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Abstract. In this paper we promote a new methodology for design-
ing LCS that is based on first identifying their underlying model and
then using standard machine learning methods to train this model. This
leads to a clear identification of the LCS model and makes explicit the
assumptions made about the data, as well as promises advances in the
theoretical understanding of LCS through transferring the understanding
of the applied machine learning methods to LCS. Additionally, it allows
us, for the first time, to give a formal and general, that is, representation-
independent, definition of the optimal set of classifiers that LCS aim at
finding. To demonstrate the feasibility of the proposed methodology we
design a Bayesian LCS model by borrowing concepts from the related
Mixtures-of-Experts model. The quality of a set of classifiers and con-
sequently also the optimal set of classifiers is defined by the application
of Bayesian model selection, which turns finding this set into a princi-
pled optimisation task. Using a simple Pittsburgh-style LCS, a set of
preliminary experiments demonstrate the feasibility of this approach.

1 Introduction

In this work we promote a model-based design approach for LCS that allows us
to define formally and from first principles which set of classifiers LCS aim at
learning, thus tackling the core question of LCS. The motivation behind acquir-
ing the model-based approach is that, in essence, any machine learning method
is based on some form of (sometimes implicit) model that determines its training
and makes explicit the assumptions that are made about the data that it mod-
els. Thus, if the model underlying LCS is made explicit, we can use standard
machine learning methods for its training and analysis, in addition to making
explicit the assumptions about the data. The latter is important as it tells us
how LCS differ from other approaches in machine learning, and in particular for
which kind of data they might feature superior performance.

Up to now, the design of LCS is mostly handled in an ad-hoc way with an
intuitive understanding of how the optimal set of classifiers might look like.
This leads to algorithmic descriptions of their implementations and subsequent
attempts of analysing their performance and inner working, such as, for example,
the extensive analysis of XCS [1] by Butz et al. [2,3,4]. We propose a different
approach: firstly, one should seek to make explicit the underlying model that
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LCS uses for a set of classifiers to represent the data. Having such a model,
the definition of the optimal set of classifiers, that is, the set that LCS training
should seek, becomes simple, yet powerful: the optimal set of classifiers is the
one that models the data best.

Such a definition of the optimal set of classifiers, and with it the whole method-
ology, seemingly only applies to regression and classification tasks, and only if all
data is known before the LCS is trained (that is, for batch training). However,
we claim that the approach can be used to derive both batch and incremental
training methods, based on interpreting incremental methods as approximations
to solutions that can equally be found by a batch learning approach1. Also, the
approach can be extended to sequential decision tasks by the application of re-
inforcement learning, and using LCS to approximate the value function, which
is an incremental non-stationary univariate regression task [5].

Naturally, there is no single model that describes all possible LCS variants.
Similarly, there is not only a single machine learning method that can be applied
to tell us which model represent the data best. Thus, we want to emphasise that
the regression model that forms the core of this paper — which is one that
closely resembles XCS(F) [1,6] — and the methods that we have applied to
define and find the best set of classifiers are only meant to illustrate that the
methodology we promote does indeed lead to feasible LCS implementations. The
presented model can be easily reformulated to a classification model that leads
to a different LCS specialised on classification tasks. Alternatively, it might be
reformulated to make different assumptions about the data, which leads to a
different LCS variants.

Due to space constraints we mainly focus on formulating the model, which we
derive from a generalisation of the well-known Mixtures-of-Experts model. As
most of the LCS research is focused on model training rather than the model
itself, we will also give an overview of how to train the presented model, and show
preliminary experimental results. While we understand that the brevity of the
presentation might make the details of the approach not immediately accessible,
we feel that it needs to be presented as a whole to at least initially underline
this holistic approach. Consequently, the experiments that we present cannot
be reproduced by the reader, but we will make all necessary details available in
forthcoming publications.

We start by giving a general description of LCS as a model that combines
localised models (that is, the classifiers) to a global model. We then link such
a structure to a generalised Mixture-of-Experts model, followed by discussing
how to keep its training computationally tractable. Furthermore, we exploit the
model by introducing a principled approach to the identification of the quality
of a set of classifiers given the data, leading to a formal and general definition
of the optimal set of classifiers. As this approach requires a Bayesian model, we
fit priors to the probabilistic LCS model that make explicit the usually implicit

1 A simple example is the application of Recursive Least Squares as an incremental
approach to finding a solution that can equally be found be any Least Squares batch
method.
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prior assumptions that each model makes about the data. The quality metric
on a set of classifiers turns the search for a good set of classifiers into an opti-
misation problem that can be handled by a genetic algorithm, which allows for
the creation of a simple Pittsburgh-style LCS. Using such an implementation,
we present some experimental results that show the applicability of the previ-
ously introduced concepts and conclude by pointing out the achievements and
implications of this work.

