
Jan Drugowitsch

Design and Analysis of

Learning Classifier Systems:

A Probabilistic Approach

– Monograph –

17th March 2008

Springer

Foreword

The book is probably best summarised as providing a principled foundation for
Learning Classifier Systems. Something is happening in LCS, and particularly
XCS and its variants that clearly often produces good results. The author
wishes to understand this from a broader machine learning perspective and
thereby perhaps to improve the systems. The approach centres on choosing
a statistical definition – derived from machine learning – of “a good set of
classifiers”, based on the model with which such a set represents the data. For
an illustration of this approach, he designs the model to be close to XCS, and
tests it by evolving a set of classifiers using that definition as a fitness criterion,
seeing if the set provides a good solution to a couple of function approximation
problems. It appears to, meaning that in some sense his definition of “good
set of classifiers” (also, in his terms, a good model structure) captures the
essence, in machine learning terms, of what XCS is doing.

In the process of designing the model, the author describes its components
and their training in clear detail and links it to currently used LCS, giving rise
to recommendations for how those LCS can directly gain from the design of the
model and its probabilistic formulation. The seeming complexity of evaluating
the quality of a set of classifiers is alleviated by a supporting algorithmic
description of how to implement it, producing a simple Pittsburgh-style LCS.
A final chapter on sequential decision tasks rounds off the formalistic supply
that has until then focused on function approximation and classification, by
providing criteria for method stability and insight into new developments.

The provided link between LCS on a theoretical level and machine learning
work in general is important, especially since the latter has a more developed
theory and may in part stand off from LCS because of LCS’s relative lack
thereof (I stress “relative”). Also the addressed problem is important because
out of greater theoretical understanding may result better classifier systems, as
already demonstrated in this work by the improvements suggested for current
LCS.

A particularly appealing feature of the novel approach is its universal ap-
plicability to any kind of LCS that seeks to perform function approximation,

VI Foreword

classification, or handle sequential decision tasks by means of dynamic pro-
gramming or reinforcement learning. Its close relation to XCS in this book
results from the authors commitment to an LCS model structure that pro-
motes such relation, but nothing speaks against applying the same approach
to greatly different model types, resulting in different, potentially novel, LCS.

While its relation to Pittsburgh-style LCS is straightforward and clearly
established in this work, using the same approach for the design of Michigan-
style LCS remains a significant future challenge. Also, it will be interesting to
see how the theoretical basis for reinforcement learning is built upon in future
LCS, in addition to an extended empirical evaluation of LCS that emerge from
this design approach.

Overall, the work is elegant and approaches LCS from a refreshingly differ-
ent perspective, and is stylistically pretty novel for work on LCS - but that’s
surely healthy!

Preface

I entered the world of Learning Classifier Systems (LCS) through their intro-
duction by Will Browne as part of a lecture series on ”Advanced Artificial
Intelligence” at the University of Reading, UK. Their immediate appeal as as
a flexible architecture that combines the power of evolutionary computation
with machine learning by splitting larger problems into tractable sub-problems
made me decide to pursue them further, for which I got the opportunity during
my Ph.D., supervised by Alwyn Barry, at the University of Bath.

Modest dissatisfaction followed my initial euphoria when I had to dis-
cover that their theoretical basis that I planned to rest my work upon did
not live up to my initial expectation. Indeed, despite being generally referred
to as Genetic-based Machine Learning, their formal development had little
in common with machine learning itself. Their loose definition, ad-hoc de-
sign, complex structure of interwoven sub-components, and yet surprisingly
competitive performance made me comprehend why David Goldberg referred
to them as “a glorious, wondrous, and inventing quagmire, but a quagmire
nonetheless.”

The work presented in this book is an attempt to “clean up” on LCS and
lay the foundations for a principled approach to their design by pragmatically
following the road of machine learning, in order to bridge the gap between
LCS and machine learning. Their design is approached from first principles,
based on the question “What is a classifier system supposed to learn?”. As
presented here, the work is intended for researchers in LCS, genetic-based
machine learning, and machine learning, but also for anyone else who is inter-
ested in LCS. The content is in most parts based on work performed during
my Ph.D., but also includes extensions to it, most notably a complete formu-
lation for classification tasks rather than only regression tasks. The content of
this book is not to be understood as the development of a new LCS, but rather
as the groundwork for a new approach to their design that I and hopefully
others will build upon.

Numerous people have supported me in performing this work, and I am
grateful for their constant encouragement. Most notably, I would not have

VIII Preface

been able to fully focus on my work without the generous financial support of
my parents, Elsbeth and Knut Drugowitsch, during my Ph.D. time. Also, my
Ph.D. supervisor, Alwyn Barry, helped me to stay focused on the main ques-
tions, and his guidance, his constructive comments, and his initiative were
essential to the completion of this work. Many people in an around Bath,
UK, have helped me with comments, discussions, or equally valuable moral
support: Dan Richardson, Marelee Hurn, Hagen Lehmann, Tristan Caulfield,
Mark Price, Jonty Needham, Joanna Bryson, and especially Will Lowe for
emphasising the model behind each method. Various researchers in LCS and
machine learning have offered their support thought constructive discussions
at conferences or per e-mail: Pier Luca Lanzi, Daniele Loiacono, Martin Butz,
Stewart Wilson, Will Browne, Tim Kovacs, Gavin Brown, James Marshall,
Lashon Booker, Xavier Llorà, Gavin Brown, Christopher Bishop, Markus
Svensén, Matthew Beal, Tommi Jaakkola, Lei Xu, Peter Grünwald, Arta Doci,
and Michael Littman. Special thanks go to Larry Bull for not giving me a too
hard time at my Ph.D. viva, and for encouraging me to publish my work as a
book, therefore taking full responsibility for it. Last, but certainly not least,
I am deeply grateful for the moral support and patience of Odali Sanhueza
throughout the years that I was working on what resulted in this book.

Rochester, NY, USA, Jan Drugowitsch
March, 2008

Contents

1 Introduction . 1
1.1 Machine Learning . 1

1.1.1 Common Machine Learning Tasks 2
1.1.2 Designing an Unsupervised Learning Algorithm 3

1.2 Learning Classifier Systems . 5
1.2.1 A Brief Overview . 5
1.2.2 Applications and Current Issues . 6

1.3 About the Model-Centred Approach to LCS 7
1.3.1 The Initial Approach . 7
1.3.2 Taking a Model-Centred View . 8
1.3.3 Summarising the Approach . 9
1.3.4 Novelties . 9

1.4 How to Read this Book . 9
1.4.1 Chapter Overview . 10

2 Background . 13
2.1 A General Problem Description . 14
2.2 Early Learning Classifier Systems . 16

2.2.1 Initial Idea . 17
2.2.2 The General Framework . 17
2.2.3 Interacting Subsystems . 19
2.2.4 The Genetic Algorithm in LCS . 19
2.2.5 The Problems of Early LCS . 20

2.3 The LCS Renaissance . 21
2.3.1 Computing the Prediction . 22
2.3.2 Localisation and Representation . 22
2.3.3 Classifiers as Localised Maps from Input to Output 23
2.3.4 Recovering the Global Prediction . 24
2.3.5 Michigan-style vs. Pittsburgh-style LCS 24

2.4 Existing Theory . 25
2.4.1 The Holistic View . 25

X Contents

2.4.2 Approaches from the Genetic Algorithm Side 26
2.4.3 Approaches from the Function Approximation Side 27
2.4.4 Approaches from the Reinforcement Learning Side 27

2.5 Discussion and Conclusion . 28

3 A Learning Classifier Systems Model . 31
3.1 Task Definitions . 32

3.1.1 Expected Risk vs. Empirical Risk 32
3.1.2 Regression . 35
3.1.3 Classification . 36
3.1.4 Sequential Decision . 37
3.1.5 Batch vs. Incremental Learning . 38

3.2 LCS as Parametric Models . 40
3.2.1 Parametric Models . 41
3.2.2 An LCS Model . 42
3.2.3 Classifiers as Localised Models . 42
3.2.4 Recovering the Global Model . 44
3.2.5 Finding a Good Model Structure . 44
3.2.6 Considerations for Model Structure Search 44
3.2.7 Relation to the Initial LCS Idea . 45

3.3 Summary and Outlook . 46

4 A Probabilistic Model for LCS . 49
4.1 The Mixtures-of-Experts Model . 50

4.1.1 Likelihood for Known Gating . 50
4.1.2 Parametric Gating Network . 51
4.1.3 Training by Expectation-Maximisation 53
4.1.4 Localisation by Interaction . 55
4.1.5 Training Issues . 55

4.2 Expert Models . 56
4.2.1 Experts for Linear Regression . 56
4.2.2 Experts for Classification . 57

4.3 Generalising the MoE Model . 58
4.3.1 An Additional Layer of Forced Localisation 58
4.3.2 Updated Expectation-Maximisation Training 59
4.3.3 Implications on Localisation . 60
4.3.4 Relation to Standard MoE Model 60
4.3.5 Relation to LCS . 60
4.3.6 Training Issues . 63

4.4 Independent Classifier Training . 63
4.4.1 The Origin of Local Maxima . 64
4.4.2 What does a Classifier Model? . 64
4.4.3 Introducing Independent Classifier Training 65
4.4.4 Training the Gating Network . 66

Contents XI

4.4.5 Implications on Likelihood and
Assumptions about the Data . 66

4.5 A Brief Comparison to Linear LCS Models 67
4.6 Discussion and Summary . 69

5 Training the Classifiers . 71
5.1 Linear Classifier Models and

Their Underlying Assumptions . 72
5.1.1 Linear Models . 72
5.1.2 Gaussian Noise . 73
5.1.3 Maximum Likelihood and Least Squares 74

5.2 Batch Learning Approaches to Regression 75
5.2.1 The Weight Vector . 75
5.2.2 The Noise Precision . 76

5.3 Incremental Learning Approaches to Regression 77
5.3.1 The Principle of Orthogonality . 77
5.3.2 Steepest Gradient Descent . 78
5.3.3 Least Mean Squared . 80
5.3.4 Normalised Least Mean Squared . 82
5.3.5 Recursive Least Squares . 83
5.3.6 The Kalman Filter . 87
5.3.7 Incremental Noise Precision Estimation 92
5.3.8 Summarising Incremental Learning Approaches 95

5.4 Empirical Demonstration . 97
5.4.1 Experimental Setup . 97
5.4.2 Weight Vector Estimate . 99
5.4.3 Noise Variance Estimate . 100

5.5 Classification Models . 101
5.5.1 A Quality Measure for Classification 101
5.5.2 Batch Approach for Classification 102
5.5.3 Incremental Learning for Classification 103

5.6 Discussion and Summary . 104

6 Mixing Independently Trained Classifiers 109
6.1 Using the Generalised Softmax Function . 111

6.1.1 Batch Learning by Iterative Reweighted Least Squares . 111
6.1.2 Incremental Learning by Least Squares 113

6.2 Heuristic-based Mixing Models . 115
6.2.1 Properties of Weighted Averaging Mixing 115
6.2.2 Inverse Variance . 118
6.2.3 Prediction Confidence . 118
6.2.4 Maximum Prediction Confidence . 119
6.2.5 XCS . 119

