
Analysis and Improvements of the Classifier
Error Estimate in XCSF

Daniele Loiacono1, Jan Drugowitsch2, Alwyn Barry2, and Pier Luca Lanzi1,3

1 Artificial Intelligence and Robotics Laboratory (AIRLab),
Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy

2 Department of Computer Science, University of Bath, UK
3 Illinois Genetic Algorithm Laboratory (IlliGAL),

University of Illinois at Urbana Champaign,
Urbana, IL 61801, USA

loiacono@elet.polimi.it, J.Drugowitsch@bath.ac.uk,
A.M.Barry@bath.ac.uk, lanzi@elet.polimi.it

Abstract. The estimation of the classifier error plays a key role in
accuracy-based learning classifier systems. In this paper we study the
current definition of the classifier error in XCSF and discuss the limi-
tations of the algorithm that is currently used to compute the classifier
error estimate from online experience. Subsequently, we introduce a new
definition for the classifier error and apply the Bayes Linear Analysis
framework to find a more accurate and reliable error estimate. This re-
sults in two incremental error estimate update algorithms that we com-
pare empirically to the performance of the currently applied approach.
Our results suggest that the new estimation algorithms can improve the
generalization capabilities of XCSF, especially when the action-set sub-
sumption operator is used.

1 Introduction

XCS with computed prediction, namely XCSF [12], is a major advance in the
field of learning classifier systems. It extends the typical idea of a classifier by
replacing the classifier prediction parameter with a prediction function p(st,w),
that is used to compute the classifier prediction based on the current state st

and a parameter vector w associated with each classifier. Since the introduction
of XCSF, several studies focused on the classifier weight vector update rule [7,6]
and on extending the form of the prediction function p (e.g. see [8]). However,
very little work (e.g. see [1]) has concentrated on the classifier error estimate in
XCSF, despite its important role in all accuracy-based learning classifier systems.
In XCSF the classifier error is usually computed in the same way as in XCS [11]:
it is defined as the estimate of the mean absolute prediction error and is up-
dated by the Widrow-Hoff rule (also known as Least Mean Squared algorithm).
In this paper we suggest the re-definition the classifier error as an estimate of the
root mean squared prediction error and propose application of the Bayes Linear
Analysis framework for computing the optimal classifier weight vector and the

J. Bacardit et al. (Eds.): IWLCS 2006/2007, LNAI 4998, pp. 117–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

118 D. Loiacono et al.

classifier error estimate simultaneously. Within such a framework we provide an
accurate and reliable estimate of the classifier error. At the same time, we can
also provide a better insight into the relationship between the expected error
and the statistical knowledge we have about the problem at hand. We prove
that the proposed approach, when applied to updating the classifiers in XCSF,
(i) computes exactly the same weight vector as the Least Squares update rule in-
troduced in [7], and (ii) provides an unbiased estimate of the root mean squared
prediction error. Additionally, by exploiting the similarities to Least Squares, we
also introduce a convenient recursive approach for updating the classifiers that
combines the Recursive Least Squares weights update [7] and the error track-
ing algorithm derived in [1]. Finally, we provide an empirical comparison of the
classifier error update rules presented in this paper. The experiments have been
performed by applying XCSF to the approximation of several commonly used
target functions [4]. Our experimental results suggest that the novel classifier
error update rules are able to find a more accurate and reliable estimate. In
particular, they may improve the generalization capabilities of the XCSF sys-
tem and allows for using the action-set subsumption operator while preventing
overgeneral solutions from taking over the evolved population.

2 The XCSF Classifier System

When compared to XCS, XCSF replaces the classifier scalar prediction
parameter by a prediction function p(φ(st),w) that is parameterised by a pa-
rameter vector w. This function computes the prediction as a function of the
feature vector φ(st), extracted from the current sensory input st, and the clas-
sifier parameter vector w that replaces the usual scalar prediction parame-
ter; to keep the notation uncluttered, for the rest of this paper we denote
φt ≡ φ(st) as the feature vector that corresponds to the sensory input st, and
p(φt) ≡ p(φt,w) as the classifier prediction for st. Usually, p(φt,w) is computed
by the linear combination p(φt,w) = wT φt, where the feature vector is given
by φT = [x0, st(1), . . . , st(n − 1)]T , x0 is a fixed parameter (that is, a constant
term), and n − 1 is the size of the sensory input vectors st, so that the feature
vectors φt are of size n. Even though it is possible to use non-linear functions to
compute the prediction in XCSF [5], in this paper we will exclusively consider
the just introduced linear function.

To update the classifiers, at each time step t, XCSF builds a match set [M]
containing the classifiers in the population [P] whose condition matches the
current sensory input st. For each action ai in [M], XCSF computes the system
prediction, as the fitness-weighted average of the predictions computed by all
classifiers in [M] that promote this action. Next, XCSF selects an action to
perform. The classifiers in [M] that advocate the selected action form the current
action set [A]; the selected action is sent to the environment and a reward rt

is returned to the system together with the next input. When XCSF is used as
a pure function approximator (like in [12] and in this paper), there is only one
dummy action which has no actual effect and the expected payoff is computed

Analysis and Improvements of the Classifier Error Estimate in XCSF 119

by Pt = rt. The expected payoff Pt is then used to update the weight vector w of
the classifiers in [A] using the Widrow-Hoff rule, also known as the modified delta
rule [10]. The weight vector, w, of each classifier in [A] is adjusted as follows:

w ← w +
ηφt

‖φt‖2

(
Pt − wT φt

)
, (1)

where η is the correction rate and ‖φt‖2 is the squared Euclidean norm of the
input vector φt [12]. Then the prediction error, ε, is updated by

ε ← ε + β
(
|wT φt − Pt| − ε

)
. (2)

Finally, the classifier fitness is updated as usual [11] and the discovery component
is applied as in XCS.

3 Squared Error or Absolute Error?

In XCSF the classifier weight vector is adjusted to minimise the mean squared
prediction error (MSE), while the classifier’s error is an estimate of the mean
absolute prediction error (MAE). Before discussing the consequences of this in-
consistency, let us firstly show that this claim is actually correct.

For the rest of this paper we will consider a single classifier and will assume
the sequence t = 1, 2, . . . to represent each time step in which this classifier
participates in the action set (making it equivalent to the classifier’s experience)
and thus will be updated.

