
Improving Classifier Error Estimate in XCSF

Daniele Loiacono∗, Jan Drugowitsch‡, Alwyn Barry‡, and Pier Luca Lanzi∗ †

∗Artificial Intelligence and Robotics Laboratory (AIRLab),
Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy

‡Department of Computer Science, University of Bath, UK
†Illinois Genetic Algorithm Laboratory (IlliGAL),

University of Illinois at Urbana Champaign,
Urbana, IL 61801, USA

J.Drugowitsch@bath.ac.uk, loiacono@elet.polimi.it,

A.M.Barry@bath.ac.uk, lanzi@elet.polimi.it

Abstract. We study the current definition of classifier error in XCSF
and we discuss the limitations of the algorithm that is currently used
to compute classifier error from online experience. We introduce a new
definition of classifier error and study the performance of two novel es-
timation algorithms based on this definition. Our results suggest that
the new estimation algorithms can be more robust and improve system
generalization.

1 Introduction

Classifier error plays a key role in accuracy-based learning classifier systems.
Since Wilson introduced XCS [9], classifier error has always been computed as
an estimate of the mean absolute prediction error, adjusted using the Widrow-
Hoff rule. Unfortunately, the prediction error update rule causes the error esti-
mates to fluctuate which results in temporarily inaccurate and unreliable values,
especially when computed prediction is used. XCS with computed prediction,
namely XCSF [10], is a major advance in the field of learning classifier systems.
It extends the typical idea of classifiers by replacing the classifier prediction pa-
rameter with a prediction function p(st,w), which is used to compute classifier
prediction based on the current state st and on a parameter vector w associated
with each classifier.

The rule used in XCSF for updating the classifier weights was carefully ana-
lyzed and improved in [4]; in addition, different update rules have been compared
in [6]. However, the classifier error in XCSF is still defined and computed exactly
as in XCS and was not investigated until [1] have shown how to significantly im-
prove that error estimate. In this paper we define a new classifier error measure
for XCSF according to [1]: we suggest the replacement of the usually measured
mean absolute prediction error with the mean square prediction error. Subse-
quently, we study the usual error update rule used in XCSF and we introduce
two different approaches that improve the accuracy of the error computation.

We finally compare these new approaches with the usual classifier error compu-
tation and show that they enable better generalization and hence the evolution
of more compact populations.

2 The XCSF classifier System

When compared to XCS, XCSF replaces the classifiers’ scalar prediction param-
eter by a prediction function p(ϕ(st),w) that is parameterised by a parameter
vector w. This function computes the prediction as a function of the feature
vector ϕ(st), extracted from the current sensory input st, and the classifier’s
parameter vector w that replaces the scalar prediction parameter; to keep the
notation uncluttered we will for the rest of this paper use ϕt ≡ ϕ(st) for the
feature vector that corresponds to the sensory input st, and cl.p(ϕt) ≡ p(ϕt,w)
for the classifier’s prediction for st. Usually, p(ϕt,w) is computed by the
linear combination p(ϕt,w) = wTϕt, where the feature vector is given by
ϕT = [x0, st(1), . . . , st(n − 1)]T , x0 is a fixed parameter (that is, a constant
term), and n− 1 is the size of the sensory input vectors st, such that the feature
vectors ϕt are of size n. Even though it is possible to use non-linear functions to
compute the prediction in XCSF [5], we will in this paper exclusively consider
the just introduced linear function.

To update the classifiers’ parameter vectors and error estimates, at each time
step t, XCSF builds a match set [M] containing the classifiers in the population
[P] whose condition matches the current sensory input st. For each action ai
in [M], XCSF computes the system prediction, which for action a is the fitness-
weighted average of the predictions computed by all classifiers in [M] that pro-
mote this action. Next, XCSF selects an action to perform. The classifiers in [M]
that advocate the selected action form the current action set [A]; the selected
action is sent to the environment and a reward r is returned to the system to-
gether with the next input. XCSF uses this reward to update the parameters of
classifiers in action set [A]−1, corresponding to the previous time step in which
the reward was received. Note that, when XCSF is used for function approxima-
tion (a single-step problem), the reinforcement component acts on the current
action set rather than the previous one. At time step t, the expected payoff P is
computed as P = r−1+γmaxa∈A P (st, a), The expected payoff P is used to up-
date the weight vector w of the classifiers in [A]−1 using the Widrow-Hoff rule,
also known as the modified delta rule [7]. For each classifier cl ∈ [A]−1, each
component w(i) of the classifier’s weight vector w is adjusted by a quantity
∆w(i) given by

∆w(i) =
ηϕt−1(i)

∥ϕt−1∥2
(P − cl.p(ϕt−1)), (1)

where η is the correction rate and ∥ϕt−1∥2 is the squared Euclidean norm of
the input vector ϕt−1 [10]. The values ∆w(i) are used to update the weights of
classifier cl by

w(i)← w(i) +∆w(i). (2)

Then the prediction error ε is updated by

ε ← ε + β(|P − cl.p(ϕt−1)| − ε). (3)

Finally, the classifier fitness is updated as usual [9] and the discovery component
is applied as in XCS.