6.3 Empirical Comparison . 121
6.3.1 Experimental Design . 121

XII Contents

6.3.2 Results . 123
6.3.3 Discussion . 125

6.4 Relation to Previous Work and Alternatives 126
6.5 Summary and Outlook . 129

7 The Optimal Set of Classifiers . 131
7.1 What is Optimal? . 132

7.1.1 Current LCS Approaches . 132
7.1.2 Model Selection . 134
7.1.3 Bayesian Model Selection . 134
7.1.4 Applying Bayesian Model Selection to

Finding the Best Set of Classifiers 136
7.1.5 The Model Structure Prior p(M) . 137
7.1.6 The Myth of No Prior Assumptions 137

7.2 A Fully Bayesian LCS for Regression . 139
7.2.1 Data, Model Structure, and Likelihood 140
7.2.2 Multivariate Regression Classifiers 141
7.2.3 Priors on the Classifier Model Parameters 142
7.2.4 Mixing by the Generalised Softmax Function. 143
7.2.5 Priors on the Mixing Model . 144
7.2.6 Joint Distribution over Random Variables 145

7.3 Evaluating the Model Evidence . 145
7.3.1 Variational Bayesian Inference . 146
7.3.2 Classifier Model q∗W,τ (W, τ) . 147
7.3.3 Classifier Weight Priors q∗α(α) . 150
7.3.4 Mixing Model q∗V (V) . 151
7.3.5 Mixing Weight Priors q∗β(β) . 153
7.3.6 Latent Variables q∗Z(Z) . 154
7.3.7 Required Moments of the Variational Posterior 155
7.3.8 The Variational Bound L(q) . 157
7.3.9 Independent Classifier Training . 162
7.3.10 How to Get p(M|D) for Some M 163

7.4 Predictive Distribution . 164
7.4.1 Deriving p(y′|x′,D) . 164
7.4.2 Mean and Variance . 166

7.5 Model Modifications to Perform Classification 166
7.5.1 Local Classification Models and Their Priors 167
7.5.2 Variational Posteriors and Moments 168
7.5.3 Variational Bound . 169
7.5.4 Independent Classifier Training . 169
7.5.5 Predictive Density . 170

7.6 Alternative Model Selection Methods . 170
7.6.1 Minimum Description Length . 171
7.6.2 Structural Risk Minimisation . 171
7.6.3 Bayesian Ying-Yang . 172

Contents XIII

7.6.4 Training Data-based Approaches . 172
7.7 Discussion and Summary . 173

8 An Algorithmic Description . 175
8.1 Computing p(M|D) . 176

8.1.1 Model Probability and Evidence . 177
8.1.2 Training the Classifiers . 178
8.1.3 Training the Mixing Model . 180
8.1.4 The Variational Bound . 185
8.1.5 Scaling Issues . 188

8.2 Two Alternatives for Model Structure Search 189
8.2.1 Model Structure Search by a Genetic Algorithm 190
8.2.2 Model Structure Search by Markov Chain Monte Carlo . 191
8.2.3 Building Blocks in Classifier Sets . 194

8.3 Empirical Demonstration . 195
8.3.1 Representations . 195
8.3.2 Generated Function . 199
8.3.3 Sparse, Noisy Data . 201
8.3.4 Function with Variable Noise . 203
8.3.5 A Slightly More Complex Function 204

8.4 Improving Model Structure Search . 207
8.4.1 Using More Information . 207
8.4.2 Incremental Implementations . 209

8.5 Summary . 212

9 Towards Reinforcement Learning with LCS 215
9.1 Problem Definition . 217

9.1.1 Markov Decision Processes . 217
9.1.2 The Value Function, the Action-Value Function and

Bellman’s Equation . 218
9.1.3 Problem Types . 220
9.1.4 Matrix Notation. 220

9.2 Dynamic Programming and Reinforcement Learning 220
9.2.1 Dynamic Programming Operators 221
9.2.2 Value Iteration and Policy Iteration 222
9.2.3 Approximate Dynamic Programming 222
9.2.4 Temporal-Difference Learning . 223
9.2.5 SARSA(λ) . 223
9.2.6 Q-Learning . 225
9.2.7 Approximate Reinforcement Learning 225

9.3 Reinforcement Learning with LCS . 226
9.3.1 Approximating the Value Function 227
9.3.2 Bellman’s Equation in the LCS Context 228
9.3.3 Asynchronous Value Iteration with LCS 229
9.3.4 Q-Learning by Least Mean Squares 229

XIV Contents

9.3.5 Q-Learning by Recursive Least Squares 230
9.3.6 XCS with Gradient Descent . 231

9.4 Stability of RL with LCS . 232
9.4.1 Stability of Approximate Dynamic Programming 233
9.4.2 Stability on the Structure and the Parameter Learning

Level . 234
9.4.3 Non-expansion with respect to ‖ · ‖∞ 235
9.4.4 Non-expansion with respect to ‖ · ‖D 238
9.4.5 Consequences for XCS and XCSF 240

9.5 Further Issues . 240
9.5.1 Long Path Learning . 240
9.5.2 Exploration and Exploitation . 245

9.6 Summary . 248

10 Concluding Remarks . 251

A Notation . 255

B XCS and XCSF . 261
B.1 Classifier Model and Mixing Model . 261
B.2 Model Structure Search . 263

Index . 265

References . 269

1

Introduction

The work in this book shows how acquiring a model-centred view to reformu-
lating Learning Classifier Systems (LCS), a rule-based method for machine
learning, provides an holistic approach to their design, analysis and under-
standing. This results in a new methodology for their design and analysis, a
probabilistic model of their structure that reveals their underlying assump-
tions, a formal definition of when they perform optimally, new approaches to
their analysis, and strong links to other machine learning methods that have
not been available before. The work opens up the prospects of advances in
several areas, such as the development of new LCS implementations that have
formal performance guarantees, the derivation of representational properties
of the solutions that they aim for, and improved performance.

Introducing the work start with a short overview of machine learning, its
applications, and the most common problem types that it is concerned with.
An example that follows highlights the difference between ad-hoc and model-
centred approaches to designing machine learning algorithms and emphasises
the advantages of the latter. This is followed by a short introduction to LCS,
their applications and current issues. Thereafter, the research question of this
work is introduced, together with the approach that is used to approach this
question, and a short overview of the chapters that are to follow.

1.1 Machine Learning

Machine learning (ML) is a sub-field of artificial intelligence (AI) that is con-
cerned with methods and algorithms that allow machines to learn. Thus,
rather than instructing a computer explicitly with regards to which aspects
certain data is to be classified, about relations between entities, or with which
sequence of actions to achieve certain goals, machine learning algorithms al-
low this knowledge to be inferred from a limited number of observations, or a
description of the task and its goal.

2 1 Introduction

Their use is manifold, including speech and handwriting recognition, object
recognition, fraud detection, path planning for robot locomotion, game play-
ing, natural language processing, medical diagnosis, and many more [20, 172].
There is no universal method to handle all of these tasks, but a large set of
different approaches exists, each of which is specialised in particular problem
classes.

Probably the most distinct differences between the numerous machine
learning methods is the type of task that they can handle, the approach that
they are designed with, and the assumptions that they are based upon. De-
scribing firstly a set of common machine learning task types, let us then,
based on a simple example, consider two common approaches to how one can
develop machine learning algorithms.

1.1.1 Common Machine Learning Tasks

The most common problem types of tasks that machine learning deals with
are:

Supervised Learning. In such tasks a set of input/output pairs are available,
and the function between the inputs and the associated outputs is to be
learned. Given a new input, the learned relation can be used to predict
the corresponding output. An example for a supervised learning task is
a classification task: given several examples of a set of object properties
and the type of this object, a supervised learning approach can be taken
to find the relation between the properties and the associated type, which
subsequently allows us to predict the object type for a set of properties.

Unsupervised Learning. Unsupervised learning is similar to supervised learn-
ing, with the difference that no outputs are available. Thus, rather than
learning the relationship between inputs and associated outputs, the
learner builds a model of the inputs. Consider a clustering task where
several examples of the properties of some object are given and we want
to group the objects by the similarity of their properties: this is an unsu-
pervised learning task because the given examples only contain the object
properties, but not the group assignment of these objects.

Sequential Decision Tasks. Such tasks are characterised by a set of states, and
a set of actions that can be performed in these states, causing a transition
to another state. The transitions are mediated by a scalar reward and the
aim of the learner is to find the action for each state that maximises the
reward in the long run. An example for such a task is in a labyrinth to find
the shortest path the goal by assigning each step (that is, each transition)
a reward of -1. As the aim is to maximise the reward, the number of steps
is minimised. The most common approach to sequential decision tasks is
that of dynamic programming and reinforcement learning: to learn the
optimal value of a state, which is the expected sum of rewards when
always performing the optimal actions from that state, and subsequently
to derive the optimal actions from these values.

1.1 Machine Learning 3

There exists a wide range of different machine learning methods that deal
with each of the problem types. As we are interested in their design, let us
consider two possible design approaches to an unsupervised learning task.

1.1.2 Designing an Unsupervised Learning Algorithm

Let us consider the well-known Iris data-set [87] that contains 150 instances
of four scalar attribute values and a class assignment each. Each of the four
attributes refer to a particular measure of the physical appearance of the
flower. Each instance belongs to one of the three possible classes of the plant.

Assume that is unknown which class each instance belongs to and it is
our desire to design an algorithm that groups the instances into three classes,
based on their similarity of appearance that is inferred from the similarity
of their attribute values. This task is an unsupervised learning task with the
inputs given by the attribute values of each instance.

Ad-Hoc Design of an Algorithm

Let us firstly approach the task intuitively by designing an algorithm that
aims at grouping the instances such that the similarity of any two instances
within the same group or cluster is maximised, and between different clusters
is minimised. The similarity between two instances is measured by the inverse
squared Euclidean distance1 between the points that represent these instances
in the four-dimensional attribute space, spun by the attribute values.

Starting by randomly assigning each instance to one of the three clusters,
the centre of each of these clusters is computed by the average attribute values
of all instances assigned to that cluster. To group similar instances into the
same cluster, each instance is now re-assigned to the cluster to whose centre it
is closest. Subsequently, the centres of the clusters are recomputed. Iterating
these two steps causes the distance between instances within the same cluster
to be minimised, and between clusters to be maximised. Thus, we have reached
our goal. The concept of clustering by using the inverse distance between the
data points as a measure of their similarity is illustrated in Figure 1.1(a).

This clustering algorithm is the well-known K-means algorithm, which is
guaranteed to converge to a stable solution, which is, however, not always
optimal [163, 20]. While it is a functional algorithm, it leaves open many
question: is the squared Euclidean distance indeed the best distance measure
to use? What are the implicit assumptions that are made about the data? How
should we handle data where the number of classes is unknown? In which cases
would the algorithm fail?

1 The squared Euclidean distance between two equally-sized vectors a =
(a1, a2, . . .)

T and b = (b1, b2, . . .)
T is given by

P

i(ai − bi)
2 and is thus pro-

portional to the sum of squared differences between the vectors’ elements (see
also Section 5.2). Therefore, two instances are considered as being similar if the
squared differences between their attribute values is small.

4 1 Introduction

(a) (b)

Fig. 1.1. Two different interpretations for clustering a set of data points into two
distinct clusters. The circles and squares are data points that are assigned to different
clusters. The dashed circle and square represent the centres of the identified clusters.
(a) Identifying clusters by minimising the distance between the data points within
a cluster, and reassigning data points to the cluster to whose centre they are closest
to. The dashed lines indicate the assignment of data points to cluster centres, given
by the mean of all data points within the cluster. (b) Interpreting the data points as
being generated by Gaussians that are centred on the cluster centres. The two dashed
circles around the centres represent the first and the second standard deviation of
the generating Gaussian.