3.1 Re-deriving the XCSF Weight Vector and Error Update

Let us assume that we have, after t classifier updates, the inputs {si}t
i=1 and

their associated payoffs {Pi}t
i=1, and that we want to estimate the classifier’s

weight vector w that minimises the MSE, given by

ft(w) =
1
t

t∑

i=1

(
wT φi − Pi

)2
, (3)

where we have again used φi ≡ φ(si). Applying the modified delta rule (also
known as the Normalised Least Mean Squared algorithm) to minimise ft(w)
results in the weight vector update equation

wt = wt−1 +
ηφt

‖φt‖2

(
Pt − wT

t−1φt

)
, (4)

which is equivalent to the Eq. 1 and thus confirms that the XCSF weight vector
update indeed aims at minimising the MSE ft(w).

To get the prediction error, on the other hand, let us assume that we want to
estimate the MAE, given by

εt =
1
t

t∑

i=1

∣
∣wT φi − Pi

∣
∣ . (5)

120 D. Loiacono et al.

This estimation problem can be reformulated as a least squares problem that
minimises

gMAE
t (w) =

1
t

t∑

i=1

(
εt −

∣∣wT φi − Pi

∣∣)2
(6)

with respect to εt. Solving ∂gMAE
t (w)/∂εt = 0 for εt results in Eq. 5, which

confirms that we can indeed estimate εt by minimising gMAE
t (w). Applying the

delta rule (also known as the Least Mean Squared algorithm) to minimising
gMAE

t (w) results in the prediction error update

εt = εt−1 + β
(
|wT

t φt − Pt| − εt−1
)
, (7)

where we have approximated the weight vector by its current estimate w ≈ wt.
This update equation is equivalent to Eq. 2, which shows that XCSF estimates
the mean absolute prediction error rather than the mean squared prediction
error.

Consequently, the performance component of XCSF that estimates the weight
vector aims at minimising the MSE, while the discovery component judges the
prediction quality of classifiers based on the MAE. This inconsistency is usually
not a serious issue because an optimal solution with respect to the MSE is also
nearly optimal with respect to the MAE. Moreover, the MAE is superior to the
MSE in terms of human readability; that is, while a threshold on the MAE of
the classifier prediction can be easily related to the expected accuracy of the
evolved approximation, a threshold on the MSE is not easily related to the final
approximation accuracy. Unfortunately, it is rather difficult to find estimators
that minimise the MAE (for an XCSF-related example see [8]), whilst there
are numerous techniques in the literature that provide accurate estimates that
minimise the MSE. This is a concern for XCSF, where the prediction error
estimate should reflect the actual prediction error. Thus, we propose replacing
the MAE estimate by the MSE estimate, as shown in the following section.

3.2 Estimating the Root Mean Squared Error

We can estimate the MSE (Eq. 3) in the same way as the MAE (Eq. 5) by
reformulating its estimation as a least squares problem that minimises

gMSE
t (w) =

1
t

t∑

i=1

(
ε2

t − (wT φi − Pi)2
)2

(8)

with respect to ε2
t , which denotes the estimate of the classifier squared error at

time t. Applying the delta rule by again approximating w by its estimate wt

gives the update equation

ε2
t = ε2

t−1 + β
(
(wT

t φt − Pt)2 − ε2
t−1

)
, (9)

from which we compute the classifier error by

εt =
√

ε2
t . (10)

Analysis and Improvements of the Classifier Error Estimate in XCSF 121

Thus, it is given by the estimated root mean squared error (RMSE) of the
prediction. We use the RMSE instead of the MSE because (i) the RMSE is a
standard error measure in the machine learning literature and (ii) the RMSE
has the same value range as the MAE that is usually used in XCSF.

Relying on the MSE instead of the MAE has the additional advantage that
we do not need to estimate it by the delta rule, as in Eq. 9, but can track the
solution to ft(w) directly, as we will show in the following section.

4 Improving the Error Estimate

In previous studies [6,1] the problem of computing the classifier prediction has
been presented as a problem of incremental parameter estimation. In the follow-
ing sections we show that both the optimal classifier weights and the estimate of
the classifier error can be computed by applying the Bayes Linear Analysis [3]
framework. Within this framework we are not only able to provide a very accu-
rate and reliable estimate of a classifier’s squared error but also give additional
insight into the relationship between the expected prediction error and the sta-
tistical properties of the target payoff and the feature vector. Furthermore, we
show how the proposed theoretical framework can be used in practice to extend
the classifier update in XCSF. Finally, we discuss how the proposed extension
is related to the least squares approach introduced in the literature for com-
puting the classifier weights [7] and for incrementally estimating the classifier
error [1].

4.1 The Bayes Linear Analysis

In XCSF, we need to predict, with the highest accuracy possible, the value of
the target payoff P on the basis of the observed features vector φ. Assuming a
full knowledge on the probability distribution of both P and φ we might derive
the conditional density p(P |φ) of P given φ and thus compute the classifier
prediction as the conditional expectation E[P |φ]. Unfortunately, we usually do
not have such knowledge and therefore cannot derive the conditional probability
distribution. In XCSF, however, we limit our search for a suitable prediction
model to the linear function wT φ (see Section 2). This assumption allows us
to apply Bayes Linear Analysis [3] to compute the classifier weights and errors.
Accordingly, the classifier weight vector w is considered optimal if it solves the
following minimisation problem,

min
w

E[(P − wT φ(s))2], (11)

which corresponds (see Appendix A for the derivation) to the classifier weight
vector w, defined as,

w = E
[
φφT

]−1
E [Pφ] . (12)

122 D. Loiacono et al.

By substituting w by Eq. 12 into the minimisation objective Eq. 11, we get
the following classifier squared prediction error estimate (see Appendix A for the
derivation):

ε2 = E
[
(P − wT φ)2

]
= E

[
P 2] − E

[
PφT

]
E

[
φφT

]−1
E [Pφ] . (13)

Before showing how Eqs. 12 and 13 can be used in practice to update the clas-
sifiers in XCSF, it is worthwhile to discuss in more details the consequences of
Eq. 13. First of all, given that in XCSF we have φT = [x0 sT], Eq. 13 can be
rewritten (see Appendix A for the derivation) as follows,

ε2 = cov(P, P)(1 − ρ2), (14)

where cov(P, P) = E
[
(P − E [P])2

]
and ρ2 is the squared correlation coefficient

between P and s, given by,

ρ2 =
cov(P, s)T cov(s, s)−1cov(P, s)

cov(P, P)
(15)

where we have
cov(P, s) = E [(P − E [P])(s − E [s])] ,
cov(s, s) = E

[
(s − E [s])(s − E [s])T

]
.