3 Tracking the Root Mean Square Error in XCSF

In XCSF the classifier weight vector is adjusted to minimise the mean squared
prediction error (MSE), while the classifier’s error is an estimate of the mean
absolute prediction error (MAE). Before discussing the consequences of this in-
consistency, let us firstly show that this claim is correct.

For the rest of this paper we will consider a single classifier and will assume
the sequence t = 1, 2, . . . to represent each time step in which this classifier
participates in the action set (making it equivalent to the classifier’s experience)
and thus will be updated.

3.1 Re-Deriving the XCSF Weight Vector and Error Update

Let us assume that we haveN states {st}Nt=1 and their associated payoffs {Pt}Nt=1,
and that we want to estimate the classifier’s weight vector w that minimises the
MSE, given by

fN (w) =
1

N

N∑
t=1

(
wTϕt − Pt

)2
, (4)

where we have again used ϕt = ϕ(st). Applying the modified delta rule (also
known as the Normalised Least Mean Squared algorithm) to minimise fN (w)
results in the weight vector update equation

wt = wt−1 +
ηϕt

∥ϕt∥2
(
Pt −wT

t−1ϕt

)
, (5)

which is equivalent to Eqs. 1 and 2 and thus confirms that the XCSF weight
vector update indeed aims at minimising the MSE fN (w).

To get the prediction error, on the other hand, let us assume that we want
to estimate the MAE, given by

εN =
1

N

N∑
t=1

∣∣wTϕt − Pt

∣∣ . (6)

This estimation problem can be reformulated as a least squares problem that
minimises

gMAE
N (w) =

1

N

N∑
t=1

(
εN −

∣∣wTϕt − Pt

∣∣)2 (7)

with respect to εN . Solving ∂gMAE
N (w)/∂εN = 0 for εN results in Eq. 6, which

confirms that we can indeed estimate εN by minimising gMAE
N (w). Applying

the delta rule (also known as the Least Mean Squared algorithm) to minimising
gMAE
N (w) results in the prediction error update

εt = εt−1 + β
(
|wT

t ϕt − Pt| − εt−1

)
, (8)

where we have approximated the weight vector by its current estimate w ≈ wt.
This update equation is equivalent to Eq. 3, which shows that XCSF estimates
the mean absolute prediction error rather than the mean squared prediction
error.

Consequently, the performance component of XCSF that estimates the weight
vector aims at minimising the MSE, while the discovery component judges the
prediction quality of classifiers based on the MAE. This inconsistency is usually
not a serious issue because an optimal solution with respect to the MSE is also
nearly optimal with respect to the MAE. Moreover, the MAE is superior to the
MSE in terms of human readability; that is, while a threshold on the MAE of
the classifier prediction can be easily related to the expected accuracy of the
evolved approximation, a threshold on the MSE is not easily related to the final
approximation accuracy. Unfortunately, it is rather difficult to find estimators
that minimise the MAE (for an XCSF-related example see [?]), whilst there
are numerous techniques in the literature that provide accurate estimates that
minimise the MSE. This is a concern for XCSF, where the prediction error
estimate should reflect the actual prediction error. Thus, we propose replacing
the MAE estimate by the MSE estimate, as shown in the following section.

3.2 Estimating the Root Mean Squared Error

We can estimate the MSE (Eq. 4) in the same way as the MAE (Eq. 6) by
reformulating its estimation as a least squares problem that minimises

gMSE
N (w) =

1

N

N∑
t=1

(
ε2N − (wTϕt − Pt)

2
)2

(9)

with respect to ε2N , which denotes the MSE estimate ε2N ≡ f̂N (w). Applying
the delta rule by again approximating w by its estimate wt gives the update
equation

ε2t = ε2t−1 + β
(
(wT

t ϕt − Pt)
2 − ε2t−1

)
, (10)

from which we compute the classifier error by

εt =
√

ε2t . (11)

Thus, it is given by the estimated root mean squared error (RMSE) of the
prediction. We use the RMSE instead of the MSE because (i) the RMSE is a
standard error measure in the machine learning literature (for example, [?]),

and (ii) the RMSE has the same value range as the MAE that is usually used in
XCSF.