Design of Algorithm by Modelling the Data

Let us approach the same problem from a different perspective: assume that
for each Iris class there is a virtual standard instance — something like a
prototypical Iris — and that all instances of a class are just noisy instantiations
of the standard instance. In other words, assume the attribute values of each
instance of a particular class to be generated by sampling from a Gaussian that
is centred on the attribute values of the standard instance of this class, where
the noisy instantiation process is modelled by a Gaussian (for an illustration
see Figure 1.1(b)). Furthermore, let us assume that each class has generated
all instances with a certain probability.

This model is completely specified by it parameters, which are the centres
of the Gaussians and their covariance matrices, and the probability that is
assigned to each class. It can be trained by the principle of maximum likelihood
by adjusting its parameters such that the probability of having generated all
observed instances is maximised; that is, we want to find the model parameters
that best explain the data. This can be achieved by using a standard machine
learning algorithm known as the expectation-maximisation (EM) algorithm
[72]. In fact, assuming that each dimension of each Gaussians is independent
and has equal variance in each of the dimensions, the resulting algorithm
provides the same results as the K-means algorithm [20]; so why take effort
of specifying a model rather than using K-means directly?

Reconsidering the questions that was posed in the previous section makes
the benefit of having a model clear: it makes explicit the assumptions that
are made about the data. This also allows us to specify when the method is

1.2 Learning Classifier Systems 5

likely to fail, which is when we apply it to data that does not conform to the
assumptions that the model makes. Furthermore, in this particular example,
instances are not assigned to single clusters, but their probability of belonging
to either cluster is given. Also, the best number of clusters can be found by
facilitating techniques from the field of model selection that select the number
of clusters that are most suitable to explain the data. Additional advantages
are that if Gaussians do not describe the data well, they can be easily replaced
by other distributions, while retaining the same techniques to train the model;
and if new training methods for that model type become available, they can
be used as a drop-in replacement for the ones that are currently used.

Clearly, due to the many advantages of the model-based approach, it
should always be preferred to the ad-hoc approach, as the example in this
section has demonstrated.

1.2 Learning Classifier Systems

Learning Classifier Systems are a family of machine learning algorithms that
are usually designed by the ad-hoc approach. Generally, they can be charac-
terised by handling sequential decision tasks with a rule-based representation
and by the use of evolutionary computation methods (for example, [171, 96]),
although some variants also perform supervised learning (for example, [164])
or unsupervised learning (for example, [218]), or do not rely on evolutionary
computation (for example, [90]).

1.2.1 A Brief Overview

Based on initial ideas by Holland [112, 113, 114, 112] to handle sequential
decision tasks and to escape the brittleness of expert systems of that time,
LCS initially did not provide the required operational stability that was hoped
for [89, 201, 136], until Wilson introduced the simplified versions ZCS [243]
and XCS [244], which solved most of the problems of earlier LCS and caused
most of the LCS community to concentrate on these two systems and their
variants.

Learning Classifier Systems are based on a population of rules (also called
the classifiers) formed by a condition/action pair, that compete and coop-
erate to provide the desired solution. In sequential decision tasks, classifiers
whose condition matches the current states are activated and promote their
action. One or several of these classifiers are selected, their promoted action
is performed, and the received reward is assigned to these classifiers, and ad-
ditionally propagated to previously active classifiers that also contributed to
receiving the current reward. Occasionally, classifiers of low quality are re-
moved from the current population, and new ones are induced, with their
condition and action based on current high-quality classifiers. The aim of re-
placing classifiers is to improve the overall quality of the classifiers in the
population.

6 1 Introduction

Different LCS differ in how they select classifiers, in how they distribute
the reward, in whether they additionally maintain an internal state, and in
how they evaluate the quality of classifiers. The latter is the most significant
difference between early LCS, which based the quality of a classifier on the
reward that it contributed to receiving, and the currently most popular LCS,
XCS [244], that evaluates the quality of a classifier by how accurate it is at
predicting its contribution to the reward.

Shifting from strength-based to accuracy-based LCS also allowed them
to be directly applied to regression tasks [247, 248], which are supervised
learning tasks where the output is of interval scale. That also changed the
perspective of how LCS handle sequential decision tasks: they act as function
approximators for the value function that map the states and actions into
the long-run reward that can be expected to be received when performing
the action in this state, where the value function estimate is updated by
reinforcement learning. By replacing classifiers in the population, LCS aim at
finding the best representation of this value function [141].

1.2.2 Applications and Current Issues

Learning Classifier Systems are applied in many areas, such as autonomous
robotics (for example, [76, 101]), multi-agent systems (for example, [88, 62]),
economics (for example, [228, 173, 3]), and even traffic light control [40]. Par-
ticularly in classification tasks, which are supervised learning tasks where the
output is of nominal scale, their performance has been found to be competitive
with other state-of-the-art machine learning algorithms [99, 155, 8].

Nonetheless, even modern LCS are not free of problems, the most signifi-
cant being the following:

• Even though initially designed for such tasks, LCS are still not particularly
successful in handling sequential decision tasks [12, 13]. This is unfortu-
nate, as “there is a lot of commonality in perspective between the RL
community and the LCS community” and more communication between
the two communities would be welcome [152].

• Most LCS feature a high number of system parameters, and while the
effect of some of them is ill-understood, setting others requires a specialised
knowledge of the system. XCS, for example, has 20 partially interacting
system parameters [58].

• No LCS features any formal performance guarantees, and even if such
guarantees might not always seem particularly important in applications,
the choice between a method with such guarantees and an equally powerful
method without them will be for the one that features such guarantees.

• There is no knowledge about the assumptions made about the data, and as
a result there is also hardly any knowledge about when some LCS might
fail.

1.3 About the Model-Centred Approach to LCS 7

• Very few direct links between LCS and other machine learning methods
are established, which makes the transfer of knowledge for mutual gain
hard, if not impossible.

• The general lack of rigour in the design of LCS leads to a lack of their
acceptance in the field of machine learning. Together with the previous
point this inhibits the exchange of ideas between possibly closely related
methods.

These problems concern both practitioners and theoreticians, and solving
them should be a top priority in LCS research. Many of them are caused
by designing LCS by an ad-hoc approach, with all the disadvantages that we
have described before. This was justified when insufficient links were drawn
between LCS and other approaches, and in particular when the formalisms
were insufficiently developed within other machine learning methods, but now
such a position is difficult to argue for.

1.3 About the Model-Centred Approach to LCS

This work arises from the lack of theoretical understanding of LCS, and the
missing formality when developing them. Its objective is to develop a formal
framework for LCS that lets us design, analyse, and interpret LCS. In that
process it focuses on related machine learning approaches and techniques to
gain from their understanding and their relation to LCS.

The immediate aim of this work is not to develop a new LCS. Rather it
is to give a different perspective on LCS, to increase the understanding and
performance of current LCS, and to lay the foundations for a more formal
approach to developing new LCS. Neither is the introduced model to be
taken as the LCS model. It was chosen for demonstrative purposes, due to its
similarity to the popular XCS. Other LCS model types can be constructed
and analysed by the same approach, to represent other LCS types, such as
ZCS.

1.3.1 The Initial Approach

The initial approach was to concentrate on an LCS structure similar to XCSF
[247] and to split it conceptually into its function approximation, reinforce-
ment learning and classifier replacement component. Each of these was to be
analysed separately but with subsequent integration in mind, and resulted
in some studies [79, 84, 158] for the function approximation component and
others [80, 81, 82] for the reinforcement learning component.

When analysing these components, the goal-centred approach was followed
both pragmatically and successfully: firstly, a formal definition of what is to be
learned was given, followed by applying methods from machine learning that
reach that goal. The algorithms resulting from this approach are equivalent

8 1 Introduction

or improve over those of XCSF, with the additional gain of having a goal
definition, a derivation of the method from first principles, and a strong link
to associated machine learning methods from which their theoretical analysis
was borrowed.

When concentrating on classifier replacement, however, taking this ap-
proach was hindered by the lack of a formal definition of what set of classi-
fiers the process of classifier replacement should aim at. Even though some
studies aimed at defining the optimal set for limited classifier representations
[133, 136, 138], the was still no general definition available. But without hav-
ing a formally expressible definition of the goal it was impossible to define a
method that reaches it.

1.3.2 Taking a Model-Centred View

The definition of the optimal set of classifiers is at the core of LCS: given a
certain problem, most LCS aim at finding the set of classifiers that provides
the most compact competent solution to the problem.

Fortunately, taking the model-centred view to finding such a definition
simplifies its approach significantly: a set of classifiers can be interpreted as a
model for the data. With such a perspective, the aim of finding the best set
of classifiers becomes that of finding the model that explains the data best.
This is the core problem of the field of model selection, and many methods
have been developed to handle it, such as structural risk minimisation (SRM)
[225], minimum description length (MDL) [102], or Bayesian model selection
[162].

The advantage of taking the model-centred approach is not only to be able
to provide a formal definition for the optimal classifier set. It also reveals the
assumptions made about the data, and hence gives us hints about the cases
in which the method might excel the performance of other related methods.
Also, the model is independent of the method to train it, and therefore we can
choose amongst several to perform this task and also acquire their performance
guarantees. Furthermore, it makes LCS directly comparable to other machine
learning methods that explicitly identify their underlying model.

The probabilistic formulation of the model underlying a set of classifiers
was inspired by the related Mixtures-of-Experts model [123, 124], which was
extended such that it can described such a set. This process was simplified by
having already analysed the function approximation and reinforcement learn-
ing component which allowed the integration of related LCS concepts into
the description of the model. In fact, the resulting model allows for express-
ing both function approximation and reinforcement learning, which makes the
model-centred approach for LCS holistic — it integrates function approxima-
tion, reinforcement learning and classifier replacement.

1.4 How to Read this Book 9

1.3.3 Summarising the Approach

In summary, the taken approach is the following: firstly, the relevant problem
types are described formally, follows by a probabilistic formulation of a set of
classifiers, and how such a model can be trained by methods from adaptive
filter theory [108] and statistical machine learning [20, 169], given some data.

The definition of the optimal set of classifiers that is to be sought for
is based on Bayesian model selection [20, 122], which requires a Bayesian
LCS model. Adding priors to the probabilistic LCS model results in such a
Bayesian model. It can be trained by variational Bayesian inference, and two
methods of search the space of classifier sets are introduced. The latter is then
used to demonstrate that defining the best set of classifiers as the one that
describes the data best leads to viable results, as preliminary studies already
have shown [83].

As handling sequential decision tasks requires the merger of the introduced
LCS model with methods from reinforcement learning, it is shown how such
a combination can be derived from first principles. One of the major issues
of such combinations is their algorithmic stability, and so we discuss how this
can be analysed. In addition, some further issues, such as learning tasks that
require long action sequences, and the exploration/exploitation dilemma, are
discussed in the light of the model.

1.3.4 Novelties

The main novelty of this work are a new methodology for the design and
analysis of LCS, a probabilistic model of their structure that reveals their
underlying assumptions, a formal definition of when they perform optimally,
new approaches to their analysis, and strong links to other machine learning
methods that have not been available before.