Equation 14 offers an interesting insight on the expected classifier prediction
error. When P and s are completely uncorrelated, i.e. ρ2 = 0, it is not possible
to provide any prediction of the target payoff better than its expected value;
therefore the expected square prediction error is equal to the variance of P . On
the other hand, when P and s are maximally correlated, i.e. ρ2 = 1, the target
payoff can be predicted without error; therefore the expected square prediction
error is equal to 0. In all the other cases, the higher the correlation between P
and s, the more accurate is the target payoff prediction and, therefore, the lower
is the expected square prediction error.

4.2 A Sample-Based Implementation and Its Relation to Least
Squares

So far we have assumed knowledge of E [PP], E [Pφ] and E [φφ]. Unfortunately
such knowledge is not available and thus we cannot directly use Eqs. 12 and 13
in XCSF. For this reason we propose to replace the true expectations with their
sample-based estimators, computed at each time step t as,

EPP ≈ ÊPP,t =
1
t

t∑

i=1

P 2
i = ÊPP,t−1 +

1
t
(P 2

t − ÊPP,t−1), (16)

Eφφ ≈ Êφφ,t
=

1
t

t∑

i=1

φiφ
T
i = Êφφ,t−1 +

1
t
(φtφ

T
t − Êφφ,t−1), (17)

EPφ ≈ ÊPφ,t =
1
t

t∑

i=1

Piφi = ÊPφ,t−1 +
1
t
(Piφt − ÊPφ,t−1). (18)

Analysis and Improvements of the Classifier Error Estimate in XCSF 123

Using the above approximations in Eqs. 12 and 13, we obtain the following
update rules that can be used for computing the classifier weights and error in
XCSF:

wt = Ê−1
φφ,t

ÊPφ,t, (19)

ε2
t = ÊPP,t − ÊT

Pφ,t
Ê−1

φφ,t
ÊT

Pφ,t
. (20)

Notice that the above update rules are more accurate than the usual
Widrow-Hoff rule (Eqs. 1 and 9) in finding the optimal classifier weights and
error estimates. On the downside, they are computationally more expensive: due
to the computation of matrix Ê−1

φφ
both update rules have a time complexity

of O(n3), whilst the Widrow-Hoff has a time complexity of O(n). Furthermore,
it is necessary to store, for each classifier, the sample-based estimators used in
Eqs. 19 and 20 with an additionally memory overhead of O(n2).

To reduce the time complexity of the above update equations it is useful to
note that, using the sample-based estimators introduced before, it can be shown
(see Appendix B) that Eq. 12 is equivalent to the Least Squares update rule
that was introduced in [7] for computing the classifier weights. Additionally, the
classifier error computed by Eq. 20 is equivalent to the sample-based estimator
of the mean square prediction error (see Appendix B), given by ft(w) in Eq. 3.
In the following section we show how this knowledge can be exploited to derive
more efficient update equations.

4.3 Recursive Least Squares and Error Tracking

We have shown that by applying Bayes Linear Analysis we can effectively com-
pute both the classifier weight vector and the classifier error. Unfortunately, as
already mentioned before, Eqs. 19 and 20 are computationally expensive. This
is a serious drawback because in XCSF the classifiers are updated incrementally
and frequently. However this is a well known limitation of the Least Squares
update, that is computed by Eq. 19. Thus, following the same procedure as
in [7], we can instead use the less costly Recursive Least Squares algorithms (see
Appendix C for more details) to incrementally update the classifier weights by

βRLS = 1 + φT
t Vt−1φt, (21)

Vt = Vt−1 − 1
βRLS Vt−1φ

T
t φtVt−1, (22)

wt = wt−1 + Vtφt(P − wT
t−1φt), (23)

where Vt is an estimate of the feature vector autocorrelation matrix. Note that
the above update equations avoid the computation of the inverse matrix at
each time and therefore have the lower computational complexity of O(n2). On
the other hand, each classifier still need to store the actual V matrix with an
additional memory overhead of O(n2).

124 D. Loiacono et al.

Table 1. Target functions used to compare the performance of XCSFrls, XCSFb and
XCSFrb (x ∈ [0, 1])

fp(x) = 1 + x + x2 + x3,

fabs(x) = |sin(2πx) + |cos(2πx)|| ,
fs3(x) = sin(2πx) + sin(4πx) + sin(6πx),

fs4(x) = sin(2πx) + sin(4πx) + sin(6πx) + sin(8πx).

Regarding the classifier error update, the solution to Eq. 3 can be tracked by
using the following recursive update (see [1] and Appendix D for more details):

ε2
t = ε2

t−1 +
1
t

(
(Pt − wT

t−1φt)(Pt − wT
t φt) − ε2

t−1
)
, (24)

where wt−1 and wt are respectively the classifier weight vectors before and after
the update. Note that Eq. 24 is as accurate as Eq. 13 in tracking the classifier’s
squared prediction error estimate, but has the same complexity as Eq. 9, that is
O(n) in time.

5 Experimental Design

All the experiments discussed in this paper aim at comparing the performance of
the different classifier error updates introduced in the previous sections. For this
purpose we use three different versions of XCSF: (i) XCS with RLS prediction,
briefly XCSFrls, that uses RLS (Eqs. 21, 22 and 23) to update classifier weights,
and the commonly applied Widrow-Hoff (Eq. 9) to update the classifier error
estimate; (ii) XCS with Bayes Linear prediction, briefly XCSFb that updates the
classifier weight and error estimate by Eqs. 19 and 20; (iii) XCS with recursive
Bayes Linear prediction, briefly XCSFrb, that applies the RLS algorithm (as
XCSFrls) to update the classifier weights, and uses Eq. 24 to track the classifier
error estimate. Note that in all the XCSF variants the classifier error is defined as
an estimate of the RMSE of the prediction, for the reasons discussed in Section 3.