2 Assembling an LCS Model

To create an adequate model for LCS we will firstly discuss the general structure
of LCS models, based on characterising them as a member of the family of
parametric models. This reveals that we can facilitate their similarity to the
well-known Mixtures-of-Experts model to provide a probabilistic formulation
for their model structure, describing a fixed set of classifiers.

2.1 A Bird’s Eye View of the LCS Model

A parametric model family in ML can be characterised by the model structure
M and the model parameters2 θ. While the model structure is usually chosen
before the model is trained, the model is fitted to the data by adjusting its
parameters. For example, given the family of feed-forward neural networks, the
number of hidden layers and nodes in each of the layers determines the model
structure, and the model parameters are the weights of the connections between
these nodes. Accordingly, the model structure commonly determines the number
of model parameters that need adjustment.

While the same concepts apply to classification and reinforcement learning
tasks, let us for now consider only regression tasks where the observations are
assumed to be sampled from a target function f that maps the input space
X = RDX into the output space Y = R. In LCS, we have a set of K classifiers,
each of which matches a subset of the input space. Considering classifier k, this
classifier matches Xk ⊆ X and provides a localised regression model f̂ : Xk → Y,
where the localisation is determined by Xk and is traditionally represented by
the condition and action of a classifier. To provide a model of the full target
function, the local models are mixed (that is, combined) in some way to provide
the estimate f̂ : X → Y, assuming that each element of X is matched by at least
one classifier.

Leaving incremental training methods aside for now, this perspective reveals
that the model structure M in LCS is in fact the number of classifiers in the
population, and the parts of X that each of them matches. On the other hand,
the model parameters θ are the combined parameters of the regression model of
2 While a parameter in LCS often refers to a constant that is set before training LCS

and remains unchanged during training, we use it when referring to a variable of
the model that is modified during training, and call a parameter in the LCS sense a
system parameter.
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each of the classifiers and the parameters of the model used to mix the classifier
predictions. It also shows that LCS do not only aim at training a model M
by adjusting the parameters of classifiers and mixing, but also tries to find an
adequate model structure that fits (but does not overfit) the target function.
While the second task is the more challenging one, let us for now concentrate
on the first one, that is, how to adjust the model parameters for a given model
structure, and come back to improving the model structure in Sect. 3. To do so,
we need to define exactly the regression models underlying the classifiers and
the model used for mixing their prediction.

Fortunately, Mixtures-of-Experts (MoE) [7,8] feature a similar model struc-
ture to LCS, and we can use this similarity to generalise MoE such that it corre-
sponds to the model that underlies LCS. While we introduce the standard MoE
model in the next section, we present the generalisations that make it similar to
LCS in the section thereafter.

2.2 Mixtures of Experts

Mixture of Experts are probably most intuitively explained from the generative
point-of-view: Let X = {xn ∈ X} be the set of N inputs, and Y = {yn ∈ Y}
the corresponding set of outputs, together giving the data D = {X, Y }. For a
set of K experts, each observation {x, y} is assumed to be generated by one and
only one expert. We can model this by introducing the latent random vector
z = (z1, . . . , zK)T of binary random variables, each of which corresponds to an
expert. Given that expert k̄ generated the observation, then zk̄ = 1 and zk = 0
for all k �= k̄. Hence, z has a 1-of-K structure, that is, it always contains one
and only one element that is 1, with all other elements being 0.

Concentrating again on regression tasks, let the model of expert k be given
by the conditional probability

p(y|x, wk, τk) = N (y|wT
k x, τ−1

k ), (1)

that is, by a univariate Gaussian with mean wT
k x and precision (that is, inverse

variance) τk, where wk is the weight parameter and τk is the precision parame-
ter of expert k. This is a standard model for linear regression assuming constant
noise variance over all observations and can easily be fitted by maximum likeli-
hood, resulting in a linear least-squares problem.

As each observation is generated by one and only one expert, we can facilitate
the 1-of-K structure of z to get the probability of y given x and all experts by

p(y|x, W , τ , z) =
K∏

k=1

p(y|x, wk, τk)zk , (2)

where W = {wk}, τ = {τk}, and zk are the elements of the latent variable z
that corresponds to the observation {x, y}.