The methodology is based on taking the model-centred approach to de-
scribing the model underlying LCS, and applying standard machine learning
methods to train it. It supports the development of new LCS by modifying
their model and adjusting the training methods such that they conform to
the new model structure. Thus, the introduced approach, if widely adopted,
will ensure a formal as well as empirical comparability between approaches.
In that sense, it defines a reusable framework for the development of LCS.

1.4 How to Read this Book

Many concepts that are frequently used in this work are introduced through-
out the text whenever they are required. Therefore, this work is best read
sequentially, in the order that the chapters are presented. However, this might
not be an option for all readers, and so some chapters will be emphasised that

10 1 Introduction

might be of particular interest for people with a background in LCS and/or
ML.

Anyone new to both LCS and ML might want to first do some introductory
reading on LCS (for example, [43, 136]) and ML (for example, [20, 105]) be-
fore reading this work from cover to cover. LCS workers who are particularly
interested in the definition of the optimal set of classifiers should concentrate
on Chapters 3 and 4 for the LCS model, Chapter 7 for its Bayesian formu-
lation and the optimality criterion, and Chapter 8 for its application. Those
who want to know how the introduced model relates to currently used LCS

should read Chapters 3 and 4 for the definition of the model, Chapters 5 and
6 for training the classifiers and how they are combined, and Chapter 9 for re-
inforcement learning with LCS. People who know ML and are most interested
in the LCS model itself should concentrate on the second half of Chapter 3,
Chapter 4, and Chapter 7 for its Bayesian formulation.

1.4.1 Chapter Overview

Chapter 2 gives an overview of the initial LCS idea, the general LCS frame-
work, and the problems of early LCS. It also describes how the role of
classifiers changed with the introduction of XCS, and how this influences
the structure of the LCS model. As our objective is also to advance the
theoretical understanding of LCS, the chapter gives a brief introduction to
previous attempts that analyse the inner workings of LCS and compares
them with the approach that is taken here.

Chapter 3 begins with a formal definition of the problem types, interleaved
with what it means to build a model to handle these problems. It then
gives a high-level overview of the LCS model by characterising it as a
parametric ML model, continuing by discussing how such a model can be
trained, and relating it back to the initial LCS idea.

Chapter 4 concentrates on formulating a probabilistic basis for the LCS

model by first introducing the Mixture-of-Experts model [124], and subse-
quently modifying it such that it can describe a set of classifiers in LCS.
Certain training issues are resolved by training the classifiers indepen-
dently. The consequences of this independent training and its relation to
current LCS and other LCS model types are discussed at the end of this
chapter.

Chapter 5 is concerned with the training of a single classifier, either when all
data is available at once, or when it is acquired incrementally. For both
cases it is defined what it means for a classifier to perform optimally, based
on training the LCS model with respect to the principle of maximum
likelihood. For regression models, methods from adaptive filter theory that
either are based on the gradient of the cost function, or that directly track
the optimum, are derived and discussed, together with a new incremental
approach to track the variance estimate of the classifier model. It is also

1.4 How to Read this Book 11

shown how to perform batch and incremental learning with classification
models.

Chapter 6 shows how the local model of several classifiers can be combined
to a global model, based on maximum likelihood training of the LCS

model from Chap. 4. As the approach turns out to be computationally
expensive, a set of heuristics are introduced, which are shown to feature
competitive performance in a set of experiments. How the content of this
chapter differs from closely related previous work [84] is also discussed.

Chapter 7 deals with the core question of LCS: what is the best set of clas-
sifiers for a given problem? Relating this question to model selection, a
Bayesian LCS model for use within Bayesian model selection is intro-
duced. The model is based on the one elaborated in Chap. 4, but is again
discussed in detail with special emphasis on the assumptions that are
made about the data. To provide an approach to evaluate the optimal-
ity criterion, the second half of this chapter is concerned with deriving
an analytical solution to the Bayesian model selection criterion by the
use of variational Bayesian inference. Throughout this derivation, obvious
similarities to the methods used in Chap. 5 and 6 are highlighted.

Chapter 8 describes two simple prototype algorithms for using the optimality
criterion to find the optimal set of classifiers, one based on Markov Chain
Monte Carlo (MCMC) methods, and the other based on GA’s. Their core
is formed by evaluating the quality of a set of classifiers, for a detailed
algorithmic description based on the variational Bayesian inference ap-
proach from Chap. 7 is given. Based on these algorithms, the viability of
the optimality criterion is demonstrated on a set of regression tasks that
highlight some of its features and how they relate to current LCS.

Chapter 9 returns to the treatment of sequential decision tasks after having
exclusively dealt with regression and classification tasks in Chaps. 4 to 8.
It firstly gives a formal definition of these tasks and their goal, together
with an introduction to methods from dynamic programming and rein-
forcement learning. Then, the exact role of LCS in handling such tasks is
defined, and a possible method is partially derived from first principles.
This derivation clarifies some of the current issues of how to correctly
perform RL with XCS(F), which is discussed in more detail. Based on the
LCS model, it is also shown how the stability of LCS with RL can be
studied, together with how to handle learning long action sequences and
the trade-off between exploring the space and exploiting current knowl-
edge.

Chapter 10 summarises the work and puts it into the perspective of the initial
objective.

2

Background

To give the reader a perspective on what characterises LCS exactly, and to
which level they are theoretically understood, this chapter gives some back-
ground on the initial ideas behind designing LCS, and describes what can
be learned from their development over the years and the existing theoretical
descriptions. As an example of a current LCS we will concentrate on XCS
[244] — not only because it is at the time of this writing the most used and
best understood LCS, but also because it is in its structure similar to the
LCS model that is developed in this book. Therefore, when discussing the
theoretical understanding of LCS, special emphasis is put on XCS and its
variants, in addition to describing general approaches that have been used to
analyse LCS.

Even though the presented work borrows numerous concepts and methods
from statistical machine learning, these methods and their background are not
described in this chapter, as this would deviate too much from the main topic
of interest. However, whenever using new concepts and applying new methods,
a short discussion about their underlying ideas is given at adequate places
throughout the text. A more thorough description of the methods used in this
work can be found in a wide range of textbooks [18, 20, 105, 108, 168, 169], of
which the ones by Bishop [20] and Bertsekas and Tsitsiklis [18] are particularly
relevant to the content of this book.

In general, LCS describe a very flexible framework that differs from other
machine learning methods in its generality. It can potentially handle a large
number of different problem types and can do so by using a wide range of
different representations. In particular, LCS have the potential of handling
the complex problem class of POMDPs (as described below) that even the
currently most powerful machine learning algorithms still struggle with. An-
other appealing feature is the possible use of human-readable representations
that simplify the introspection of found solutions without the requirement of
converting them into a different format. Their flexibility comes from the use
of evolutionary computation techniques to search for adequate substructures
of potential solutions. In combination, this makes LCS an interesting tar-

14 2 Background

get for theoretical investigation, in particularly to promote a more principled
approach to their design.

This chapters begins with a general overview of the problems that were
the prime motivator for the development of LCS. This is followed by a review
of the ideas behind LCS, describing the motivation and structure of Holland’s
first LCS, the CS-1 [119]. Many of the LCS that followed had a similar
structure and so instead of describing them in detail, Sect. 2.2.5 focuses on
some of the problems that they struggled with. With the introduction of
XCS [244] many of these problems disappeared and the role of the classifier
within the population was redefined, as discussed in Sect. 2.3. However, as our
theoretical understanding even of XCS is still insufficient, and as this work
aims at advancing the understanding of XCS and LCS in general, Sect. 2.4
gives an overview over recent significant approaches to the theoretical analysis
of LCS, before Sect. 2.5 puts the model-based design approach into the general
LCS context.

2.1 A General Problem Description

Consider an agent that interacts with an environment. At each discrete time
step the environment is in a particular hidden state that is not observable by
the agent. Instead, the agent senses the observable state of the environment
that is stochastically determined by its hidden state. Based on this observed
state, the agent performs an action that changes the hidden state of the envi-
ronment and consequently also the observable state. The hidden state transi-
tions conform to the Markov property, such that the current hidden state is
completely determined by the previous hidden state and the performed action.
For each such state transitions the agent receives a scalar reward or payoff
that can depend on the previous hidden and observable state and the chosen
action. The aim of the agent is to learn which actions to perform in each
observed state (called the policy) such that the received reward is maximised
in the long run.

Such a task definition is known as a Partially Observable Markov Decision
Process (POMDP) [125]. Its variables and their interaction is illustrated in
Fig. 2.1(a). It is able to describe a large number of seemingly different prob-
lems types. Consider, for example, a rat that needs to find the location of food
in a maze: in this case the rat is the agent and the maze is the environment,
and a reward of -1 is given for each movement that the rat performs until the
food is found, which leads the rat to minimise the number of required move-
ments to reach the food. A game of chess can also be described by a POMDP,
where the white player becomes the agent, and the black player and the chess
board define the environment. Further examples include path planning, robot
control, stock market prediction, and network routing.

While the POMDP framework allows the specification of complex tasks,
finding their solution is equally complicated. Its difficulty arises mostly due

2.1 A General Problem Description 15

st st+1

bt bt+1

ot

at

rt

st st+1

at rt

(a) (b)

Fig. 2.1. The variables of a POMDP and an MDP involved in a single state transi-
tion from state st to state st+1 after the agent performs action at and receives reward
rt. Each node represents a random variable, and each arrow indicates a dependency
between two variables. (a) shows the transition in a POMDP, where the state st is
hidden from the agent which observes ot instead. The agent’s action depends on the
agent’s belief bt about the real state of the environment and the currently observed
state ot. Based on this action and the environment’s hidden state, a reward rt is
received and the environment performs a transition to the next state st+1. Addition-
ally, the agent update its belief bt+1, based on the observed state ot. (b) shows the
same transition in an MDP where the agent can directly observe the environment’s
state st, and performs action at based on that. This causes the agent to receive
reward rt and the environment to perform a state transition to st+1

to the agent not having access to the true state of the environment. Thus,
most of the recent work in LCS has focused on a special case of POMDP
problems that treat the hidden and observable states of the environment as
equivalent. Such problems are known as Markov Decision Processes (MDPs),
as illustrated in Fig. 2.1(b), and are dealt with in more detail in Chap. 9. They
are approached by LCS by the use of reinforcement learning which is centred
on learning the expected sum of rewards for each state when following the
optimal policy. Thus, the intermediate aim is to learn a value function that
maps the states into their respective expected sum of rewards, which is a
univariate regression problem. An example of such a value function and the
policy derived from it is shown in Fig. 2.2.

Even though the ultimate aim of LCS is to handle MDPs and POMDPs,
they firstly need to be able to master univariate regression problems. With
that in mind, this work focuses on LCS models and approaches to handle
such problems, and how the same approach can equally well be applied to
multivariate regression and classification problems. In addition, a separate
chapter describes how the same approach can be potentially extended to han-
dle MDPs, and which additional considerations need to be made. Nonetheless,
it needs to be emphasised that the theoretical basis of applying LCS to MDPs
and POMDPs is still in its infancy, and further work on this topic is urgently
required. Still, due to their initial focus on POMDPs, these are the tasks that
will be considered when introducing LCS.