The experimental analysis has been performed on several function approxi-
mation tasks, following the standard design used in the literature [12]. As target
functions we used the four functions reported in Table 1 that are a real valued
version of the ones used in [4].

In all the experiments performed in this work the feature vector is defined as
φ = [x0 x]T , with x0 set to 1. The performance is measured as the accuracy
of the evolved approximation f̂(x) with respect to the target function f(x),
evaluated, in each experiment, as the root mean square error (RMSE) given by

RMSE =

√√
√√ 1

N

N∑

i=1

(f(xi) − f̂(xi))2,

where {x1, · · · , xN} are the N input samples used to evaluate the approximation
error. In practice we considered the average RMSE, dubbed RMSE, over all

Analysis and Improvements of the Classifier Error Estimate in XCSF 125

experimental runs. To measure the generalization capabilities we considered both
the number of macroclassifiers evolved and the fitness-weighted generality of the
evolved populations, where each classifier generality is computed as the expected
fraction of inputs matched according to [4].

Statistical Analysis. To analyze the results reported in this paper, we per-
formed an analysis of variance (ANOVA) [2] on the resulting performances,
evolved population size and generality. For each experiment and for each set-
ting, we analyzed the final performance, the number of macroclassifiers evolved,
and their fitness-weighted average generality for the different versions of XCSF;
we applied the analysis of variance to test whether there was some statistically
significant difference; in addition, we applied four post-hoc tests [2], Tukey HSD,
Scheffé, Bonferroni, and Student-Neumann-Keuls, to find which XCSF variants
performed significantly different.

6 Experimental Results

The experimental analysis is organized as follows. At first we study the different
update rules using a single classifiers for approximating a target function. Then
we compare XCSFrls, XCSFrb, and XCSFb on several function approximation
problems without using the action-set subsumption operator (Section 6.2) and
using it (Section 6.3).

6.1 Single Classifier Error

In the first experiment we compare the classifier error updates in XCSFrls,
XCSFb and in XCSFrb. For this purpose we focus on the error updates of a
single classifier approximating fabs for x ∈ [0.4, 0.6]. Figure 1 shows the classifier
error estimate of a single run of the same classifier, as computed by XCSFrls,
XCSFb, and XCSFrb when applied to fabs. As reference, we also report the
true error of the classifier, computed at the end of the experiment. Note that,
although all the three error estimates are about the same on the average, the
estimate computed by XCSFrls is very noisy and therefore not particularly reli-
able. On the other hand, both XCSFb and XCSFrb compute a very reliable and
accurate classifier error estimate. Also, the estimates of XCSFrb and XCSFb ini-
tially differ slightly due to the bias induced by the initialization of V in XCSFrb
(see Appendices C and D), but they converge very quickly to the same estimate.
In conclusion, notice that the reliability of the error estimate of XCSFrls might
be improved using a smaller value of the learing rate β; on the other hand,
the smaller β the slower the convergence of the error estimate toward the true
error. In all the experiments in the rest of the paper we always set β = 0.2
because tuning the value of β is tricky and the best value is, in general, problem
dependent.

126 D. Loiacono et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

er
 E

rr
or

 E
st

im
at

e

Number of Updates

XCSFrls
XCSFb

XCSFrb
True Final Error

Fig. 1. Comparison of the error updates of a single run of XCSFrls, XCSFb, and
XCSFrb applied to fabs. The reported error estimates are that of a single classifier that
matches all the inputs in the range [0.4, 0.6].

6.2 Analysis of Generalization

In the second set of experiments we apply XCSFrls, XCSFb, and XCSFrb to
all four functions in Table 1, using the following parameters setting: N = 400;
β = 0.2; α = 0.1; ν = 5; χ = 0.8, μ = 0.04, θdel = 25, θGA = 25, and δ = 0.1;
GA-subsumption is on with θGAsub = 25; action-set subsumption is not used;
m0 = 0.2, r0 = 0.1 [12]; in XCSFrls and XCSFrb we set δrls = 10000 [7]; the value
of ε0 is set to either 0.05, 0.1 or 0.2. Table 2 reports the performance of XCSFrls,
XCSFb, and XCSFrb, measured by the average RMSE of the evolved solutions

Table 2. Performance of XCSFrls, XCSFb, and XCSFrb applied to fp, fs3, fs4, and
fabs. The action-set subsumption is not used. Statistics are averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.0111 ± 0.0014 0.0173 ± 0.0024 0.0172 ± 0.0027
fp 0.10 0.0206 ± 0.0026 0.0289 ± 0.0032 0.0300 ± 0.0032
fp 0.20 0.0543 ± 0.0070 0.0869 ± 0.0125 0.0869 ± 0.0125
fs3 0.05 0.0300 ± 0.0083 0.0353 ± 0.0027 0.0347 ± 0.0025
fs3 0.10 0.0510 ± 0.0045 0.0633 ± 0.0043 0.0618 ± 0.0032
fs3 0.20 0.0831 ± 0.0075 0.1013 ± 0.0070 0.1024 ± 0.0080
fs4 0.05 0.0321 ± 0.0056 0.0406 ± 0.0066 0.0387 ± 0.0050
fs4 0.10 0.0547 ± 0.0048 0.0676 ± 0.0061 0.0669 ± 0.0041
fs4 0.20 0.0863 ± 0.0069 0.1105 ± 0.0070 0.1132 ± 0.0084
fabs 0.05 0.0190 ± 0.0020 0.0242 ± 0.0025 0.0243 ± 0.0026
fabs 0.10 0.0349 ± 0.0027 0.0482 ± 0.0034 0.0481 ± 0.0031
fabs 0.20 0.0867 ± 0.0048 0.1191 ± 0.0051 0.1208 ± 0.0052

Analysis and Improvements of the Classifier Error Estimate in XCSF 127

over 50 runs. The results show that all three XCSF versions are accurate in that
the final approximation error is lower than ε0. We can also see that the error
of XCSFrls is generally lower than the one of XCSFb and XCSFrb. This comes
hand in hand both with a larger evolved population and with a lower average
generality of the classifiers, as shown in Tables 3 and 4. These results are not
surprising as a more reliable classifier error estimate can be expected to improve
the classifier system’s generalization capabilities, as confirmed by the outcome
of this experiment.