If we know the values of Z = {zn}, where zn stands for the latent variable cor-
responding to observation {xn, yn}, then we can train each expert independently
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to fit only the observations that it generated. This can be seen by expanding the
expression of the log-likelihood over the whole data

ln p(Y |X, W , τ , Z) = ln
N∏

n=1

p(yn|xn, W , τ , zn)

=
N∑

n=1

K∑

k=1

znk ln p(yn|xn, wk, τk),

where znk assigns the observations to the different experts. However, as Z is
usually not known beforehand, we need to learn a model for it at the same time
as training the experts. For that task MoE uses the multinomial logit model3; this
is a standard model for categorical data and in the MoE context is known as the
gating network, as it is responsible for associating observations and experts. It is
defined by introducing another parameter vector vk per expert that determines
the probability of expert k having generated observation {xn, yn} by

gk(xn) ≡ p(znk = 1|xn, vk) =
exp(vT

k xn)
∑K

j=1 exp(vT
j xn)

. (3)

This function is also known as the softmax function, and defines a soft linear
partitioning over X . The model emerges from the assumption that the relation
between the probability of an expert k generating an observation {x, y} is log-
linear in x, that is p(zk = 1|x, vk) ∝ exp(vT

k x).
Given the model structure M of MoE by the number of experts K, and

having defined both the model for the experts and the gating network, the model
parameters θ = {W , τ , V } can be found by the EM-algorithm: in the E-step, the
posteriors p(znk = 1|xn, yn, vk) are computed based on the current goodness-
of-fit of the experts. The M-step uses these posteriors to adjust the expert and
gating network parameters in order to maximise the likelihood of the data D and
the latent variables Z [8]. This update has the effect that the gating network is
adjusted according to the goodness-of-fit of the different experts, and the experts
are trained according to how the gating network assigns the observations to the
experts. In combination, this causes the input space to be partitioned by a soft
linear partition, and each expert models the observations that fall in one of these
partitions. Hence, the experts form localised models, where the localisation is
determined by the gating network.

At this point the relation to LCS should be clear: The classifiers in LCS
correspond to the experts in MoE, and the gating network has the same task
as the mixing model in LCS. However, while the localisation of the classifiers
in LCS is part of the model structure, the experts in MoE are localised by the
interaction between the gating network and the experts. In the next section
we show how an additional localisation layer in the MoE model can act as a
generalisation to both the MoE model and the LCS model, and as such provides
a strong probabilistic foundation for the LCS model.
3 For details about the multinomial logit model and other generalised linear models

see [9].
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2.3 LCS as Generalised Mixtures of Experts

As a generalisation to the standard MoE model, we want to restrict the possi-
bility of experts to generate observations to the inputs that the expert matches.
Such matching is easily introduced by an additional binary random variable mnk

that is 1 if expert k matches input xn, and 0 otherwise. In contrast to the latent
variables znk, mnk does not need to obey the 1-of-K as several experts can match
the same input. To enforce this matching, we define the probability of expert k
generating the observation {xn, yn} to be

p(znk = 1|mnk, xn, vk) ∝
{

exp(vT
k ϑ(xn)) if mnk = 1,

0 otherwise, (4)

where ϑ : X → RDV is a transfer function over the input vectors, resulting in an
additional generalisation over the MoE model, which uses ϑ(x) = x. Therefore,
if expert k matches input xn then the probability of it generating the observation
{xn, yn} is determined by a log-linear model as for the standard MoE model.
If it does not match, however, then it could not have produced the observation
either (that is, with probability 0). If we marginalise that probability over mnk,
we get

p(znk = 1|xn, vk) ∝ mk(xn) exp(vT
k ϑ(xn)), (5)

where we have defined the matching function mk(xn) ≡ p(mnk = 1|xn), giv-
ing the probability of expert k matching input xn. Adding the normalisation
constant, we get the redefined gating network

gk(xn) ≡ p(znk = 1|xn, vk) =
mk(xn) exp(vT

k ϑ(xn)
∑K

j=1 mj(xn) exp(vT
j ϑ(xn))

. (6)

Comparing Eq. (6) to the gating network Eq. (3) of the standard MoE model,
we can see the additional mediation by the matching functions. As matching is
unchanged during the model fitting process, it is part of the model structure
which is hence given by M = {K, M}, where M = {mk} is the set of the
expert’s matching functions.

We do not need to modify the expert models, as by Eq. (4) an expert can
only generate observations for a particular input if it matches that input, that
is, p(znk = 1|xn, vk) > 0 only if mk(xn) > 0. Thus, Eq. (2) still remains valid in
the generalised MoE model.