16 2 Background

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y

x

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9
 1

y

-60

-50

-40

-30

-20

-10

 0

value

(a) (b)

Fig. 2.2. Optimal policy and value function for a discretised version of the “pud-
dleworld” task [215]. The agent is located on a 1x1 square and can perform steps of
size 0.05 into either of four directions. Each step that the agent performs results in
a reward of -1, expect for actions that cause the agent to end up in a puddle, result-
ing in a reward of -20. The zero-reward absorbing goal state is in the upper right
corner of the square. Thus, the task is to reach this state in the smallest number of
steps while avoiding the puddle. The circles in (a) show the location of the puddle.
(b) illustrates the optimal value function for this task, which gives the maximum
expected sum of rewards for each state, and clearly shows the impact of the high
negative reward of the puddle. Knowing this value function allows constructing the
optimal policy, as given by the arrows in (a), by choosing the action in each state
that maximises the immediate reward and the value of the next state

2.2 Early Learning Classifier Systems

The primary problems that LCS were designed to handle are sequential deci-
sion tasks that can be defined by POMDPs. In LCS it is assumed that each
observed state is a composite element that is identified by the collection of
its features, such that the agent is able to associate the choice of action with
certain features of the state. This allows the agent to generalise over certain
features and possibly also over certain states when defining its choice of action
for each of the states. The aim of LCS is not only so find the optimal policy
for a given POMDP, but also to exploit the possible generalisations to find
the minimal solution representation.

At the time of their initial introduction the link between the tasks that
LCS aim at solving and POMDPs was not yet established. As a consequence,
there was neither a clear understanding that the regression task underlying
value function learning is an intermediate step that needs to be achieved
in order to efficiently learn optimal policies for given POMDPs, nor were
objective functions available that captured all facets of their aim. Rather,
their design was approached by the definition of sub-problems that each LCS

has to solve, and a description of the various LCS subsystems. Only over the
last 15 years the relation between LCS, MDPs and regression tasks became

2.2 Early Learning Classifier Systems 17

clearer, which resulted in exciting developments of new LCS and a more
transparent understanding of their structure. The chronological introduction
to LCS aims at capturing this paradigm shift.

2.2.1 Initial Idea

Although some of Holland’s earlier work [112, 113, 114] had already introduces
some ideas for LCS, a more specific framework was finally defined in [117].
The motivation was to escape the brittleness of popular expert systems of that
time by evolving a set of cooperative and competing rules in a market-inspired
economy. In particular, Holland addressed the following three problems [118]:

Parallelism and coordination. Complex situations are to be decomposed into
simpler building blocks, called rules, that handle this situation coopera-
tively. The problem is to provide for the interaction and coordination of
a large number of rules that are active simultaneously.

Credit assignment. To decide which rules in a rule-based system are responsi-
ble for its success, one needs to have a mechanism which accredits each rule
with its responsibility to that success. Such mechanism become particu-
larly complex when rules act collectively, simultaneously and sequentially.
Furthermore, complex problems do not allow for exhaustive search over all
possible rule combinations, and so this mechanism has to operate locally
rather than globally.

Rule discovery. Only in toy problems can one evaluate all possible rules ex-
haustively. Real-world problems require the search for better rules based
on current knowledge to generate plausible hypotheses about situations
that are currently poorly understood.

Holland addressed these questions by proposing a rule-based system that
can be viewed as a message processing system acting on a current set of
messages, either internal or generated by a set of detectors to the environment
and thus representing the environment’s observable state. Credit assignment
is handled by a market-like situation with bidders, suppliers and brokers. Rule
discovery facilitates an evolutionary computation-based process that discovers
and recombines building blocks of previously successful rules.

While the original framework is not replicate in full detail, the following
section gives an overview of the most common features among some of the
LCS implementations derived from this framework. A detailed overview and
comparison of different early LCS is given in Chap. 2 of Barry’s Ph.D. thesis
[11].

2.2.2 The General Framework

In LCS the agent’s behaviour is determined by a set of classifiers (Holland’s
rules), each consisting of at least one condition and an action. On sensing the

18 2 Background

Message List
[condition] → [action] [credit]

[11#....10] → [01..10] [10.5]

[000....01] → [00..00] [12.7]

[1#0....11] → [01..00] [6.1]
...

[0#1....00] → [00..10] [1.2]

Environment

Reward
[5.2]

State
[100....11]

Internal Messages

Action
[00..10]

Fig. 2.3. Schematic illustration of an LCS with a single message list. Its operation
is described in the main text

state of the environment though a detector, the sensor reading of the agent is
injected as a message into an internal message list, containing both internal
and external messages. Classifier conditions are then tested for matching any
of the messages on the message list. The matching classifiers are activated,
promoting their actions by putting their message on the message list. The
message on the list can be either interpreted to perform actions or to be
kept on the list to act as an input for the next cycle. If several actions are
promoted at the same time, a conflict resolution subsystem decides which
action to perform. Once this is completed, the cycle starts again by sensing
the new state of the environment. Figure 2.3 provides a schematic illustration
of the message flow in LCS with a single message list.

All of the messages are usually encoded using binary strings. Hence, to
allow matching of messages by classifier conditions, we are required to en-
code conditions and actions of classifiers as binary strings as well. A classifier
can generalise over several different input messages by introducing don’t care
symbols “#” into its condition that match both both 1’s and 0’s in the cor-
responding position of the input message. The condition “0#1”, for example,
matches inputs “001” and “011” equally. Similarly, actions of the same length
as classifier conditions can also contain the “#” symbol (in this case called
pass-through), which implies that specific bits of the matching message are
passed though to the actions, allowing a single classifier to perform different
actions depending on the input message. The latter feature of generalisation
in the classifier actions is much less frequently used than generalisation in the
classifier condition.

The description above covers how the agent decides which actions to per-
form (called the performance subsystem) but does not explain how such an
agent can react to external reward to optimise its behaviour in a given environ-

2.2 Early Learning Classifier Systems 19

ment. Generally, the behaviour is determined by the population of classifiers
and the conflict resolution subsystem. Hence, considering that the function-
ality of the conflict resolution subsystem is determined by properties of the
classifiers, learning can be achieved by evaluating the quality of each classifier
and aiming at a population that only contains classifiers of high quality. This
is achieved by a combination of the credit allocation subsystem and the rule
induction subsystem. The role of the former is to distribute externally received
reward to classifiers that promoted the actions responsible for receiving this
reward. The latter system creates new rules based on classifiers with high
credit to promote the ones that are assumed to be of good quality.

2.2.3 Interacting Subsystems

To summarise, LCS aim at maximising external reward by an interaction of
the following subsystems:

Performance Subsystem. This subsystem is responsible for reading the input
message, activating the classifiers based on their condition matching any
message in the message list, and performing actions that are promoted by
messages that are posted by the active classifiers.

Conflict Resolution Subsystem. If the classifiers promote several conflicting
actions, this subsystem decides for one action, based upon the quality
rating of the classifiers that promote these actions.

Credit Allocation Subsystem. On receiving external reward, this subsystem
decides how this reward is credited to the classifiers that promoted the
actions causing the reward to be given.

Rule Induction Subsystem. This subsystem creates new classifiers based on
current high-quality classifiers in the population. As the population size
is usually limited, introducing new classifiers into the population requires
the deletion of other classifiers from the population, which is an additional
task of this subsystem.

Although the exact functionality for each of the systems was given in the
original paper [117], further developments introduce changes to the opera-
tion of some subsystems, which is why only a general description is given
here. Section 2.2.5 discusses some properties of these LCS, and point out the
major problems that led the way to a new class of LCS that feature major
performance improvements.

2.2.4 The Genetic Algorithm in LCS

Holland initially introduced Learning Classifier Systems as an extension of
Genetic Algorithms to Machine Learning. GA’s are a class of algorithms that
are based on the principles of evolutionary biology, driven by mutation, se-
lection and recombination. In principle, a population of candidate solutions is

20 2 Background

evolved and, by allowing more reproductive opportunities to fitter solutions,
the whole population is pushed towards higher fitness. Although GA’s were
initially applied as function optimisers (for example [96]), Holland’s idea was
to adapt them to act as the search process in Machine Learning, giving rise
to LCS.

In an LCS, the GA operates as the core of the rule induction subsystem,
aiming at replicating classifiers of higher fitness to increase the quality of
the whole population. New classifiers are created by selecting classifiers of
high quality from the population, performing cross-over of their conditions
and actions and mutating their offspring. The offspring is then reintroduced
into the population, eventually causing deletion of lower quality classifiers due
to bounded population size. Together with the credit allocation subsystem,
which is responsible for rating the quality of the classifiers, this process was
intended to generate a set of classifiers that promote optimal behaviour in a
given environment.

2.2.5 The Problems of Early LCS

In most earlier classifier systems1 each classifier in the population had an
associated scalar strength. This strength was assigned by the credit allocation
subsystem and acted as the fitness and hence quality rating of the classifier.

On receiving external reward, this reward contributed to the strength of
all classifiers that promoted the action leading to that reward. Learning imme-
diate reward alone is not sufficient, as sequential decision tasks might require
a sequence of actions before any reward is received. Thus, reward needs to
be propagated back to all classifiers in the action sequence that caused this
reward to be received. The most popular scheme to perform this credit allo-
cation was the Implicit Bucket Brigade [115, 191, 192].

Even though this schema worked fairly well, performance in more com-
plicated tasks was still not satisfactory. According to Kovacs [136, 135], the
main problem was the use of classifier strength as its reproductive fitness. This
causes only high-reward classifiers to be maintained, and thus the information
about low-rewarding areas of the environment is lost, and with it the knowl-
edge about if the performed actions are indeed optimal. A related problem
is that if the credit assignment is discounted, that is, if classifiers that are
far away from the rewarding states receive less credit for causing this reward,
then such classifiers have a lower fitness and are more likely to be removed,
causing sub-optimal action selection in areas distant to rewarding states. Most
fundamentally, however, is the problem that if the classifier strength is not
shared between the classifiers, then environments with layered payoff will lead
to the emergence of classifiers that match a large number of states, despite
them not promoting the best action in all of those states. Examples for such
environments are the ones that describe sequential decision tasks. It needs to

1 See [11, Chap. 2] for a description and discussion of earlier LCS

2.3 The LCS Renaissance 21

be pointed out that Kovacs does not consider fitness sharing in his investiga-
tions, and that according to Bull and Hurst [35] optimal performance can be
achieved even with strength-based fitness as long as fitness sharing is used,
but “[...] suitable system parameters must be identified for a given problem”,
and how to do this remains open to further investigation.

It has also been shown by Forrest and Miller [89] that the stochastic selec-
tion of matching classifiers can lead to instabilities in any LCS that after each
performed action reduces the strength of all classifiers by a life tax and has a
small message list such that not all active classifiers can post their messages
at once. In addition to these problems, Smith [201] investigated the emergence
of parasitic classifiers that do not directly contribute to action selection but
gain from the successful performance of other classifiers in certain LCS types
with internal message lists.

Even though various taxation techniques, fitness sharing [35], and other
methods have been developed to overcome the problems of overly general and
parasitic classifiers, LCS still did not feature satisfactory performance in more
complex tasks. A more drastic change was required.

2.3 The LCS Renaissance

Before introducing XCS, Wilson developed ZCS [243] as a minimalist classifier
systems that aimed through its reductionist approach to provide a better
understanding of the underlying mechanisms. ZCS still uses classifier fitness
based on strength by using a version of the implicit bucket brigade for credit
assignment, but utilises fitness sharing to penalise overly general classifiers.