The statistical analysis of the data reported in Tables 2, 3 and 4 reveals that
the differences between XCSFrb and XCSFb are always not significant with
a 99.9% confidence. A further analysis of Table 2 shows that the differences
between XCSFrls, XCSFrb, and XCSFb are significant with a 99.9% confidence
for almost all of the experiments, with the exception of cases where complex
function are to be estimated with a low error, which prohibits generalization (for
example, fs3 and fs4 with ε0 = 0.05). With respect to the population size (given
in Table 3) the statistical analysis indicates that the differences are not always
significant, especially on the most complex functions fs3 and fs4. Concerning
the fitness-weighted average generality, as reported in Table 4, the post-hoc
analysis shows that the differences between XCSFrb and XCSFb are always not
significant with a 99.9% confidence level, while the differences between XCSFb,
XCSFrb, and XCSFrls are always significant.

In summary, the results suggest that improving the accuracy and the reliabil-
ity of the classifier error estimate with the approaches introduced in Sections 4.2
and 4.3 allows XCSF to evolve more general and slightly more compact solu-
tions (even if the size of the populations evolved by XCSFb and XCSFrb are not
always significantly smaller than the ones evolved by XCSFrls).

Table 3. Average number of macroclassifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is not used. Statistics are
averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 37.6200 ± 3.4922 33.0400 ± 3.6876 32.8200 ± 2.9509
fp 0.10 33.6000 ± 3.3226 29.5000 ± 2.9883 29.1400 ± 3.0200
fp 0.20 29.3600 ± 3.2970 27.0800 ± 3.2609 27.0800 ± 3.2609
fs3 0.05 52.7600 ± 4.3523 52.0400 ± 4.1807 51.3200 ± 4.7516
fs3 0.10 48.9400 ± 4.2020 45.9400 ± 4.1493 47.5800 ± 4.9883
fs3 0.20 45.2800 ± 3.6989 42.5000 ± 3.1953 42.8000 ± 3.0331
fs4 0.05 54.4200 ± 4.6047 52.8800 ± 4.4973 54.0000 ± 5.0794
fs4 0.10 52.5800 ± 4.7248 50.0800 ± 4.0686 50.0800 ± 4.8820
fs4 0.20 50.0400 ± 4.0594 47.1000 ± 3.6455 47.9200 ± 3.8773
fabs 0.05 45.3600 ± 3.9180 44.1000 ± 4.4419 42.9000 ± 4.0062
fabs 0.10 44.6800 ± 2.7162 41.6800 ± 3.8494 41.6800 ± 3.3849
fabs 0.20 40.7800 ± 3.9104 35.6400 ± 3.3031 35.8600 ± 3.5497

128 D. Loiacono et al.

Table 4. Average generality of classifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is not used. Statistics are
averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.2916 ± 0.1462 0.3272 ± 0.1693 0.3265 ± 0.1719
fp 0.10 0.3389 ± 0.2106 0.3614 ± 0.2418 0.3649 ± 0.2430
fp 0.20 0.3951 ± 0.2928 0.4361 ± 0.3288 0.4361 ± 0.3288
fs3 0.05 0.0719 ± 0.0354 0.0819 ± 0.0405 0.0824 ± 0.0404
fs3 0.10 0.1032 ± 0.0452 0.1155 ± 0.0476 0.1145 ± 0.0478
fs3 0.20 0.1342 ± 0.0503 0.1454 ± 0.0570 0.1457 ± 0.0576
fs4 0.05 0.0556 ± 0.0294 0.0635 ± 0.0329 0.0634 ± 0.0329
fs4 0.10 0.0797 ± 0.0369 0.0892 ± 0.0387 0.0898 ± 0.0384
fs4 0.20 0.1039 ± 0.0430 0.1172 ± 0.0458 0.1170 ± 0.0449
fabs 0.05 0.1255 ± 0.0303 0.1340 ± 0.0363 0.1345 ± 0.0353
fabs 0.10 0.1498 ± 0.0520 0.1637 ± 0.0619 0.1635 ± 0.0622
fabs 0.20 0.2052 ± 0.1264 0.2480 ± 0.1445 0.2518 ± 0.1437

6.3 Classifier Error and Action-Set Subsumption

The action-set subsumption operator [11] is a powerful mechanism to improve the
generalization capabilities of XCS. In practice, action-set subsumption is rarely
used in XCSF [12,7]. In fact, the action-set subsumption relies heavily on the cor-
rectness of the classifier error estimate in order to identify accurate classifiers, and
in XCSF this can easily result in evolving overgeneral solutions. This is mainly due
to the noisy classifier error estimate computedbyXCSFas shown inFigure 1.Thus,

Table 5. Performance of XCSFrls, XCSFb, and XCSFrb applied to fp, fs3, fs4, and
fabs. The action-set subsumption is used with θASsub = 25. Statistics are averages over
50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.0655 ± 0.0080 0.0419 ± 0.0051 0.0429 ± 0.0049
fp 0.10 0.1799 ± 0.0078 0.0834 ± 0.0134 0.0816 ± 0.0129
fp 0.20 0.1863 ± 0.0001 0.1863 ± 0.0001 0.1862 ± 0.0001
fs3 0.05 0.0550 ± 0.0107 0.0461 ± 0.0170 0.0495 ± 0.0295
fs3 0.10 0.1027 ± 0.0230 0.0771 ± 0.0071 0.0794 ± 0.0092
fs3 0.20 0.2314 ± 0.0297 0.1451 ± 0.0112 0.1439 ± 0.0100
fs4 0.05 0.0609 ± 0.0221 0.0512 ± 0.0217 0.0470 ± 0.0109
fs4 0.10 0.1024 ± 0.0108 0.0801 ± 0.0090 0.0844 ± 0.0335
fs4 0.20 0.2246 ± 0.0277 0.1493 ± 0.0116 0.1482 ± 0.0120
fabs 0.05 0.0527 ± 0.0074 0.0361 ± 0.0060 0.0357 ± 0.0046
fabs 0.10 0.1343 ± 0.0235 0.0859 ± 0.0075 0.0825 ± 0.0076
fabs 0.20 0.2899 ± 0.0002 0.1725 ± 0.0279 0.1661 ± 0.0182