To demonstrate that the model generalises over both MoE and LCS, we show
how each of them can be recovered by fixing parts of the model structure: To get
the standard MoE from our generalisation we simply need to assume a model
structure where each expert matches all inputs. This structure is for some K
given by the matching functions mk(xn) = 1 for all n and k. Additionally, we
have ϑ(x) = x as the gating network relies on the same inputs as the experts.
LCS are not (yet?) as well defined as MoE and thus we could already claim
that the generalised MoE by itself describes an LCS: A classifier corresponds
to an expert with its matching function being specified by its condition/action
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pair, that is, mk(x) = 1 if classifier k matches input x, and mk(x) = 0 other-
wise. Naturally, if the function ϑ is defined as something other than ϑ(x) = 1,
then training the generalised MoE would cause the classifiers to be localised in
regions of overlap beyond what is determined by their condition/action pair.
While we have experimented with such a setup in [10], current commonly used
LCS — such as XCS [1] and its derivates — perform mixing/gating based on
an input-independent scalar, which can be modelled by setting ϑ(x) = 1 for
all x. Additionally, mixing is usually performed by heuristics (such as the nor-
malised fitness in XCS), but having a better probabilistic justification like the
multinomial logit model is certainly an advantage.

2.4 Training the Classifiers Independently

While the generalised MoE can be trained just like the standard MoE by using
the EM-algorithm, its training comes with the same disadvantages: As the ob-
jective function for MoE is highly multi-modal, we will easily get stuck in local
optima [11]. This problem is usually addressed by random restarts when training
MoE, which still does not guarantee finding the optimal solution. In LCS, fitting
a model to the data (that is, tuning its model parameters) is necessary to eval-
uate a certain model structure, but that needs to be performed many-fold when
searching the space of possible model structures to find a good set of classifiers.
As this space is potentially huge and very complex, we need to quickly be able to
evaluate a single model structure, which is certainly not possible when utilising
a random restart strategy.

Fortunately we do not need to look very far to solve this problem: XCS ad-
dresses it implicitly by not considering the interaction between classifiers and
mixing. In fact, the multitude of local optima in the MoE model stem from
the interdependence of expert and gating network training. Note that this in-
terdependence is required to perform the necessary localisation of the experts.
However, in our generalisation of the MoE model there is a second layer of locali-
sation that is defined by the matching functions. Hence, for training the classifiers
we can assume that the localisation of the different classifiers is fully defined by
the matching function, which makes it independent of how their predictions are
mixed. This has the advantages that i) classifiers can be trained by a single
pass over the data; and ii) classifiers with the same associated condition/action
always have the same parameter values, independent of the other classifiers in
the population. The mixing parameters can now be either determined heuris-
tically or, alternatively, trained in a single pass based on the goodness-of-fit
of the different classifiers. On the downside, removing the link between classi-
fier training and how they are mixed reduces the goodness-of-fit of the whole
model, which needs to be counterbalanced by a more powerful model structure
search.

Note that the modified training schema moves the model away from MoE
towards ensemble learning where independently trained models are combined
to form a single model. While this link has also been established independently
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in [12], it is clearly beyond the scope of this paper to elaborate on its implication.
Let us just point out that while interdependent classifier/mixing training as-
sumes that each observation is generated by one and only one classifier, training
the classifiers independently changes the assumptions about the data such that
each observation is assumed to be a mixture of different generative processes,
each of which is modelled by a different classifier.

3 Finding a Good Set of Classifiers

Probably the most important part of LCS is to find a good set of classifiers
that fit the data. But what is a good quality metric when we want to evalu-
ate the “goodness” of a set of classifiers? Its error when modelling the data is
certainly an important component. However, given a set of observations, the
model error is minimal if each observation is modelled by a single classifier —
a not very satisfactory solution, given that it does not provide any more in-
formation about the data than the data itself. An alternative is to seek for
the smallest set of classifiers that still results in an error-free fit of the data.
Although better than one classifier per observation, this method would not
fare well in the light of noisy data. XCS handles this problem by considering
classifiers as accurate up to a user-defined error threshold and thus provides
some form of accuracy/generalisation tradeoff. However, the solution does not
give guidelines on how to set the error threshold and thus can overfit the data
arbitrarily.

3.1 Applying Bayesian Model Selection

As already alluded to in the introduction, we approach the problem of defining
the quality of a set of classifiers by assessing how well the model structure it
represents explains the given data. Fortunately, this problem is well-known in
machine learning and is handled by the field of model selection. The essential
problem that model selection deals with is to find a model structure that does,
on one hand, correctly identify all pattern within the data (within the realm
of the model family) but avoids modelling randomness, essentially identifying
a good tradeoff between generalisation and goodness-of-fit of a model. This is
a difficult problem and different philosophical assumptions about the nature of
randomness leads to different results, such as the Minimal Description Length
[13] method or Statistical Learning Theory [14].

Bayesian model selection is a model selection method founded in Bayesian
statistics which has fortunately already been applied to the standard MoE model
[11,15]. It is based on the idea that the probability of a model structure given
the data can be evaluated by

p(M|D) ∝ p(D|M)p(M), (7)
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where p(D|M) is the goodness-of-fit of the data given a certain model struc-
ture, and p(M) is the prior probability for that model structure4. Hence, given
that we have a fully Bayesian model, the problem of finding a good model struc-
ture becomes as simple as finding one that maximises the model structure pos-
terior p(M|D).