Only a year after having published ZCS, Wilson introduced his XCS [244]
that significantly influenced future LCS research. Its distinguishing feature is
that the fitness of a classifier is not its strength anymore, but its accuracy in
predicting the expected reward2. Consequently, XCS does maintain informa-
tion about low-rewarding areas of the environment and penalises classifiers
that match overly large areas, as their reward prediction becomes inaccu-
rate. By using a niche GA that restricts the reproduction of classifiers to the
currently observed state and promote the performed action, and removing
classifiers independent of their matching, XCS prefers classifiers that match
more states as long as they are still accurate, thus aiming towards optimally
general classifiers3. More information about Wilson’s motivation for the de-

2 Using measures different than strength for fitness was already suggested before
but was never implemented in the form of pure accuracy. Even in the first LCS

paper, Holland suggested that fitness should be based not only on the reward but
also on the consistency of the prediction [114], which was also implemented [119].
Later, however, Holland focused purely on strength-based fitness [244]. A further
LCS that uses some accuracy-like fitness measure is Booker’s GOFER-1 [22].

3 Wilson and others calls optimally general classifiers maximally general [244],
which could lead to the misinterpretation that these classifiers match all states.

22 2 Background

velopment, and an in-depth description of its functionality can be found in
Kovacs’ Ph.D. thesis [136]. A short introduction to XCS from the model-based
perspective is given in App. B.

After its introduction, XCS was frequently modified and extended, and its
theoretical properties and exact working analysed. This makes it, at the time
of this writing, the most used and best analysed LCS available. These modifi-
cations also enhanced the intuitive understanding of the role of the classifiers
within the system, and as the proposed LCS model borrows much of its de-
sign and intuition from XCS, the following sections give further background
on the role of a classifier in XCS and its extensions. In the following, only
single-step tasks, where a reward is received after each action, are considered.
The detailed description of multi-step tasks is postponed to Chap. 9.

2.3.1 Computing the Prediction

Initially, each classifier in XCS only provided a single prediction for all states
that it matches, independent of the nature of these states [244, 245, 246].
In XCSF [247, 248], this was extended such that each classifier represents a
straight line and thus is able to vary its prediction over the states that it
matches, based on the numerical value of the state. This concept was soon
picked up by other researchers and was quickly extended to higher-order poly-
nomials [144, 145, 146], to the use of neural networks to compute the prediction
[36, 179, 180, 159], and even Support Vector Machines (SVMs) [160].

What became clear was that each classifier approximates the function that
is formed by a mapping from the value of the states to their associated payoffs,
over the states that it matches [248]. In other words, each classifier provides a
localised model of that function, where the localisation is determined by the
condition and action of the classifier — even in the initial XCS, where the
model is provided by a simple averaging over the payoff of all matched states
[79]. This concept is illustrated in Fig. 2.4.

2.3.2 Localisation and Representation

Similar progress was made in how the condition of a classifier can be repre-
sented: while XCS initially used ternary strings for that task [244, 245], the
representational repertoire was soon increased to real-numbered interval rep-
resentations to handle real-valued states [246], as a prerequisite to function
approximation with computed predictions [247, 248]. Amongst other repre-
sentations used with XCS(F) to determine the matching of a classifier are
now hyper-ellipsoids [42, 42], neural networks [39], S-expressions [147], and
convex hulls [150]. Fuzzy classifier representations [61] additionally introduce
matching by degree which — despite a different approach to their design –
makes them very similar to the model that is presented here.

The possibility of using arbitrary representations in XCS(F) to determine
matching of a classifier was highlighted in [248]. In fact, classifiers that model

2.3 The LCS Renaissance 23

the payoff for a particular set of states and a single action can conceptually
be seen as perform matching in the space of states and actions, as they only
model the payoff if their condition matches the state, and their action is the
one that is performed. Similarly, classifiers without actions, such as the ones
used for function approximation [247, 248], perform matching in the space of
states alone.

2.3.3 Classifiers as Localised Maps from Input to Output

Input Space

Output
Prediction

c2

c1 c3

Fig. 2.4. Classifiers as localised maps from the input space into the output space.
The illustration shows three classifiers c1, c2, and c3 that match different areas of
the input space. Their location in the input space is determined by the classifier’s
condition, which, in this example, is given by intervals on the coordinates of the
input space. Each classifier provides an input-dependent prediction of the output.
In this illustration, the classifiers form their prediction through a linear combination
of the input space coordinates, thus forming planes in the input/output space

To summarise, classifiers in XCS are localised models of the function that
maps the value of the states to their associated payoffs. The localisation is
determined by the condition/action pair that specifies which states and which
actions of the environment are matched.

When LCS are applied to regression tasks, the standard machine learning
terminology is to call the state/action pair the input and the associated payoff
the output . Thus, the localised model of a classifier provides a mapping from
the input to the output, and its localisation is determined by the input alone,
as shown in Fig. 2.4.

Sequential decision tasks can be mapped onto the same concept by spec-
ifying an input by the state/action pair, and its associated output by the
payoff. Similarly, in classification tasks the input is given by the attributes,

24 2 Background

and the output is the class label, as used in UCS [164], which is a variant of
XCS specialised for classification tasks. Therefore, the concept of classifiers
providing a localised model that maps inputs to outputs generalises over all
LCS tasks, which will be exploited when developing the LCS model.

In the light of the above, calling the localised models “classifiers” is a
misnomer, as they are not necessarily classification models. In fact, their use
for classification has only emerged recently, and before that they have been
mostly represented by regression models. However, to make this work easily
accessible, the LCS jargon of calling these models “classifiers” will be main-
tained. The reader, however, is urged to keep in mind that this term is not
related to classification in the sense discussed in this book.

2.3.4 Recovering the Global Prediction

Several classifiers can match the same input but each might provide a different
predictions for its output. To get a single output prediction for each input,
the classifiers’ output predictions need to be combined, and in XCS and all its
variants this is done by a weighted average of these predictions, with weights
proportional to the fitness of the associated classifiers [244, 245].

The component responsible for combining the classifier predictions in XCS
and LCS has mostly been ignored, until is was shown that combining the
classifier predictions in proportion to the inverse variance of the classifier
models gives a lower prediction error than when using the inverse fitness
[84]. At the same time, Brown, Kovacs and Marshall have demonstrated that
the same component can be improved in UCS by borrowing concepts from
ensemble learning [30].

Even though rarely discussed, the necessity of combining the classifier
predictions is an important component of the developed model, as will become
apparent in later chapters. This is a particular property of XCS-like models
that treat their classifiers in some sense independently and thus require their
combination at a later stage. For other LCS model types (for example ones
that resemble ZCS), this might not be the case, as will be discussed in the
following chapter.

2.3.5 Michigan-style vs. Pittsburgh-style LCS

What has been ignored so far is that there are in fact two distinct types of
LCS: Michigan-style and Pittsburgh-style LCS. In Michigan-style LCS all
classifiers within a population cooperate to collectively provide a solution.
Examples are the first LCS, Cognitive System 1 (CS-1) [119], SCS [96], ZCS
[243] and XCS [244]. In the less common Pittsburgh-style LCS several sets of
classifiers compete against each other to provide a solution with a single fitness
value for the set, with examples for such systems given by LS-1 [203, 204, 205],
GALE [154] and CCS [156, 157].

2.4 Existing Theory 25

Even though “Michigan and Pittsburgh systems are really quite different
approaches to learning [. . .]” [136], they share the common goal of finding sets
of classifiers that provide a solution to the task at hand. Consequently, it is
asserted that their classifier populations can be represented by the same LCS

model, but their way of improving that model is different.
In developing the LCS model we do not distinguish between the two styles,

not even when defining the optimal set of classifiers in Chap. 7, in order to
emphasise that they are just two different implementations that have the
same goal. The point at which this distinction has to be made is as soon as
implementation details will be discussed in Chap. 8.

2.4 Existing Theory

As with the creation of a model for LCS the aim is to also advance the theoret-
ical understanding of LCS in general, let us review some previous theoretical
work in LCS. Starting with theoretical approaches that consider all LCS sub-
systems at once, the focus subsequently shifts to work that concentrates on
the GA in LCS, followed by discussing approaches that have analysed the
function approximation and RL side of LCS.

2.4.1 The Holistic View

The first and currently only LCS model that allows studying the interaction
with the environment and generalisation in the same model was developed by
Holland just after the introduction of the LCS framework [116].

He describes the set of states that the system can take by combining all
possible environmental states and internal states of the LCS, and defines a
transition matrix that describes the Markov chain probabilities of transiting
from one system state to another. Thus, changes in the environment and the
LCS are tracked simultaneously.

Environmental similarities are exploited in the model by partitioning the
Markov matrix into equivalence classes to get a sub-Markov matrix that col-
lapses similar states into one. From this, reset times, upper bounds on ex-
pected experiment repetition times and other properties can be derived.

The model was created before the emergence of modern RL4 and so cannot
refer to its theoretical advances, and was not updated to reflect those. Addi-
tionally, the inclusion of the LCS state into the model causes the number of
states to be uncountable due to the real-valued parametrisation of LCS. Thus,
it is unclear if the model will provide significant advances in the understand-
ing of LCS. Rather, one should rely on RL theory to study the performance
of LCS in sequential decision tasks, as discussed in Chap. 9.

4 “Emergence of modern RL” refers to Sutton’s development of TD [214] and
Watkin’s Q-Learning [235].

26 2 Background

2.4.2 Approaches from the Genetic Algorithm Side

As many researchers consider LCS as Genetic-based Machine Learners (GBML),
they are most frequently analysed from the GA perspective. Particularly when
considering single-step problems, when each action is immediately mediated
by a reward, the task is a regression task and does not require an RL compo-
nent. Due to its similarity to the LCS model that will be introduced, we will
mainly consider the analyses performed on XCS. Note, however, that none
of these analyses is of direct importance to the work presented here, as they
study a single algorithm that performs a task which is here only define by its
aim, rather than by how it is performed. Nonetheless, the analysis of XCS has
given valuable insights into the set of classifiers that XCS aims at evolving –
a topic that is reconsidered in Sect. 7.1.1.

Single-Step Tasks

Single-step problems are essentially regression tasks where XCS aims at learn-
ing a complete mapping from the input space to the output space. In XCS,
such problems are handled by an RL method that for these tasks reduces to a
gradient-based supervised learning approach, as will be shown in Sects. 5.3.3
and 5.3.4.

Most of the analysis of XCS in single-step tasks has been performed by
Butz et al. in an ongoing effort [52, 54, 45, 57, 50, 47, 51, 59] restricted to
binary string representations, and using a what they call facet-wise approach.
Their approach is to look at single genetic operators, analyse their functional-
ity and then assemble a bigger picture from the operators’ interaction, some-
times taking simplifying assumptions to make the analysis tractable.

They analyse the various evolutionary pressures in XCS, showing that
the set pressure pushes towards less specific classifiers [54], as already con-
jectured in Wilson’s Generalization Hypothesis [244]. Mutation is shown to
push towards 50% or 66% specificity, and no quantitative values are derived
for the fitness and subsumption pressure. Overall, it is qualitatively shown
that XCS pushes towards optimally general classifiers, but the quantitative
results should be treated with care due to their reliance of several significant
assumptions.

