0
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C. Fisher Metric and Scalar Product

Proposition 1: The scalar product defined in (13),
7 Z
(21, Za)y = / dxM
Q

po(x)
is the scalar product on 7S that is associated with the Fisher
metric [26]

) Zl7Z2 € T987 (99)

gis = E,, [81022}9 (x) 810259 (x)
i J
Proof: Consider Z; and Z, to correspond to two of the basis
vectors of the tangent space TyS, i.e., Z1 = M and 77 =

9po (%)
89%0]' . Then

(100)

9pe Opy / 1 Opy(x) Ope(x)
23 — 101
<aoi ’ 39j> 0 000 06,06, (101
/ dx 810gp9 810gp9(x)p9(x) (102)
00

| Ologpg (x) dlogpe(x)] -
_E { . 5, = g:;. (103)
This concludes the proof. U

D. Information Scaling

Proposition 2: The Fisher information Z(X;) about the hid-
den state variable X, that is conveyed by Gaussian-type discrete-
time observations,

Zi~ N (Zizg(X0), A7), (104)
grows linearly with the time step At.

Proof: The information content about the variable ¢, that is
conveyed by the observation Z; is given by the Fisher informa-
tion

I(X,)=Ej,

(3832 log N (Zy; g(), Z)f o= Xt]

— g/(.’lﬁ)2 (At)Z EZ

4
02

2= g@))?]

/ 2
_9 (g;) At o< At.
UZ

E. Details on Numerical Simulations

Our numerical simulations in Figs. 1 and 3, corresponding to
Examples 3 and 5, were based on artificial data generated from
the true model equations. In particular, the “true” state ; is a
single trajectory from (34), and observations are drawn at each
time point from (35) and, in the case of Example 5, additionally
from (65). To simulate trajectories and observations, we use the
Euler—-Maruyama approximation [30]. In this approximation, the
time-discretized generative model with fixed time step size At
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in Examples 3 and 5 reads:

1
i ~ N(p1-at, K—At) mod 27 (105)
©
1
AUy ~ Nt = pi-an —At) (106)
Zy ~ VM (1, €1 (52AL)). (107)

The same time-discretization scheme was used to numerically
integrate the SDEs (44), (45), (72) and (73) for the von Mises
parameters j; and k¢. Unless stated otherwise, we used At =
0.01 in all our numerical simulations, and give times in units of
K.

F. Benchmarks for Numerical Simulations

For our numerical simulations in Figs. 1 and 3, corresponding
to Examples 3 and 5, we used the following filtering algorithms
to compare the circKF against.

1 Particle Filter: As benchmark, we used a Sequential Im-
portance Sampling/Resampling particle filter (SIS-PF, [32]),
that was modified to account for state increment observations
AU t-

The N particles in the SIS-PF where propagated according to

( |(pt AthUf)

=N (‘Pt At T

Ky

1
AU, At) mod 27,
+ Ry Ky + Ky
(108)

’U.

and each particle 5 was weighted at each time step according to
w? = wls, VM(Zis o), €7 (1:A8)),

= WA
yielding an SIS for this model that is asymptotically exact in
the N — oo limit. Mean p; and precision r; of the filtering
distribution were determined at each time step according to a
weighted average on the circle, i.e. the first circular moment:

Zw exp( zgagl)).

For a von Mises distribution, the radius r of the first circular
moment and the precision parameter x are related viar = ﬁ E:g ,
which is why we use r rather than « in our plots.

In our simulations, we used N = 102 if direct angular obser-
vations Z; were present, and N = 10% if only state increment
observations were present. We re-sampled the particles when-
ever the effective number of particles, Netr = Y- ; (w(?) 2, was
lower than N/2.

2 Gaussian Approximation: The reference filter, which we
refer to as “Gauss filter,” is a heuristic method that assumes
posterior mean p; and variance oy to evolve according to a
generalized Kalman—Bucy filter ((31) and (32)). Such a filter
is often referred to as “assumed density filter” (ADF) in the
literature, which under certain conditions, such as for the circular
filtering problem we consider here, becomes fully equivalent
to a Gaussian projection filter (see [18, Sec. 7] for in-depth
discussion). In order to make the resulting distribution circular,

(109)

reexp(ip) (110)

this Gaussian is consecutively approximated by a von Mises
distribution via k; ~ o; 2, resulting in the following update
equations for the model in Example 3:

d zidU 111

1243 K/Lp—i—ﬁu ts ( )
1 1 1

dntd<2) =——  —dt (112)
(o Ky + Ry Ky

For the model used in Example 5, this is combined with the
observations in the same way as for the circKF. Note that in
absence of direct angular observations z;, the mean dynamics
are the same as for the circKF, while x; deviates (as shown
in Fig. 1). When direct angular observations are present, this, in
turn, affects the computation of the update in the mean dynamics,
which leads to a worse numerical performance than the circKF.

G. Code Availability

Jupyter notebooks to generate Figs. 1-3, the underlying sim-
ulation data as well as Python scripts to generate this data
has been deposited at Zenodo, and is publicly available at
https://doi.org/10.5281/zenodo.5820406.
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Correction

Figure 3: Swapped panels

The panels b) and c) for Figure 3 of the manuscript are swapped, and don’t match the figure’s
caption. Please see below for a corrected version:

a) b) 0
1.0 1.0
“
c
208
9 0.91
9 0.6
s
T o4 &
= —— Projection filter S 0.8
g 02 —— Gauss filter @
o —— Particle Filter §
before update 0.0 T 8 0.7
observation E
after update E
% 0.64
w
0.5
0.4+ —— : | | |
04 05 06 07 08 09 1.0

1072 107t 10° 10!

Obs. precision K, Empirical Precision r¢




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