3.2 A Bayesian LCS Model

To apply Bayesian model selection we require a Bayesian LCS model, which we
introduce by extending the probabilistic LCS model by adequate priors on its
model parameters. The priors that we introduce are similar to the ones used
by Waterhouse et al. for the Bayesian MoE model [17,18]. They are conjugate
priors5 where possible, except for the gating network parameters, where Laplace
approximation (for example, [19]) is required to keep the evaluation of the pa-
rameter posteriors analytically tractable.

We also give recommendations on the prior parameters that cause them to
be very uninformative; that is, in the light of some evidence the influence of the
prior on the posterior is negligible. This makes the model selection criterion and
subsequently also our definition of the optimal set of classifiers almost completely
independent of the choice of priors.

Classifier Model Priors. For the univariate linear classifier model Eq. (1) we
acquire the conjugate normal inverse-gamma prior

p(wk, τk|αk) = N (wk|0, (αkτk)−1I)Gam(τk|aτ , bτ )

=
(αkτk

2π

)DX /2 baτ
τ τ

(aτ−1)
k

Γ (aτ )
exp

(
−αkτk

2
wT

k wk − aττk

)
, (8)

where Gam(·|aτ , bτ ) denotes the gamma distribution with scale aτ and shape
bτ , and Γ (·) is the gamma function. This prior expresses that we expect the
elements of the weight vector wk to be independently distributed by a zero-
mean Gaussian with precision (that is, inverse variance) αkτk. In other words,
we expect the weight elements to be small, which is a realistic assumption, given
that the target function that a classifier aims at modelling is expected to be
smooth. The noise precision τk is distributed according to a gamma distribution
which we will parameterise as in [11] by aτ = 10−2 and bτ = 10−4 to keep the
prior sufficiently broad an uninformative.

4 Bayesian model selection differs from the approach of maximum likelihood in that,
assuming a uniform model structure prior p(M), Bayesian model selection aims at
finding the M that maximises p(D|M), whereas maximum likelihood aims at finding
the parameters θ that maximise p(D|θ, M). The p(D|M) is found by marginalis-
ing over p(D|θ, M) (see Eq. (14)) which implicitly penalises the complexity of the
parameter space {θ} and hence protects from overfitting [16].

5 Conjugate priors are priors that, when conditioned on the data likelihood, result in
a posterior of the same distribution family as the prior.
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Even though we could specify αk directly as an additional prior parameter,
we rather assign it a hyperprior as in [11] to allow it to automatically adjust to
the data. We specify this hyperprior by the gamma distribution

p(αk|aα, bα) = Gam(αk|aα, bα) =
baα
α α

(aα−1)
k

Γ (aα)
exp(−aααk), (9)

with parameters aα = 10−2 and bα = 10−4 to keep it uninformative.

Gating Network Priors. In the prospect of applying Laplace approximation
to the gating network model Eq. (6), resulting in a Gaussian, we apply conjugate
Gaussian priors to the gating weights, given by

p(vk|βk) = N (vk|0, β−1
k I)

=
(

βk

2π

)DV /2

exp
(

−βk

2
vT

k vk

)
. (10)

This again corresponds to the assumption of having gating weight vectors with
small and independent elements. βk is again modelled by a hyperprior, given by
the gamma distribution

p(βk|aβ , bβ) = Gam(βk|aβ , bβ) =
b
aβ

β β
(aβ−1)
k

Γ (aβ)
exp(−aββk), (11)

which parameter values aβ = 10−2 and bβ = 10−4 to keep the hyperprior unin-
formative.

Model Structure Prior. Recalling that M = {K, M} is the number of clas-
sifiers K and their matching functions M , the model structure prior p(M) in
Eq. (7) lets us specify any prior belief we have about the number of classifiers
and their matching functions, such as that the number of classifiers is certainly
not infinite. At first thought it might seem reasonable to specify it to express
that every possible unique model structure is equally likely to represent the data.
One should note, however, that the number of possible unique model structures
for a fixed number of classifiers K grows exponentially with K. Thus, putting a
uniform prior on the model structure space will put an implicit bias on model
structures with a large number of classifiers.

The contrary, which is to put a uniform prior on the number of classifiers
rather than the unique model structures, leads to a bias against particular model
structures with higher numbers of classifiers, as for those there exist more pos-
sible model structures. Thus, how to appropriately define p(M) is a topic of
further investigation, but for now we have chosen to specify it by

p(M) ∝ 1
K!

, (12)

to capture that in most LCS implementations the same model structure with
K classifiers can be specified in K! different ways by simply reordering the
classifiers.