Relying on the MSE instead of the MAE has the additional advantage that
we do not need to estimate it by the delta rule, as in Eq. 10, but can track the
solution to fN (w) directly, as we will show in the following section.

4 Improving the Error Estimate

In previous works [?,1] the problem of computing the classifier prediction has
been presented as a problem of incremental parameters estimation. In this sec-
tion we show that such a problem may be solved within a particular bayesian
framework, the Bayes Lnear Analysis [?]. At first we show how both the clas-
sifier weights and the classifier error can be computed at the same time from a
probabilistic point of view. Then we propose a simple implementation using only
the samples matched by the classifier and we show that this implementation is
equal to the least squares update introduced in [?]. Finally we show that the
proposed framework is also consistent with the more convenient Recursive Least
Squares approach described in [?] and the incremental error update introduced
in [1].

4.1 The Bayes Linear Analysis

When computing the classifier prediction in XCSF we want to predict, with
highest accuracy possible, the value of the target payoff, Pt, on the basis of
the observed features vector, ϕt. From a probabilistic point of view our aim
is to compute the conditional expectation E[P |ϕ]. The conditional expectation
may be computed in the bayesian framework, but this approach requires a full
knoweledge about the probability distribution of both P and ϕ, that is usually
not available. On the other hand in XCSF we assume that the target payoff can
be computed with a linear prediction function, cl.p(ϕt) = wTϕt (see Section 2).
Under this assumption it is possible to apply the Bayes Linear Analysis for
computing a linear model without a full probabilistic description of P and ϕ [?].
Following the Bayes Linear Analysis, the optimal value for the classifier weights
vector, w, can be computed by solving the following minimisation problem:

min
w

E[(P −wTϕ(s))2] (12)

The minimization problem stated by Equation 12 aims to find the classifier
weights vector that minimizes the expected square error of the classifier predic-
tion. Solving the minimization problem in Equation 12 we obtain the following
weights vector (see Appendix ?? for the derivation),

w = E−1

ϕϕ
E

Pϕ (13)

where Eϕϕ = E
[
ϕϕT

]
is a n × n square matrix and E

Pϕ = E [Pϕ] is a

column vector (n×1). Once the optimal value of weight vector is computed, the

square classifier error can be estimated as the expected square prediction error
by replacing Equation 13 into the minimisation objective of Equation 12. This
lead to the following classifier error,

ε2 = E
[
(P −wTϕ)2

]
= EPP (1− ρ2), (14)

where EPP = E
[
P 2

]
and ρ2 is defined as

ρ2 =
ET

PϕE−1

ϕϕ
ET

Pϕ

EPP
(15)

Before going on with the implementation details, it is worthwhile to discuss
the meaning of Equation 14. In fact considering that, in XCSF, ϕ is defined as
ϕ = [1sT], we can rewrited as:

ε2 = cov(P, P)(1− ρ2Ps), (16)

where cov(P, P) = E
[
(P − E [P])2

]
is the variance of the target payoff, P , and

ρ2Ps is the square correlation coeffecient between P and s defined as,

ρ2Ps =
cov(P, s)T cov(s, s)−1cov(P, s)

cov(P, P)
(17)

where cov(P, s) = E [(P − E [P])(s− E [s])] is the covariance vector (n ×
1) between target payoff, P , and the state vector, s; cov(s, s) =
E
[
(s− E [s])(s− E [s])T

]
is the variance matrix of the state vector, s. On the

basis of Equation 16 we can provide an intuitive interpretation to the classifier
error estimate. When P and s are completely uncorrelated (i.e. ρ2Ps = 0), it is not
possible to proved any prediction of the target payoff better than its expected
value; therefore the expected square prediction error is equal to the variance
of P . On the other hand, when P and s are linearly maximally correlated (i.e.
ρ2Ps = 1), the target payoff can be predicted without any error; therefore the
expected square prediction error is equal to 0. In all the other cases, the higher is
the correlation between P and s, the more accurate is the target payoff prediction
and, therefore, the lower is the expected square prediction error.

4.2 A Sample Based Implementation and Least Squares

In Equation 13 and Equation 14 we assumed the knoweledge of EPP , E
Pϕ

and Eϕϕ. Unfortunately such knowledge is not available when computing the

classifier weights and error. In order to apply the previous introduced equation

to XCSF, we introduced the following sample-based approximations:

EPP ≈
1

N

N∑
i=1

(Pi)
2

Eϕϕ ≈
1

N

N∑
i=1

(ϕiϕ
T
i)

E
Pϕ ≈

1

N

N∑
i=1

(Piϕi)

where each term can be updated recursively during the learning process and is
stored as a classifier parameter. In the rest of the paper we will call XCSFb the
variant of XCSF obtained using the Equation 13 for computing the classifier
weight vector and the Equation 14 for computing the square classifier error,
where the above sample-based approximation are used.