In a subsequent series of work [52, 45, 47, 59], Butz et al. derive various
time and population bounds to analyse how XCS scales with the size of the
input and the problem complexity, where the latter expresses how strongly the
values of various input bits depend on each other. Combining these bounds,
they show that the computational complexity of XCS grows linearly with
respect to the input space size and exponentially with the problem complex-
ity. Thus they state that XCS is a Probably Approximately Correct (PAC)5

5 A PAC learner is guaranteed to have a low generalisation error with a high proba-
bility. Thus, it is probably approximately correct. See [130] for more information.

2.4 Existing Theory 27

learner [59]. While this claim might be correct, the work that is presented
is certainly not sufficient to support it – in particular due to the simplifying
assumptions made to derive these bounds. More work is required to formally
support this claim.

In addition to analysing the genetic pressures and deriving various bounds,
a wide range of further work has been performed, like the empirical and the-
oretical analysis of various selection policies in XCS (for example [57, 50, 86,
185]), or improving the XCS and UCS performance of classification problems
with strong class imbalance [182, 183, 184]. None of these studies is directly
related to the work presented here and therefore will not be discussed in detail.

Multi-Step Tasks

Very little work been has performed to analyse the GA in multi-step problems,
where a sequence of action rather than a single action lead to the reward that
is to be maximised. The only relevant study might be the one by Bull [32],
where he has firstly shown in single-step tasks that overly general classifiers are
supported in strength-based LCS but not in accuracy-based LCS. The model
is then extended to a 2-step task, showing that “effective selection pressure
can vary over time, possibly dramatically, until an equilibrium is reached and
the constituency of the co-evolving match sets stop changing” [32]. The model
even shows a pressure towards lower payoff rules in some cases, although this
might be an artifact of the model.

2.4.3 Approaches from the Function Approximation Side

XCS was, for the first time, used for function approximation in XCSF [247] by
allowing classifiers to compute their predictions from the values of the inputs.
It has been shown that due to the use of gradient descent, such classifiers
might only converge slowly to the correct model [145, 146], and a training
algorithms based on Recursive Least Squares (RLS) [108], and the Kalman
filter [79] were proposed to improve their speed of convergence.

How classifiers are combined to form the global prediction is essential to
function approximation but has been mostly ignored since the initial intro-
duction of XCS. Only recently, new light has been shed on this component
[84, 30], but there is certainly still room for advancing its understanding.

2.4.4 Approaches from the Reinforcement Learning Side

Again concentrating on XCS, its exact approach to performing reinforcement
learning has been discussed by Lanzi [141] and Butz, Goldberg and Lanzi
[46]. In the latter study, Butz et al. show the parallels between XCS and Q-
Learning and aim at adding gradient descent to XCS’s update equations. This
modification is additionally published in [48], and was later analysed many

28 2 Background

times [230, 231, 145, 80, 143, 142], but with mixed results. Due to the current
controversy about this topic, its detailed discussion to Sect. 9.3.6.

Another study that is directly relevant to RL is the limits of XCS in
learning long sequences of actions [12, 13]. As this limitation emerges from
the type of classifier set model that XCS aims at, it is also relevant to this
work, and thus will be discussed in more detail in Sect. 9.5.1.

There has been no work on the stability of XCS when used for sequential
decision tasks, even though such stability is not guaranteed (for example,
[26]). Wada et al. claim in [230, 231] that XCS does not perform Q-Learning
correctly – a claim that is question in Sect. 9.3.6 – and consequently introduce
a modification of ZCS in [231] that makes it equivalent to Q-Learning with
linear function approximation. They demonstrate its instability in [229], and
present a stable variant in [231]. As described in Sect. 4.6, their LCS model is
not compatible with XCS, as they do not train their classifiers independently.
For an XCS-like model structure, stability considerations are discussed in
Sect. 9.4.

2.5 Discussion and Conclusion

LCS have come a long way since their initial introduction, and still continue
to be improved. From this historical overview of LCS and in particular XCS
we can see that LCS are traditionally approached algorithmically and also
analysed as such. Even in the first LCS, CS-1, most of the emphasis is put on
how to approach the problem, and little on the problem itself. Given that many
non-LCS approaches handle the same problem class (for example, [18, 216]),
an algorithmic description of LCS emphasises the features that distinguishes
LCS from non-LCS methods. But even with such statements one needs to
be careful: considering the series of 11 short essays under the title “What is a
Learning Classifier System?” [118] it becomes clear that there is no common
agreement about what defines an LCS.

Based to these essays, Kovacs discusses in [137] if LCS should be seen
as GA’s or algorithms that perform RL. He concludes that while strength-
based LCS are more similar to GA’s, accuracy-based LCS shift their focus
more towards RL. Thus, there is no universal concept that applies to all
LCS, particularly when considering that there exist LCS that cannot handle
sequential decision tasks (for example, UCS [164]), and others that do not
have a GA (for example, MACS [93, 90]).

The extensive GA-oriented analysis in recent years has shed some light
into which problems XCS can handle and where it might fail, and how to set
some of its extensive set of system parameters. Nonetheless, questions still
emerge if accuracy-based fitness is indeed better than strength-based fitness
in all situations, or if we even need some definition of fitness at all [23]?
Furthermore, the correct approach to reinforcement learning in LCS is still
not completely clear (see Sect. 9.3.6). In any case, what should be emphasised

2.5 Discussion and Conclusion 29

is that both the GA and RL in LCS are just methods to reach some goal,
and without a clear definition of this goal it is impossible to determine if any
method is ever able to reach it.

This is why the promoted approach for the analysis of LCS differs from
looking further at existing algorithms and figuring out what they actually do
and how they might be improved. Rather, as already alluded to in the previous
chapter, it might be better to take a step back and concentrate firstly on the
problem itself before considering an approach to finding its solution. This
requires a clear definition of the problems that are to be solved, followed by
the formulation a model that determines the assumptions that are made about
the problem structure. To ensure that the resulting method can be considered
as an LCS, the design of this model is strongly inspired by the structure of
LCS, and in particular XCS.

Having a problem and an explicit model definition allows for the applica-
tion of standard machine learning methods to train this model. The model
in combination with its training defines the method, and as we will see, the
resulting algorithms are indeed close to the ones of XCS, but with all the
advantages that were already described in the previous chapter. Additionally,
we do not need to explicitly handle questions about possible fitness definitions
or the correctness of the reinforcement learning method used, as they emerge
naturally through deriving training methods for the model. From that per-
spective, the proposed approach handles many of the current issues in LCS

more gracefully and holistically than previous attempts.

3

A Learning Classifier Systems Model

Specifying the model that is formed by a set of classifiers is central to the
model-based approach. On one hand it explicitly defines the assumptions that
are made about the problem that we want to solve, and on the other hand it
determines the training methods that can be used to provide a solution. This
chapter gives a conceptual overview over the LCS model, which is turned into
a probabilistic formulation in the next chapter.

As specified in Chap. 1, the tasks that LCS are commonly applied to
are regression tasks, classification tasks, and sequential decision tasks. The
underlying theme of providing solutions to these tasks is to build a model
that maps a set of observed inputs to their associated outputs. Taking the
generative view, we assume that the observed input/output pairs are the result
of a possibly stochastic process that generates an output for each associated
input. Thus, the role of the model is to provide a good representation of the
data-generating process.

As the data-generating process is not directly accessible, the number of
available observations is generally finite, and the observations themselves pos-
sibly noisy, the process properties need to be induced from these finite obser-
vations. Therefore, we are required to make assumptions about the nature of
this process which are expressed through the model that is assumed.

Staying close to the LCS philosophy, this model is given by a set of lo-
calised models that are combined to a global model. In LCS terms the lo-
calised models are the classifiers with their localisation being determined by
which inputs they match, and the global model is determined by how the
classifier predictions are combined to provide a global prediction. Acquiring
such a model structure has several consequences on how it is trained, the most
significant being that it is conceptually separable into a two-step procedure:
firstly, we want to find a good number of classifiers and their localisation, and
secondly we want to train this set of classifiers to be a seemingly good rep-
resentation of the data-generation process. Both steps are closely interlinked
and need to be dealt with in combination.

32 3 A Learning Classifier Systems Model

A more detailed definition of the tasks and the general concept of mod-
elling the data-generating process is given in Sect. 3.1, after which Sect. 3.2
introduces the model that describes a set of classifiers as a member of the class
of parametric models. This includes an introduction to parametric models in
Sect. 3.2.1, together with a more detailed definition of the localised classifier
models and the global classifier set model in Sect. 3.2.3 and 3.2.4. After dis-
cussing how the model structure influences its training and how the model
itself relates to Holland’s initial LCS idea in Sects. 3.2.6 and 3.2.7, a brief
overview is given of how the concepts introduced in this chapter propagate
through the chapters to follow.

3.1 Task Definitions

In previous sections the different problem classes that LCS are applied to
have already been described informally. Here, they are formalised to serve as
the basis for further development. We differentiate between regression tasks,
classification tasks, and sequential decision tasks.

Let us assume that we have a finite set of observations generated by noisy
measurements of a stochastic process. All tasks have at their core the forma-
tion of a model that describes a hypothesis for the data-generating process.
The process maps an input space X into an output space Y, and so each obser-
vation (x, y) of that process is formed by an input x ∈ X that occurred and the
associated measured output y ∈ Y of the process in reaction to the input. The
set of all inputs X = {x1, x2, . . . } and associated outputs Y = {y1, y2, . . . } is
called the training set or data D = {X,Y}.

A model of that process provides a hypothesis for the mapping X → Y,
induced by the available data. Hence, given a new input x, the model can be
used to predict the corresponding output y that the process is expected to
generate. Additionally, an inspection of the hypothesis structure can reveal
regularities within the data. In sequential decision tasks the model represents
the structure of the task and is employed as the basis of decision-making.

Before going into the the similarities and differences between the regres-
sion, classification and sequential decision tasks, let us firstly consider the
difficulty of forming good hypotheses about the nature of the data-generating
process from only a finite number of observations. For this purpose we assume
batch learning , that is, the whole training set with N observations of the form
(xn, yn) is available at once. In a later section, this approach is contrasted
with incremental learning , where the model is updated incrementally with
each observation.

3.1.1 Expected Risk vs. Empirical Risk

In order to model a data-generating process, one needs to be able to express
this process by a smooth stationary function f : X → Y that generates the

3.1 Task Definitions 33

observation (x, y) by y = f(x) + ǫ, where ǫ is a zero-mean random variable.
Thus, it needs to be given by a function such that the same expected output is
generated for the same input. That is, given two inputs x, x′ such that x = x′,
the expected output of the process needs to be the same for both inputs. Were
this not the case, then one would be unable to detect any regularities within
the process and so it cannot be modelled in any meaningful way.

Smoothness of the function is required to express that the process gener-
ates similar outputs for similar inputs. That is, given two inputs x, x′ that
are close in X , their associated outputs y, y′ on average need to be close in Y.
This property is required in order to make predictions: if it did not hold, then
we could not generalise over the training data, as relations between inputs
do not transfer to relations between outputs, and thus we would be unable
to predict the output for an input that is not in the training set. There are
several ways of ensuring the smoothness of a function, such as by limiting its
energy of high frequencies in the frequency domain [95]. Here, smoothness is
dealt with from an intuitive perspective rather than in any formal way.