A Principled Foundation for LCS 87

A summary of the full Bayesian model including its priors and hyperpriors
is given in App. A. The variable dependency structure that shows the different
random variables depend on each other is shown in Fig. 1.

yn

xn

znk

mnk

vk

wk

τk

βk

αk

aβ

bβ

aα

bα

aτ

bτ

K

M

classifiers

N

data

Fig. 1. Directed graphical model of the Bayesian LCS model. The circular nodes are
random variables, which are observed when shaded. Labels without nodes are either
constants or adjustable parameters. The boxes are “plates”, comprising replicas of the
entities inside them. Note that to train the model we assume the data D and the model
structure M to be given. Hence, the yn’s and M are observed random variables, and
the xn’s are constants.

3.3 Evaluating Posterior and Model Evidence

In order to evaluate the model structure posterior p(M|D) by Eq. (7), one needs
to know p(M) and p(D|M). In fact, as the posterior density is only used to
compare different model structures, we can equally use the unnormalised log-
density, that, by using Eq. (12), is given by

ln p(M|D) = ln p(D|M) − ln K! + const., (13)

where the constant term represents the logarithm of the normalisation constant.
To get the model evidence p(D|M) we need to evaluate

p(D|M) =
∫

θ

p(D|θ, M)p(θ|M)dθ, (14)
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where θ = {W , τ , V , α, β} denotes the parameters of a model with structure M,
and p(θ|M) represents their priors, as we have specified above. Unfortunately,
there is no closed-form solution to Eq. (14) and so we have to either apply
sampling techniques to sample from the posterior or resort to approximating it.
We have decided for the latter, as sampling techniques are slower and would
prohibit the quick evaluation of a large number of model structure, which is
essential for LCS.

Variation Bayesian Inference with Factorial Distributions. Our goal is,
on one hand, to find a variational distribution p(U) that approximates the true
parameter posterior p(U |D, M) and, on the other hand, to get the model evi-
dence p(D|M) ≡ p(Y |X, M), where U = θ ∪ {Z} denotes all hidden variables.
Variational Bayesian inference is based on the decomposition [20,19]

ln p(Y |X, M) = L(q) + KL(q||p), (15)

L(q) =
∫

q(U) ln
p(U , Y |X, M)

q(U)
dU , (16)

KL(q||p) = −
∫

q(U) ln
p(U |X, Y , M)

q(U)
dU , (17)

which holds for any choice of the variational distribution q. As the Kullback-
Leibler divergence KL(q‖p) is always non-negative, and zero if and only if q(U) =
p(U |X, Y , M), the variational bound L(q) is a lower bound on ln p(Y |X, M)
and only equivalent to the latter if q(U) is the true posterior p(U |X, Y , M).
Hence, we can approximate the posterior by maximising the lower bound L(q),
which brings the variational distribution closer to the true posterior and at
the same time gives us an approximation of the model evidence by L(q) ≤
ln p(Y |X, M).

To make this approach tractable, we need to choose a family of distributions
q(U) that gives an analytical solution. A frequently used approach (for example,
[17,11]) that is sufficiently flexible to give a good approximation to the true
posterior is to use the set of distributions that factorises with respect to disjoint
groups Ui of variables q(U) =

∏
i qi(Ui), which allows us to maximise L(q) with

respect to each group of hidden variables while keeping the other ones fixed.
This results in

ln q∗i (Ui) = Ei�=j(ln p(U , Y |X, M)) + const.., (18)

when maximising with respect to Ui, where the expectation is taken with respect
to all hidden variables except for Ui, and the constant term is the logarithm of
the normalisation constant of q∗i [19].

Applying variational Bayesian inference to the Bayesian LCS model is a long-
winded and complex process that we will not illustrate here, but is described in
more detail in [21]. An analytical solution is only acquired if the model has a
conjugate-exponential structure, which is violated by the gating network. Thus,
we have applied Laplace approximation to its distribution, of which the details
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can also be found in [21]. Overall, the procedure results in a closed-form ex-
pression for the variational bound L(q) that can be improved incrementally and
can replace the model evidence p(D|M) in Eq. (7) to approximate the model
structure posterior.

3.4 Summarising the Approach

Our starting point was to apply model selection to find the set of classifiers that
model the data best, that is, without overfitting and underfitting. Approaching
the problem by Bayesian model selection, the problem becomes the one of finding
a set of classifiers M that maximises p(M|D). Given an efficient method to
evaluate p(M|D) for any M, any global optimisation method can be applied to
search the space of possible sets of classifiers to maximise p(M|D).