Before introducing a different implementation it is wortwhile to say that,
using the sample-based approximation introduced above, the Equation 13 is
equal to the least squares update introduced in [?] (see Appendix A for the
proof). It can also proved (Appendix A) that the error update Equation 14
is exactly the sample-based mean square prediction error of the least square
solution, that is

ε2 =
1

N

N∑
i=1

(
Pi −wTϕi

)2
where w is computed according to Equation 13 that is equal to the least squares
solution.

4.3 Recursive Least Squares and Error Tracking

In [4] the Widrow-Hoff rule used in XCSF (Equation 1) was replaced by the
Recursive Least Squares (RLS) algorithm, given by:

βrls ← 1 + ϕT
t−1 × cl.V × ϕt−1, (18)

cl.V ← cl.V − 1

βrls
cl.V × ϕT

t−1 × ϕt−1 × cl.V , (19)

w ← w + cl.V × ϕt−1 × (P − cl.p(ϕt−1)), (20)

where cl.V is an |ϕ| × |ϕ| matrix for storing the estimate of the autocorrelation
matrix of the feature vector ϕ. The above update equations allow each classifier
to precisely track the weight estimate cl.w that minimises the mean squared
error, given by the convex function

1

N

N∑
i=1

(P (si)− cl.p(ϕi))
2,

where the sum is taken over all states that the classifier matches. Compared to
the Widrow-Hoff rule that only performs gradient descent on the local error, the
RLS algorithm is more effective, as analyzed and demonstrated in [4], where the
classifier weight update was computed using the RLS algorithm, but the error
estimate was still performed as in the original XCSF [10].

Recently [1], by employing the Kalman filter for weight update and er-
ror estimate we have shown that, under the assumption of a constant equa-
tion/observation error variance, the Kalman filter weight update is equivalent
to the one performed by the RLS algorithm as given above, but the error can be
more efficiently tracked by

εs ← εs +

[
(P − cl.p(ϕt))(P − cl.p′(ϕt))− εs

]
cl.exp

, (21)

where cl.p(ϕt) is the classifier prediction for the feature vector ϕt before the
weights update, while cl.p′(ϕt) is the classifier prediction after the weights up-
date, and cl.exp is the classifier experience. This error update equation allows us
to accurately track the mean squared error as given above, based on the current
prediction applied to all matched states that have been observed so far, and at
low additional computational costs.

In accordance with [4], the XCSF version that replaces the Widrow-Hoff
weights update (Equations 1 and 2) by above RLS algorithm (Equations, 18, 19,
and 20) while still using the original XCSF error update will be called XCSFrls.
The XCSF version that in addition to the RLS algorithm for weight update uses
the Kalman filter error update (Equation 21) will be called XCSFkal.

5 Experimental Design

All the experiments discussed in this paper concern the comparison of XCSFrls,
XCSFb, and XCSFkal on function approximation tasks and are performed fol-
lowing the standard design used in the literature [10].

The systems have been tested on approximating the four functions given
in Table 1, which are the real-valued versions of those used in [3]. In all the
experiments the state s is the independent variable x of the functions, while the
feature vector is set to ϕ = [1, x]T , i.e. the constant term x0 is always set to 1.

The performance is measured by the accuracy of the evolved approximation f̂(x)
with respect to the target function f(x). To evaluate the evolved approximation

f̂(x) we measure the root mean square error (RMSE) given by

RMSE =

√
1

n

∑
x

(f(x)− f̂(x))2,

where n is the number of sample points used to approximate the error. In par-
ticular, we consider the average RMSE over the performed experiments, dubbed
RMSE.

fp(x) = 1 + x+ x2 + x3,

fabs(x) = |sin(x) + |cos(x)|| ,
fs3(x) = sin(x) + sin(2x) + sin(3x),

fs4(x) = sin(x) + sin(2x) + sin(3x) + sin(4x).

Table 1. Functions used to test XCSF over the range x ∈ [0, 1].

Statistical Analysis. To analyze the results reported in this paper, we per-
formed an analysis of variance (ANOVA) [2] on the resulting performance and
evolved population size. For each experiment and for each setting, we analyzed
the final performance and the number of macroclassifiers evolved by the differ-
ent versions of XCSF; we applied an analysis of variance to test whether there
was some statistically significant difference; in addition, we applied four post hoc
tests [2], Tukey HSD, Scheffé, Bonferroni, and Student-Neumann-Keuls, to find
which XCSF variants performed significantly different.