Analysis and Improvements of the Classifier Error Estimate in XCSF 129

Table 6. Average number of macroclassifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is used θASsub = 25.
Statistics are averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 10.7800 ± 2.9277 7.8600 ± 2.5535 7.3800 ± 2.6449
fp 0.10 4.5200 ± 1.8027 7.8400 ± 3.7966 7.9000 ± 2.9682
fp 0.20 2.6000 ± 1.2329 2.1800 ± 1.0713 2.5200 ± 1.2528
fs3 0.05 27.6400 ± 3.5820 29.8600 ± 3.7041 30.4000 ± 3.8158
fs3 0.10 20.5200 ± 4.2391 20.5400 ± 3.5565 20.7800 ± 3.0678
fs3 0.20 16.2800 ± 3.7151 14.6800 ± 3.5068 13.3600 ± 3.0382
fs4 0.05 33.1000 ± 4.1049 38.1800 ± 3.4333 38.2800 ± 5.1109
fs4 0.10 25.9400 ± 4.0812 27.5200 ± 4.1916 27.1600 ± 3.9767
fs4 0.20 20.4000 ± 4.8497 17.7200 ± 2.9465 19.5200 ± 2.9205
fabs 0.05 16.4800 ± 3.3301 16.3400 ± 3.4328 16.5000 ± 2.7514
fabs 0.10 12.3600 ± 2.8549 15.5200 ± 4.4777 15.5800 ± 3.4761
fabs 0.20 2.6600 ± 1.3800 8.8800 ± 3.3205 10.0400 ± 3.9036

Table 7. Average generality of classifiers evolved by XCSFrls, XCSFb, and XCSFrb
applied to fp, fs3, fs4, and fabs. The action-set subsumption is used with θASsub = 25.
Statistics are averages over 50 runs.

f(x) ε0 XCSFrls XCSFrb XCSFb

fp 0.05 0.6833 ± 0.0820 0.5109 ± 0.0896 0.5149 ± 0.0846
fp 0.10 0.9861 ± 0.0739 0.7375 ± 0.0846 0.7301 ± 0.0847
fp 0.20 0.9960 ± 0.0635 0.9971 ± 0.0542 0.9961 ± 0.0619
fs3 0.05 0.0987 ± 0.0487 0.0842 ± 0.0403 0.0843 ± 0.0406
fs3 0.10 0.1437 ± 0.0619 0.1231 ± 0.0506 0.1216 ± 0.0517
fs3 0.20 0.2202 ± 0.1164 0.1732 ± 0.0650 0.1776 ± 0.0638
fs4 0.05 0.0759 ± 0.0398 0.0637 ± 0.0331 0.0638 ± 0.0335
fs4 0.10 0.1094 ± 0.0500 0.0927 ± 0.0413 0.0914 ± 0.0411
fs4 0.20 0.1631 ± 0.0845 0.1338 ± 0.0510 0.1331 ± 0.0517
fabs 0.05 0.1772 ± 0.0465 0.1506 ± 0.0339 0.1491 ± 0.0348
fabs 0.10 0.3034 ± 0.1619 0.2294 ± 0.1049 0.2258 ± 0.1021
fabs 0.20 0.9959 ± 0.0639 0.3469 ± 0.1839 0.3377 ± 0.1683

in the last set of experiments we test whether the new classifier error updates can
improve the performance of XCSF when action-set subsumption is used.

We again apply XCSFrls, XCSFb, and XCSFrb to the four functions in Ta-
ble 1, using the same parameters setting as in the previous experiment, except
for the action-set subsumption that is now active with θASsub = 25. The per-
formance of XCSFrls, XCSFb, and XCSFrb is reported in Table 5 computed as
the average RMSE of the evolved solutions over 50 runs. The results show that
XCSFb and XCSFrb are always able to evolve accurate solutions while the so-
lutions evolved by XCSFrls are never accurate except for the simplest function,

130 D. Loiacono et al.

fp, with the highest error threshold, ε0 = 0.2, that allows the evolution of a
completely general solution. As we expected, the results suggest that in XCSFrls
the action-set subsumption operator may have disruptive effects on the evolved
population by considering overgeneral classifiers to be accurate. On the other
hand, the more reliable error estimates used in XCSFrb and in XCSFb avoid
such a problem. The statistical analysis of the data reported in Table 5 reveals
that the differences between XCSFrb and XCSFb are always not significant with
a 99.9% confidence. A further analysis of Table 5 shows that the differences be-
tween XCSFrls and the variants XCSFrb and XCSFb are significant with a 99.9%
confidence for all the experiments except when the function is of low complexity
and generalization is straightforward (e.g. fp with ε0 = 0.2).

The analysis of the size and generality makes sense only if the the evolved pop-
ulation is accurate. For this reason we have only analyzed the results of XCSFrb
and XCSFb, as XCSFrls is almost never accurate. The statistical analysis of the
data reported in Table 6 shows that the differences between XCSFrb and XCSFb
are always not significant with a 99.9% confidence. On the other hand, the same
analysis applied to the data in Table 7 shows that XCSFrb evolves slightly more
general populations than XCSFb and this difference is significant for most of the
experiments. In addition, a comparison with the data reported in the previous
section (Tables 3 and 4), shows that by using the action-set subsumption oper-
ator it is possible to evolve a more compact and general population (differences
are always significant with a 99.9% confidence), confirming the results obtained
by applying the action-set subsumption to XCS [11].

In summary, the experimental results confirm our hypotheses: the classifier
error updates used in XCSFb and in XCSFrb offer a more reliable estimate and
therefore allow the action-set subsumption to perform as intended. In fact, the
populations evolved by XCSFb and XCSFrb are always accurate and they are
also significantly smaller and more general than the ones evolved without using
action-set subsumption.