To get an expression for p(M|D), or more specifically for the unnormalised
ln p(M|D) that can equally be used to compare different M, we have applied
variational Bayesian inference. This results in an approximation L(q) to ln p(D|M)
which can be used in Eq. (13) to approximate ln p(M|D). Overall, this is suffi-
cient to implement simple algorithms that search for the optimal set of classifiers
for some data, with respect to the previously defined LCS model.

4 But..., Does it Work?

To illustrate that the introduced LCS design methodology leads to useful LCS
implementations, we demonstrate the performance of the introduced LCS model
and its training on two simple one-dimensional regression tasks. We understand
that the brevity of the presentation does not allow the results to be replicated,
but a forthcoming publication will, on one hand, give all the details that are
required for replication and, on the other hand, present further results.

In all experiments we have used linear classifiers with input vectors x = (1, x)T

for input x, causing the model to by represented by a straight line.

4.1 Model Structure Search

To search the space of possible sets of classifiers we have applied a genetic algo-
rithm (GA) to create a Pittsburgh-style LCS. The individuals represent model
structures, and their fitness is the approximated model structure posterior, eval-
uated by Eq. (13). Thus, by searching for the fittest individual, the GA aims at
finding the set of classifiers that maximises p(M|D).

We have used a rather small population of 20 individuals, and tournament
selection with a tournament size of 5 individuals. The individuals are of variable
length, and uniform crossover is performed by random sampling without replace-
ment from the combined set of matching functions of two selected individuals.
The mutation operator is dependent on the representation of the matching func-
tion and will not be detailed. In both experiments, the best individual of any of
the 500 training epochs is reported.
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To demonstrate that any global optimisation method can be used to find ad-
equate model structures we have performed similar experiments using Monte
Carlo Markov Chain (MCMC) methods, analogous to how it was applied by
Chipman et al. in [22]. The found model structures were about the same as
when applying the GA for model structure search, but we expect MCMC to
perform worse in more complex problems where the GA can be expected to ex-
ploit building blocks in the solution structure. More details on applying MCMC
to model structure search are given in [21].

4.2 Approximating a Generated Function

To test if the method correctly identifies the model structure when the data
was generated in conformation to the LCS model assumptions, we have gener-
ated such data by combining the models of three localised classifiers with added
Gaussian noise. To demonstrate the LCS model’s ability to perform matching
by degree, we use radial basis matching function, given by

mk(x) = exp
(
−(2σ2

k)−1(x − μk)2
)
, (19)
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Fig. 2. The plot shows the mean of the data-generating function and the training
data itself. Additionally, it shows the linear models of the 3 identified classifiers and
the prediction of the full model with confidence intervals that represent one standard
deviation to either side of the prediction. As can be seen, the method identified a
model structure that fits the data well and is close in its parameter to the model that
generated the data.
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which is an unnormalised Gaussian that is centred on μk and has variance σ2
k.

Thus the classifier matches input x = μk with probability 1, and all other inputs
with a probability that decreases in proportion to the distance from μk.

The best model structure found in a single run of the GA is shown in Fig. 2,
illustrating the data, the classifiers in the model structure, and the mean predic-
tion with confidence intervals. The latter is an additional feature of the model-
based approach: due to the probabilistic model, we can make clear statements
about the confidence of the prediction. As can be seen, the found model structure
represents the data well. Additionally, the model structure parameters are fairly
close to the ones that were used to generate the data, and we do not expect the
search to find a perfect match as the model structure space is infinite.

4.3 Variable Measurement Noise

XCS seeks for classifiers that feature a mean absolute error close to a preset min-
imum error ε0, leading to classifier models with approximately equal variances.
The introduced LCS model is more flexible by allowing the classifier models
to have different variances, depending on the given data. To test if this fea-
ture can be exploited we generate data where the level of noise varies over the
input range. More specifically, the target function is for −1 ≤ x ≤ 1 given by
f(x) = −1−2x+N (0, 0.6) if x < 0, and is f(x) = −1+2x+N (0, 0.1) otherwise,
resulting in a V-shaped function with two different noise levels.

To let the classifiers match distinct areas of the input space we use interval
matching with soft boundaries to indicate that in the light of finite data we can
never be certain about where the interval boundaries lie. Given that classifier k
matches the interval [lk, uk], its matching function is given by

mk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

exp
(
− 1

2σ2
k
(x − l′k)2

)
if x < l′k,

exp
(
− 1

2σ2
k
(x − u′

k)2
)

if x > u′
k,

1 otherwise,

(20)

where l′k ≈ lk+0.0566bk, u′
k ≈ uk+0.0566bk, σk ≈ 0.0662bk, and bk is the interval

width bk = uk − lk. This causes the classifier to match the interval [l′k, u′
k] with

probability 1, with unnormalised Gaussian boundaries that are with one stan-
dard deviation inside [lk, uk] and otherwise outside of the interval. Additionally,
95% of the area underneath mk(x) is inside [lk, uk].