6 Experimental Results

In the first experiment we let a single classifier approximate fabs over the input
range [0.4, 0.6], and compare the classifier error estimates computed using the
techniques introduced above. Figure 1 shows the classifier errors estimated by
XCSFrls, XCSFb, and XCSFkal when approximating fabs. Despite the initial per-
formance difference between XCSFb and XCSFkal their error estimates quickly
converge to an accurate and reliable value. On the other hand the XCSFrls error
estimate (i.e. the usual XCSF classifier error estimate) is very noisy and not reli-
able when β = 0.2 (a typical value in literature) due to the stochastic fluctuation
of the Widrow-Hoff update rule This fluctuation can be reduced by decreasing
β, but as shown in Figure 1 for β = 0.001, this has the effect of increasing the
time that the estimate requires to converge to the correct value. The results also
show that while XCSFb initially underestimate the classifier error XCSFkal does
not.

In the second set of experiments we applied XCSFrls, XCSFb, and XCSFkal
to all four functions in Table 1, using the following parameters: N = 800;
β = 0.2; α = 0.1; ν = 5; χ = 0.8, µ = 0.04, θdel = 50, θGA = 50, and
δ = 0.1; GA-subsumption is on with θGAsub = 50; when action-set subsumption
is on, θASsub = 100 is used; m0 = 0.2, r0 = 0.1 [10]; in XCSFrls, XCSFkal
we set δrls = 100 [4]. Experiments were performed with the minimal error ϵ0
set to 0.05, 0.1, and 0.2. The performance of XCSFrls, XCSFb, and XCSFkal
is reported in Table 2 and is computed as the average RMSE of the evolved
solutions over 20 runs. The results show that when action-set subsumption is
off, then all three XCSF versions are accurate in the sense that their function
approximation features an error that is lower than the minimal error ϵ0. We can

Fig. 1. Error estimates of XCSFrls, XCSFb, and XCSFkal when applied to fabs. Error
estimates are reported for the first 1000 learning problems and refer to a single classifier
matching all the inputs in the range [0.4, 0.6].

also see that the error of XCSFrls is generally lower than that of XCSFb and
XCSFkal (and therefore further away from the desired minimal error), which
comes hand in hand with a larger evolved population, as shown in Table 3. This
is not surprising as a more reliable classifier error estimate can be expected to
improve the classifier system’s generalization capabilities, which is confirmed by
the outcome of the experiment.

On the other hand, when action-set subsumption is on, only XCSFb and
XCSFkal are accurate, and XCSFrls features errors up to two times the desired
error. This can be explained by action-set subsumption requiring accurate error
estimates to only subsume classifiers that are indeed less general than they could
be in order to still be considered accurate. In the case of XCSFrls the error
estimates are noisy and so action-set subsumption can have disruptive effects
on the evolved population by having overgeneral classifiers subsume optimally
general classifiers because the overgeneral classifiers are temporarily considered
to be accurate by the system.

The statistical analysis of the data reported in Table 2 and Table 3 shows
that the differences between XCSFkal and XCSFb are always not significant
with a 99.9% confidence. A further analysis of Table 2 shows that the differ-
ences between XCSFrls and the variants XCSFkal and XCSFb are significant
with a 99.9% confidence for most of the experiments, with the differences not
being significant only in the cases when complex function are required to be
estimated with a low error, hence prohibiting generalization (e.g. fs3 and fs4
with ϵ0 = 0.05), or when the function is of low complexity and generalization is
straightforward (e.g. fp with ϵ0 = 0.2 and action-set subsumption).

With respect to the population size evolved by the three XCSF variants (given
in Table 3), we have only performed significance tests on experiments where all

three variants produce an estimate error below the accuracy threshold ϵ0, as we
could produce an arbitrarily small population when ignoring the approximation
error. The results indicate that when action-set subsumption is switched off,
there is no significant difference between any of the systems under investigation.
However, switching on action-set subsumption causes XCSFkal and XCSFb to
always produce significantly smaller populations than XCSFrls, given that the
estimation error of all three systems is below the accuracy threshold. This is not
surprising because without action-set subsumption XCSFkal and XCSFb are not
able to fully exploit their better error estimate and thus the differences are less
significant.