7 Conclusions

In this paper we have proposed a new classifier error definition that is not only
more consistent with the XCSF performance component but can also be esti-
mated more effectively. For this purpose, we have introduced the Bayes Linear
Analysis framework to compute both the optimal classifier weight vector and
the classifier error. In particular, within this framework, we have provided an
insight into the relationship between the expected classifier error and the sta-
tistical properties of the problem variables, that is, the target payoff and the
input vector. Additionally, we have provided two update rules for updating the
classifier error more accurately. We have also discussed the similarities between
the proposed approach and the Least Squares one that was successfully applied
to extending XCSF in [7]. Finally, the classifier error update rules presented in
this paper have been empirically compared on several function approximation
tasks. Our results suggest that the new error updates do not only compute a more

Analysis and Improvements of the Classifier Error Estimate in XCSF 131

reliable and accurate estimate, but are also able to improve the performance and
the generalization capabilities of XCSF. In particular, the new error update rules
(i) allow XCSF to evolve a more compact and general population and (ii) prevent
XCSF from evolving inaccurate overgeneral approximations when the action-set
subsumption operator is used. On the other hand, improving the error estimate
with the usual Widrow-Hoff rule requires the tuning of the learning rate param-
eters and may significantly slow down the error estimate convergence. However,
it is still not clear whether a slower convergence may affect the performance in
more complex problems than the ones considered here.

In conclusion, it is important to say that the update rules introduced in this
paper have been derived assuming that all the past experiences collected by
the system are equally important for solving the problem. Unfortunately this
does not hold in multistep problems, where recent experience is usually more
important. Therefore, the approach introduced here needs to be extended for
multistep problems, possibly with some mechanism of recency-weighting of the
collected experience.

References

1. Drugowitsch, J., Barry, A.: A formal framework and extensions for function ap-
proximation in learning classifier systems. Machine Learning 70(1), 45–88 (2008)

2. Glantz, S.A., Slinker, B.K.: Primer of Applied Regression & Analysis of Variance,
2nd edn. McGraw Hill, New York (2001)

3. Goldstein, M.: Bayes linear analysis. In: Kotz, S., Read, C.B., Banks, D.L. (eds.)
Encyclopedia of Statistical Sciences, vol. 3, pp. 29–34. Wiley, New York (1999)

4. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Extending XCSF beyond
linear approximation. In: Genetic and Evolutionary Computation – GECCO-2005.
ACM Press, Washington (2005)

5. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with Computed
Prediction for the Learning of Boolean Functions. In: Proceedings of the IEEE
Congress on Evolutionary Computation – CEC-2005, Edinburgh, UK. IEEE Com-
puter Society Press, Los Alamitos (2005)

6. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Prediction update al-
gorithms for XCSF: RLS, kalman filter, and gain adaptation. In: GECCO 2006:
Proceedings of the 8th annual conference on Genetic and evolutionary computa-
tion, pp. 1505–1512. ACM Press, New York (2006)

7. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Generalization in the
XCSF classifier system: Analysis, improvement, and extension. Evolutionary Com-
putation 15(2), 133–168 (2007)

8. Loiacono, D., Marelli, A., Lanzi, P.L.: Support vector regression for classifier pre-
diction. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pp. 1806–1813. ACM Press, New York (2007)

9. Weisstein, E.W.: Sherman-morrison formula. From MathWorld–A Wolfram Web
Resource, http://mathworld.wolfram.com/Sherman-MorrisonFormula.html

10. Widrow, B., Hoff, M.E.: Neurocomputing: Foundation of Research. In: Adaptive
Switching Circuits, pp. 126–134. MIT Press, Cambridge (1988)

http://mathworld.wolfram.com/Sherman-MorrisonFormula.html

132 D. Loiacono et al.

11. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

12. Wilson, S.W.: Classifiers that approximate functions. Journal of Natural Comput-
ing 1(2-3), 211–234 (2002)

A Linear Bayes Analysis

Linear Bayes Analysis defines the optimal classifier weight vector w as the one
that minimises the objective function

J = E
[
(P − wT φ)(P − wT φ)T

]

= E
[
P 2] − E

[
PφT

]
w − wT E [Pφ] + wT E

[
φφT

]
w. (25)

Solving ∂J/∂w = 0 for w results in

w = E
[
φφT

]−1
E [Pφ] . (26)

The classifier’s squared error estimate can be computed by substituting Eq. 26
into Eq. 25, resulting in

ε2 = E
[
P 2] − E

[
PφT

]
E

[
φφT

]−1
E [Pφ] −

(
E

[
φφT

]−1
E [Pφ]

)T

E [Pφ] +

+
(

E
[
φφT

]−1
E [Pφ]

)T

E
[
φφT

]
E

[
φφT

]−1
E [Pφ] =

= E
[
P 2] − E

[
PφT

]
E

[
φφT

]−1
E [Pφ] (27)

Given that in XCSF we have φT = [x0 sT], and decomposing the weight
vector into wT = [w0 w ′T], we can rewrite ∂J/∂w = 0 as the following coupled
equations

E
[
w0x

2
0 + w′sT

]
= E [P] , (28)

E
[
w0x0s + w ′ssT

]
= E [P s] , (29)

that, when solved for w0 and w′, result in,

w =
[

w0
w′

]
=

[
x−1

0 (E [P] − cov(P, s)cov(s, s)−1E
[
sT

]
)

cov(P, s)cov(s, s)−1

]
, (30)

where we have
cov(P, s) = E [(P − E [P])(s − E [s])] ,
cov(s, s) = E

[
(s − E [s])(s − E [s])T

]
.

By substituting the above classifier weight vector definition into Eq. 25, we can
rewrite the classifier squared error as follows:

ε2 = cov(P, P) − cov(P, s)T cov(s, s)−1cov(P, s), (31)

where cov(P, P) = E
[
(P − E [P])2

]
.

Analysis and Improvements of the Classifier Error Estimate in XCSF 133

B Bayes Linear Analysis and Least Squares

Let Φt and Πt denote respectively the feature and payoff matrix, after t updates,
and given by

Φt =

⎡

⎢
⎣

φT
1
...

φT
t

⎤

⎥
⎦ , Πt =

⎡

⎢
⎣

P1
...