The training data and best model structure found in a single training run with
500 epochs is shown in Fig. 3 and clearly shows by the width of its confidence
intervals that the identified model features different noise levels in different areas
of the input space. This illustrates that the method does not only protect from
overfitting at the model structure level, but also at the classifier level by correctly
separating the underlying pattern from the data.

The results of both experiments suggest that the method we have derived
works as expected. Still, we want to emphasise that the developed method is
only an example that show that the proposed model-based design methodology
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Fig. 3. The plot shows the mean of the data-generating function and the training
data itself. In addition, it shows the linear models of the 2 identified classifiers and
the prediction of the full model with confidence intervals that represent one standard
deviation to either side of the prediction. These confidence intervals clearly show that
the model is able to handle and model data whose noise level varies over the input
space.

not only provides us with a good understanding of the model underlying different
LCS variants, but also leads to useful and well-understood implementations.

5 Summary and Conclusions

We have proposed a new methodology for the design of LCS that is based on first
specifying the model underlying a set of classifiers and then applying standard
machine learning methods to train this model and identify a good set of classi-
fiers. The advantages of this approach are manifold, such as i) having a formal
definition of what it means for a set of classifiers to be the optimal set with re-
spect to some data; ii) conceptually separating the LCS model from its training;
iii) making explicit the assumptions the LCS model makes about the data; iv)
establishing strong links to other machine learning methods through the appli-
cation of standard machine learning methods for LCS training; and v) advancing
the theoretical understanding of LCS by transferring the understanding of the ap-
plied machine learning methods to LCS. Furthermore, the methodology promises
a high degree of flexibility in designing new LCS through changing the structure of
the LCS model, or applying different machine learning methods for their training.

To demonstrate that the methodology is feasible, we have introduced a model
for LCS and have described how it can be trained. In this workwe have particularly
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focused on the design of the model that is — closely related to XCS — specified
as combining a set of independently trained localised models to form a global pre-
diction over the whole input space. This characterisation allows it to be linked to
a generalisation of the well-known Mixtures-of-Experts model, which puts it on a
strong probabilistic foundation. For the identification of good model structures,
that is, good sets of classifiers, we have used Bayesian model selection that results
in the aim of maximising the probability of the model structure given the data. For
training we have use the variational Bayesian method to find the model structure
posterior, and have used a GA to search the space of possible model structures, re-
sulting in a Pittsburgh-style LCS. To illustrate that the sets of classifiers identified
that way indeed represent the data well, we have shown the methods performance
on two simple regression tasks.

The work has wide implications and it is opening up significant future research
directions, amongst which are i) to create a suitable LCS model specialised on
classification by changing the classifier models from regression to classification
models; ii) to compare and contrast LCS that train their classifiers independently
to those that do not; iii) to design suitable methods, eventually using the addi-
tional probabilistic information that is available through the model, to apply the
same methodology to design Michigan-style LCS; iv) analysing the suitability
of the regression model for approximating the value function of reinforcement
learning tasks.
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A The Bayesian LCS Model

The following table gives an overview over the Bayesian LCS model with all its
components.

Data, Model Structure, and Likelihood

N observations {(xn, yn)}, xn ∈ X = RDX , yn ∈ Y = R
Model structure M = {K, M}, k = 1, . . . , K
K classifiers
Matching functions M = {mk : X → [0, 1]}

Likelihood p(Y |X, W , τ , Z) =
∏N

n=1
∏K

k=1 p(yn|xn, wk, τk)znk

Classifiers

Variables Weight matrices W = {wk}, wk ∈ RDX

Noise precisions τ = {τk}
Weight shrinkage priors α = {αk}
Noise precision prior parameters aτ , bτ

α-hyperprior parameters aα, bα

Model p(y|x, wk, τk) = N (y|wT
k x, τ−1

k )
Priors p(wk, τk|αk) = N (wk|0, (αkτk)−1I)Gam(τk|aτ , bτ )

p(αk) = Gam(αk|aα, bα)

Gating

Variables Latent variables Z = {zn}, zn = (zn1, . . . , znK)T ∈ {0, 1}K, 1-of-K
Gating weight vectors V = {vk}, vk ∈ RDV

Gating weight shrinkage priors β = {βk}
β-hyperprior parameters aβ , bβ

Model p(Z|X, V , M) =
∏N

n=1
∏K

k=1 gk(xn)znk

gk(x) ≡ p(zk = 1|x, vk, mk) = mk(x) exp(vT
k ϑ(x))

�K
j=1 mj(x) exp(vT

j ϑ(x))

Priors p(vk|βk) = N (vk|0, β−1
k I)

p(βk) = Gam(βk|aβ , bβ)
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