In summary, the results confirm our hypotheses: the improved classifier error
estimate in XCSFb and XCSFkal allows for better generalization and evolves
more compact solutions closer to the desired error. In fact, the size of the pop-
ulations evolved by XCSFb and XCSFkal are always significantly smaller than
the ones evolved by XCSFrls except for when action-set subsumption is on and
XCSFrls is not accurate. It is also worthwhile to observe that when action-set
subsumption is off, XCSFkal evolves populations slightly more compact than
XCSFb, which can be explained by its faster convergence to a good error esti-
mate, as already shown in the first experiment.

f(x) ϵ0 XCSFrls XCSFb XCSFkal
XCSFrls
with ASS

XCSFb
with ASS

XCSFkal
with ASS

fp 0.05 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.08 ± 0.01 0.04 ± 0.00 0.04 ± 0.00
fp 0.10 0.02 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.18 ± 0.01 0.08 ± 0.01 0.08 ± 0.01
fp 0.20 0.05 ± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.19 ± 0.00 0.19 ± 0.00 0.19 ± 0.00

fs3 0.05 0.03 ± 0.00 0.03 ± 0.01 0.03 ± 0.00 0.05 ± 0.01 0.04 ± 0.00 0.04 ± 0.02
fs3 0.10 0.05 ± 0.00 0.05 ± 0.01 0.06 ± 0.00 0.10 ± 0.01 0.07 ± 0.00 0.07 ± 0.00
fs3 0.20 0.08 ± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.27 ± 0.02 0.14 ± 0.01 0.13 ± 0.01

fs4 0.05 0.05 ± 0.04 0.04 ± 0.02 0.04 ± 0.02 0.06 ± 0.01 0.06 ± 0.03 0.04 ± 0.01
fs4 0.10 0.05 ± 0.00 0.06 ± 0.00 0.07 ± 0.02 0.11 ± 0.01 0.07 ± 0.00 0.07 ± 0.00
fs4 0.20 0.08 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.28 ± 0.03 0.14 ± 0.01 0.14 ± 0.01

fabs 0.05 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.03 ± 0.00
fabs 0.10 0.03 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.14 ± 0.02 0.07 ± 0.01 0.07 ± 0.01
fabs 0.20 0.08 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 0.29 ± 0.01 0.16 ± 0.01 0.16 ± 0.01

Table 2. Performance of XCSFrls, XCSFb, and XCSFkal applied to fp, fs3, fs4, and
fabs.

7 Conclusions

In this paper we proposed the modification of the usual classifier error definition:
instead of the commonly used estimate of the mean absolute error, we defined
the classifier error as the estimate of the mean squared prediction error. We also
showed how the usual error computation techniques can result in a noisy and
inaccurate estimate and we thus introduced two new error computation tech-
niques to improve the classifier error estimate. The resulting XCSF versions,

f(x) ϵ0 XCSFrls XCSFb XCSFkal
XCSFrls
with ASS

XCSFb
with ASS

XCSFkal
with ASS

fp 0.05 53.85 ± 6.10 52.35 ± 5.69 48.65 ± 5.02 15.45 ± 5.48 7.50 ± 2.09 7.85 ± 2.94
fp 0.10 50.95 ± 5.75 44.90 ± 7.59 43.85 ± 4.91 5.30 ± 2.78 8.35 ± 3.29 9.75 ± 2.75
fp 0.20 47.00 ± 5.89 42.05 ± 7.04 39.50 ± 4.98 4.25 ± 2.45 3.80 ± 2.38 3.80 ± 2.01

fs3 0.05 83.70 ± 6.00 76.40 ± 5.62 75.95 ± 5.46 37.90 ± 4.77 39.95 ± 5.63 41.20 ± 5.72
fs3 0.10 69.65 ± 6.18 69.40 ± 8.83 66.40 ± 6.49 25.35 ± 3.89 25.45 ± 5.07 25.55 ± 4.15
fs3 0.20 66.15 ± 5.19 57.45 ± 7.54 56.70 ± 5.56 25.20 ± 4.06 17.70 ± 4.05 16.30 ± 4.01

fs4 0.05 88.05 ± 7.39 90.40 ± 7.57 85.45 ± 5.75 47.60 ± 5.18 51.40 ± 4.76 53.10 ± 5.20
fs4 0.10 79.15 ± 5.76 74.05 ± 8.24 70.60 ± 5.31 35.95 ± 5.31 36.80 ± 4.50 37.44 ± 6.42
fs4 0.20 71.65 ± 5.60 68.75 ± 7.43 63.70 ± 6.51 31.60 ± 5.81 24.45 ± 4.25 24.55 ± 4.24

fabs 0.05 62.15 ± 7.55 57.20 ± 7.03 60.35 ± 7.07 23.45 ± 3.29 18.35 ± 3.10 19.60 ± 2.68
fabs 0.10 60.75 ± 5.41 55.30 ± 8.94 58.95 ± 8.24 21.50 ± 4.84 14.75 ± 2.43 15.85 ± 4.23
fabs 0.20 55.80 ± 6.35 50.85 ± 5.15 52.40 ± 7.32 4.65 ± 1.96 11.15 ± 3.53 10.30 ± 3.14

Table 3. Average number of macroclassifiers evolved by XCSFrls, XCSFb, and
XCSFkal applied to fp, fs3, fs4, and fabs.

called XCSFb and XCSFkal, were compared to the usual XCSFrls. Our results
show that in general XCSFrls and XCSFkal evolve more compact solutions and,
in particular, are able to evolve accurate solutions also when action-set subsump-
tion is on. Our results do not show particular differences between XCSFb and
XCSFkal besides the slightly faster convergence of XCSFkal, although further
investigation of the precise difference is necessary.