Pt

⎤

⎥
⎦ . (32)

The Least Squares algorithm find the weight vector wt that minimises the square
error

∑t
i=i(Pi − wT

t φi)2, by solving the normal equation

ΦT
t Φtwt = ΦT

t Πt. (33)

By definition, we have

ΦT
t Φt =

t∑

i=1

φiφ
T , (34)

ΦT
t Π =

t∑

i=1

Piφi. (35)

Multiplying the left and the right hand of Eq. 33 by 1/t gives together with
Eqs. 34 and 34,

1
t

t∑

i=1

φiφ
T wt =

1
t

t∑

i=1

Piφi, (36)

which, according to the definition introduced by Eqs. 16, 17, and 18, can be
written as

Êφφ,twt = ÊPφ,t, (37)

which results in the classifier weight vector update,

wt = Ê−1
φφ,t

ÊPφ,t. (38)

The squared prediction error (minimised by the above equation) is defined by

ε2
t =

1
t

t∑

i=1

(
Pi − wt

T φi

)2
, (39)

and can be expanded to

ε2
t =

1
t

t∑

i=1

P 2
i + wt

T

(
1
t

t∑

i=1

φiφ
T
i

)

wt − wt
T

(
2
t

t∑

i=1

φi

)

, (40)

which, together with Eqs. 16, 17,18, and 38, gives

ε2
t = ÊPP,t − ÊT

Pφ,t
Ê−1

φφ,t
ÊT

Pφ,t
. (41)

134 D. Loiacono et al.

C Recursive Least Squares

The Recursive Least Squares (RLS) algorithm allows tracking the weight vector
wt that minimises the convex cost function

t∑

t=1

(
wT

t φt − Pt

)2
+

1
δRLS ‖wt‖2, (42)

and satisfies the equality
(
ΦT

t Φt +
1

δRLS I
)

wt = ΦT
t Pt, (43)

where I denotes the identity matrix and δRLS is a large positive constant. Let
V−1

t = ΦT Φt denote the feature autocorrelation matrix estimate, that satisfies
the relation

V−1
t = V−1

t−1 + φT
t φt, (44)

with V0 = δRLSI. Similarly, we have

ΦT
t Pt = ΦT

t−1Pt−1 + φtPt, (45)

which, together with Eqs. 43 and 44 allows us to derive

V−1
t wt = V−1

t wt−1 + φt(Pt − wT
t−1φt). (46)

Pre-multiplying the above by Vt results in the RLS weight vector update

wt = wt−1 + Vtφt(Pt − wT
t−1φt). (47)

To get the update for V, we apply the Sherman-Morrison formula [9] to Eq. 44,
resulting in

Vt = Vt−1 − Vt−1φtφ
T
t Vt−1

1 + φT
t Vt−1φ

, (48)

which can be written as

βRLS = 1 + φT
t Vt−1φt, (49)

Vt = Vt−1 − 1
βRLS Vt−1φtφ

T
t Vt−1, (50)

and thus results in the final RLS update for V. Note that the Sherman-Morrison
formula is only applicable if V−1 is invertible, and thus V needs to be initialised
to V0 = δRLSI with δRLS < ∞, such that V−1

0 = (1/δRLS)I > 0I. This intro-
duces a bias that is kept small by setting δRLS to a large value.

Analysis and Improvements of the Classifier Error Estimate in XCSF 135

D Tracking Mean Square Error

Let us assume that the weight vector w is estimated by the RLS algorithm,
initialised with a very large δRLS → ∞, and therefore by Eq. 43 at t satisfies the
normal equation (

ΦT
t Φt

)
wt = ΦT

t Pt, (51)

which can also be written as

wT
t ΦT

t (Φtwt − Pt) = 0. (52)

Our aim is to find an incremental update equation for the MSE, ft(Wt), that,
following Eq. 3, is in matrix notation given by

tft(wt) = ‖Φtwt − Pt‖2, (53)

Using −Pt = −Φtwt + (Φtwt − Pt) and Eq. 52, we can derive

PT
t Pt = wT

t ΦT
t Φtwt − 2wT

t ΦT
t (Φtwt − Pt) + (Φtwt − Pt)T (Φtwt − Pt)

= wT
t ΦT

t Φtwt + ‖Φtwt − Pt‖2, (54)

and thus we can express the sum of squared errors by

‖Φtwt − Pt‖2 = PT
t Pt − wT

t ΦT
t Φtwt. (55)

To express ‖Φtwt −Pt‖2 in terms of ‖Φt−1wt−1 −Pt−1‖2, we combine Eqs. 44,
45 and 55, and use V−1

t wt = ΦT
t Pt after Eq. 51 to get

‖Φtwt − Pt‖2

= PT
t Pt − wT

t ΦT
t Φtwt

= ‖Φt−1wt−1 − Pt−1‖2 + P 2
t + wT

t−1V
−1
t−1wt−1 − wT

t V−1
t wt

= ‖Φt−1wt−1 − Pt−1‖2 + P 2
t

+wT
t−1

((
V−1

t−1 + φtφ
T
t

)
wt − φtPt

)
− wT

t

(
V−1

t−1wt−1 + φtPt

)

= ‖Φt−1wt−1 − Pt−1‖2 + P 2
t + wT

t−1φtφ
T
t wt − wT

t−1φtPt − wT
t φtPt

= ‖Φt−1wt−1 − Pt−1‖2 + (wT
t−1φt − Pt)(wT

t φt − Pt).

Thus, we get

tft(wt) = (t − 1)ft−1(wt−1) + (wT
t−1φt − Pt)(wT

t φt − Pt), (56)

which, using ε2
t ≡ ft(wt), can be rewritten to

ε2
t = ε2

t−1 +
1
t

(
(wT

t−1φt − Pt)(wT
t φt − Pt) − ε2

t−1
)
. (57)

	Analysis and Improvements of the Classifier Error Estimate in XCSF
	Introduction
	The XCSF Classifier System
	Squared Error or Absolute Error?
	Re-deriving the XCSF Weight Vector and Error Update
	Estimating the Root Mean Squared Error

	Improving the Error Estimate
	The Bayes Linear Analysis
	A Sample-Based Implementation and Its Relation to Least Squares
	Recursive Least Squares and Error Tracking

	Experimental Design
	Experimental Results
	Single Classifier Error
	Analysis of Generalization
	Classifier Error and Action-Set Subsumption

	Conclusions
	Linear Bayes Analysis
	Bayes Linear Analysis and Least Squares
	Recursive Least Squares
	Tracking Mean Square Error

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