A Bayes Linear Estimator and Linear Least Squares

In this section we show that linear least squares as the Bayes linear estimator
implementation introduced in is equivalent to linear least squares Given the
following definitions:

ϕ = [1|s]T

Φ =

ϕT

1

ϕT
2
...

ϕT
N

Π =

P1

P2

...
PN

Now we prove that the weights vector of Bayes Linear Estimator (Equation ??)
solve the following least squares normal equations:

ΦTΦw = ΦTΠ

where

ΦTΦ =

 N
∑N

i=1 s
T
i∑N

i=1 si
∑N

i=1 sis
T
i

and

ΦTΠ =

 ∑N
i=1 Pi∑N

i=1 Pisi

According to the previous definition and the sample-based approximations in-
troduced in Section 4 we can now write the least squares normal equations as

N

1 s̄T

s̄ Λss+ s̄s̄T

w = N

 P̄

ΛPs + P̄ s̄

where N can be simplified. The equivalence is proved by replacing in the previous
equation w with the value in Equation ?? and showing it is an identity:1 s̄T

s̄ Λss+ s̄s̄T

 P̄ − ΛT
PsΛ

−1
ss s̄

(ΛT
PsΛ

−1
ss)

T

 ≷

 P̄

ΛPs + P̄ s̄

 P̄ − ΛT

PsΛ
−1
ss s̄+ s̄T (ΛT

PsΛ
−1
ss)

T

P̄ s̄− s̄ΛT
PsΛ

−1
ss s̄+ Λss(Λ

T
PsΛ

−1
ss)

T + s̄s̄T (ΛT
PsΛ

−1
ss)

T

 ≷

 P̄

ΛPs + P̄ s̄

 P̄ − ΛT

PsΛ
−1
ss s̄+ (ΛT

PsΛ
−1
ss s̄)

T

P̄ s̄− s̄ΛT
PsΛ

−1
ss s̄+ Λss(Λ

T
ss)

−1ΛPs + s̄(ΛT
PsΛ

−1
ss s̄)

T

 ≷

 P̄

ΛPs + P̄ s̄

 P̄

P̄ s̄+ ΛPs

 =

 P̄

ΛPs + P̄ s̄

where some basic algebraic properties have been used (i.e. ATBT = (BA)T and
(A1)T = (AT)−1) and (i) Λss is a symmetric matrix and (ii) ΛT

PsΛ
−1
ss s̄ is a scalar,

i.e. ΛT
PsΛ

−1
ss s̄ = (ΛT

PsΛ
−1
ss s̄)

T .

B The Recursive Least Squares Algorithm

Let ΦN and PN denote the feature and payoff matrix, respectively, after having
observed N states, and given by

ΦN =

−ϕ
T
1−
...

−ϕT
N−

 , PN =

 P1

...
PN

 . (22)

The Recursive Least Squares (RLS) algorithm allows tracking the weight vector
wN that minimises the convex cost function

N∑
t=1

(
wT

Nϕt − Pt

)2
+

1

δRLS
∥wN∥2, (23)

and satisfies the equality(
ΦT

NΦN +
1

δRLS
I

)
wN = ΦT

NPN , (24)

where I denotes the identity matrix. Let V−1
N = ΦTΦN denote the feature

autocorrelation matrix estimate, that satisfies the relation

V−1
t = V−1

t−1 + ϕT
t ϕt, (25)

with V0 = δRLSI. Similarly, we have

ΦT
t Pt = ΦT

t−1Pt−1 + ϕtPt, (26)

which, together with Eqs. 24 and 25 allows us to derive

V−1
t wt = V−1

t wt−1 + ϕt(Pt −wT
t−1ϕt). (27)

Pre-multiplying the above by Vt results in the RLS weight vector update

wt = wt−1 +Vtϕt(Pt −wT
t−1ϕt). (28)

To get the update for V, we apply the Sherman-Morrison formula [?] to
Eq. 25, resulting in

Vt = Vt−1 −
Vt−1ϕtϕ

T
t Vt−1

1 + ϕT
t Vt−1ϕ

, (29)

which can be written as

βRLS = 1 + ϕT
t Vt−1ϕt, (30)

Vt = Vt−1 − βRLSVt−1ϕtϕ
T
t Vt−1, (31)

and thus results in the final RLS update for V. Note that the Sherman-Morrison
formula is only applicable if V−1 is invertible, and thus V needs to be initialised
to V0 = δRLSI with δRLS <∞, such that V−1

0 = (1/δRLS)I > 0I.

C Incremental Mean Square Error Update

Let us assume that the weight vector w is estimated by the RLS algorithm,
initialised with a very large δRLS →∞, and therefore by Eq. 24 at t satisfies the
normal equation (

ΦT
t Φt

)
wt = ΦT

t Pt, (32)

which can also be written as

wT
t Φ

T
t (Φtwt −Pt) = 0 (33)

Our aim is to find an incremental update equation for the MSE, ft(Wt),
that, following Eq. 4, is in matrix notation given by

tft(wt) = ∥Φtwt −Pt∥2, (34)

Using −Pt = −Φtwt + (Φtwt −Pt) and Eq. 33 allows us to derive

PT
t Pt = wT

t Φ
T
t Φtwt − 2wT

t Φ
T
t (Φtwt −Pt) + (Φtwt −Pt)

T (Φtwt −Pt)

= wT
t Φ

T
t Φtwt + ∥Φtwt −Pt∥2, (35)

and thus we can express the sum of squared errors by

∥Φtwt −Pt∥2 = PtPt −wT
t Φ

T
t Φtwt. (36)

To express ∥Φtwt−Pt∥2 in terms of ∥Φt−1wt−1−Pt−1∥2, we combine Eqs. 25,
26 and 36, and use V−1

t wt = ΦT
t Pt after Eq. 32 to get

∥Φtwt −Pt∥2

= PT
t Pt −wT

t Φ
T
t Φtwt

= ∥Φt−1wt−1 −Pt−1∥2 + P 2
t +wT

t−1V
−1
t−1wt−1 −wT

t V
−1
t wt

= ∥Φt−1wt−1 −Pt−1∥2 + P 2
t

+wT
t−1

((
V−1

t−1 + ϕtϕ
T
t

)
wt − ϕtPt

)
−wT

t

(
V−1

t−1wt−1 + ϕtPt

)
= ∥Φt−1wt−1 −Pt−1∥2 + P 2

t +wT
t−1ϕtϕ

T
t wt −wT

t−1ϕtPt −wT
t ϕtPt

= ∥Φt−1wt−1 −Pt−1∥2 + (wT
t−1ϕt − Pt)(w

T
t ϕt − Pt).

Thus, we get

tft(wt) = (t− 1)ft−1(wt−1) + (wT
t−1ϕt − Pt)(w

T
t ϕt − Pt), (37)

which, using ε2t ≡ ft(wt), can be rewritten to

ε2t = ε2t−1 +
1

t

(
(wT

t−1ϕt − Pt)(w
T
t ϕt − Pt)− ε2t−1

)
. (38)

References

1. J. Drugowitsch and A. M. Barry. A formal framework and extensions for func-
tion approximation in learning classifier systems. Technical Report CSBU2006-01,
Dept. Computer Science, University of Bath, 2006. ISSN 1740-9497, submitted in
slightly modified form to Machine Learning, 06/03/2006.

2. S. A. Glantz and B. K. Slinker. Primer of Applied Regression & Analysis of Vari-
ance. McGraw Hill, 2001. second edition.

3. P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg. Extending XCSF be-
yond linear approximation. In Genetic and Evolutionary Computation – GECCO-
2005, Washington DC, USA, 2005. ACM Press.

4. P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg. Generalization
in the XCSF classifier system: Analysis, improvement, and extension. Technical
Report 2005012, Illinois Genetic Algorithms Laboratory – University of Illinois at
Urbana-Champaign, 2005. also available as a technical report of the Dipartimento
di Elettronica e Informazione – Politecnico di Milano.

5. P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg. XCS with Computed
Prediction for the Learning of Boolean Functions. In Proceedings of the IEEE
Congress on Evolutionary Computation – CEC-2005, Edinburgh, UK, 2005. IEEE.

6. P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg. Prediction update
algorithms for XCSF: RLS, kalman filter, and gain adaptation. Technical Report
2006008, Illinois Genetic Algorithms Laboratory – University of Illinois at Urbana-
Champaign, 2006.

7. B. Widrow and M. E. Hoff. Adaptive Switching Circuits, chapter Neurocomputing:
Foundation of Research, pages 126–134. The MIT Press, Cambridge, 1988.

8. S. W. Wilson. Mining Oblique Data with XCS. pages 158–174.
9. S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation,

3(2):149–175, 1995. http://prediction-dynamics.com/.
10. S. W. Wilson. Classifiers that approximate functions. Journal of Natural Compu-

tating, 1(2-3):211–234, 2002.