As discussed before, the process may be stochastic and the measurements
of the output may be noisy. This stochasticity is modelled by the random
variable ǫ, which has zero mean, such that for an observation (x, y) we have
E(y) = f(x). The distribution of ǫ is determined by the process stochasticity
and the measurement noise.

With this formulation, a model with structure M has to provide a hy-
pothesis of the form f̂M : X → Y. In order to be a good model, f̂M has to
be close to f . To be more specific, let L : Y × Y → R

+ be a loss function
that describes a distance metric in Y, that is L(y, y′) > 0 for all y 6= y′, and

L(y, y′) = 0 otherwise. To get a hypothesis f̂M close to f we want to minimise
the expected risk

∫ X

L(f(x), f̂M(x))dp(x), (3.1)

where p(x) is the probability density of having input x. In other words, our
aim is to minimise the distance between the output of the data-generating
process and our model of it, for each input x weighted by the probability of
observing it.

The expected risk cannot be minimised directly, as f is only accessible by
a finite set of observations. Thus, when constructing the model one needs to
rely on an approximation of the expected risk, called the empirical risk and
defined as

1

N

N
∑

n=1

L(yn, f̂M(xn)), (3.2)

which is the average loss of the model over all available observations. Depend-
ing on the definition of the loss function, minimising the empirical risk can
result in least squares learning or the principle of maximum likelihood [225].
By the law of large numbers, the empirical risk converges to the expected
risk almost surely with the number of observations tending to infinity, but for

34 3 A Learning Classifier Systems Model

a small set of observations the two measures might be quite different. How
to minimise the expected risk based on the empirical risk forms the basis of
statistical learning theory, for which Vapnik has written a good introduction
with slightly different definitions [225].

We could simply proceed by minimising the empirical risk. That this ap-
proach will not lead to an adequate result is shown by the following obser-
vation: the model that minimises the empirical risk is the training set itself.
However, assuming noisy measurements, the data is almost certainly not com-
pletely correct. Hence, we want to find a model that represents the general
pattern in the training data but does not model its noise. The field that deals
with this issue is known as model selection. Learning a model such that it
perfectly fits the training set but does not provide a good representation of
f is known as overfitting . The opposite, that is, learning a model where the
structural bias of the model dominates over the information included from
the training set, is called underfitting .

While in LCS several heuristics have been applied to deal with this issue,
it has never been characterised explicitly. In this and the following chapters
the aim is considered to be the minimisation of the empirical risk. In Chap. 7,
we return to the topic of model selection, and show how it can be handled
with respect to LCS it in a principled manner.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

Observed f(x)
Real f(x)
1st order

2nd order
4th order

10th order

 0

 0.005

 0.01

 0.015

 0.02

 0 1 2 3 4 5 6 7 8 9 10

R
is

k

Degree of Polynomial

Empirical Risk
Expected Risk

(a) (b)

Fig. 3.1. Comparing the fit of polynomials of various degrees to 100 noisy ob-
servations of a 2nd-order polynomial. (a) shows the data-generating function, the
available observations, and the least-squares fit of polynomials of degree 1, 2, 4, and
10. (b) shows how the expected and empirical risk changes with the degree of the
polynomial. More information is given in Example 3.1

Example 3.1 (Expected and Empirical Risk of Fitting Polynomials of Various
Degree). Consider the data-generating function f(x) = 1/3−x/2 + x2, whose
observations, taken over the range x ∈ [0, 1], are perturbed by Gaussian noise
with a standard deviation of 0.1. Assuming no knowledge of f(x), and given

3.1 Task Definitions 35

only its observations, let us hypothesise that the data was indeed generated
by a polynomial of some degree d, as described by the model

f̂d(x;θ) =
d

∑

n=0

θnxn, (3.3)

where θ ∈ R
d+1 is the parameter vector of that model. The aim is to find the

degree d that best describes the given observations.
The true function f(x) and the given observations are shown in Fig. 3.1(a),

together with fitted polynomials of degree 1, 2, 4, and 10, using the loss func-
tion L(y, y′) = (y′ − y)2. The 1st-degree polynomial f̂1 (that is, the straight
line) clearly underfits the data. This is confirmed by its high expected and
empirical risk when compared to other models, as shown in Fig. 3.1(b). On

the other hand, the 2nd-degree polynomial f̂2, that conforms to the true data-
generating model, represents the data well and is close to f(x) (but not equiv-
alent, due to the finite number of observations). Still, having no knowledge
of f(x) one has no reason to stop at d = 2, particularly when observing in
Fig. 3.1(b) that increasing d reduces the empirical risk further. The expected
risk, however, rises, which indicates that the models start to overfit the data
by modelling its noise. This is clearly visible for the fit of f̂10 to the data in
Fig. 3.1(a), which is closer to the observations than f̂2, but further away from
f .

The trend of the expected and the empirical risk in Fig. 3.1(b) is a common
one: an increase of the model complexity (which is in our case represented
by d) generally causes a decrease in the empirical risk. The expected risk,
however, only decreases up to a certain model complexity, from which on it
starts to increase due to the model overfitting the data. Thus, the aim is to
identify the model that minimises the expected risk, which is complicated by
the fact that this risk measure is usually not directly accessible. One needs
to resort to using the empirical risk in combination with some measure of the
complexity of the model, and finding such a measure makes finding the best
model a non-trivial problem.

3.1.2 Regression

Both regression and classification tasks aim at finding a hypothesis for the
data-generating process such that some risk measure is minimised, but differ
in the nature of the input and output space. A regression task is charac-
terised by a multidimensional real-valued input space X = R

DX with DX

dimensions and a multidimensional real-valued output space Y = R
DY with

DY dimensions. Thus, the inputs are column vectors x = (x1, . . . , xDX
)T and

the corresponding outputs are column vectors y = (y1, . . . , yDY
)T . In the case

of batch learning it is assumed that N observations (xn,yn) are available in
the form of the input matrix X and output matrix Y,

36 3 A Learning Classifier Systems Model

X ≡







−xT
1 −
...

−xT
N−






, Y ≡







−yT
1 −
...

−yT
N−






. (3.4)

The loss function is commonly the L2 norm, also known as the Euclidean

distance, and is defined by L2(y,y′) ≡ ‖y,y′‖2 =
(
∑

i(y
′
i − yi)

2
)1/2

. Hence,
the loss increases quadratically in all dimensions with the distance from the
desired value. Alternatively, the L1 norm, also known as the absolute distance,
and defined as L1(y,y′) ≡ ‖y,y′‖1 =

∑

i |y′
i − yi|, can be used. The L1

norm has the advantage that it only increases linearly with distance and is
therefore more resilient to outliers. Using the L2 norm, on the other hand,
makes analytical solutions easier.

All LCS developed so far only handle univariate regression, which is char-
acterised by a 1-dimensional output space, that is Y = R. Consequently, the
output vectors y collapse to scalars y ∈ R and the output matrix Y becomes
a column vector y ∈ R

N . For now we will also follow this convention, but will
return to multivariate regression with DY > 1 in Chap. 7.

3.1.3 Classification

The task of classification is characterised by an input space that is mapped into
a subset of a multidimensional real-valued space X ⊆ R

DX of DX dimensions,
and an output space Y that is a finite set of labels, mapped into a subset of
the natural numbers Y ⊂ N. Hence, the inputs are again real-valued column
vectors x = (x1, . . . , xDX

)T , and the outputs are natural numbers y. The
elements of the input vectors are commonly referred to as attributes, and the
outputs are called the class labels. An alternative formulation is for the output
space to be Y = {0, 1}DY , where DY is the number of classes. Rather than
using natural numbers to represent the correct class label, the output is given
by a vector y of 0s and a single 1. That 1 indicates which class the vector
represents, with y = (1, 0, 0, . . .)T standing for class 1, y = (0, 1, 0, . . .)T

representing class 2, and so on.
XCS approaches classification tasks by modelling them as regression tasks:

each input vector x is augmented by its corresponding class label y, given by a
natural number, to get the new input vector x′ = (−xT−, y)T that is mapped
into some positive scalar that we can without loss of generality assume to be 1.
Furthermore, each input vector in the training set is additionally augmented
by any other valid class label except for the correct one (that is, as given by
y) and maps into 0. Hence, the new input space becomes X ′ ⊂ R

DX ×N, and
the output space becomes Y ′ = [0, 1]. Consequently, the correct class for a
new input x can be predicted by augmenting the input by each possible class
label and choosing the class for which the prediction of the model is closest
to 1.

This procedure is not particularly efficient as it needlessly increases the size
of the input space X ′ and subsequently also complicates the task of finding

3.1 Task Definitions 37

the best localisation of the classifiers in that space. UCS [164] is an XCS-
derivative specialised on classification that handles this tasks more efficiently
but still operates on the label-augmented input space X ′. A more efficient
alternative formulation that does not require this augmentation is discussed
in Sect. 4.2.2.

3.1.4 Sequential Decision

A sequential decision task, formulated as an MDP, requires an agent to max-
imise the long-term reward it receives through the interaction with an envi-
ronment. At any time, the environment is in a certain state within the state
space X . A state transition occurs when the agent performs an action from
the action set A. Each of these state transitions is mediated by a scalar re-
ward. The aim of the agent is to find a policy, which is a mapping X → A
that determines the action in each state, that maximises the reward in the
long run.

While it is possible to search the space of possible policies directly, a more
efficient approach is to compute the value function X × A → R that de-
termines for each state which long-term reward to expect when performing
a certain action. If a model of the state transitions and rewards is known,
Dynamic Programming (DP) can be used to compute this function. Rein-
forcement Learning (RL), on the other hand, deals with finding the value
function if no such model is available. As the latter is commonly the case,
Reinforcement Learning is also the approach employed by LCS.

There are two approaches to RL: either one learns a model of the transi-
tions and rewards by observations and then uses dynamic programming to find
the value function, called model-based RL, or one estimate the value function
directly while interacting with the environment, called model-free RL.

In the model-based case, a model of the state transitions and rewards needs
to be derived from the given observations, both of which are regression tasks.
If the policy is to be computed while sampling the environment, the model
needs to be updated incrementally, which requires an incremental learner.

In the model-free case, the function to model is the estimate of the value
function, again leading to a regression task that needs to be handled incremen-
tally. Additionally, the value function estimate is also updated incrementally,
and as it is the data-generating process, this process is slowly changing. As a
result, there is a dynamic interaction between the RL algorithm that updates
the value function estimate and the incremental regression learner that models
it, which is not in all cases stable and needs special consideration [26]. These
are additional difficulties that need to be taken into account when performing
model-free RL.

Clearly, although the sequential decision task was the prime motivator for
LCS, it is also the most complex to tackle. Therefore, we deal with standard
regression and classification tasks first, and come back to sequential decision
tasks in Chap. 9. Even then it will be only dealt with from the theoretical

38 3 A Learning Classifier Systems Model

perspective of stability, as it requires an incremental learning procedure that
will not be developed here.

3.1.5 Batch vs. Incremental Learning

In batch learning it is assumed that the whole training set is available at
once, and that the order of the observations in that set is irrelevant. Thus,
the model can be trained with all data at once and in any order.

Incremental learning methods differ from batch learning in that the model
is updated with each additional observation separately, and as such can handle
observations that arrive sequentially as a stream. Revisiting the assumption
of Sect. 3.1.1, that the data-generating process f is expressible by a function,
we can differentiate between two cases:

f is stationary. If the data-generating process does not change with time and
the full training set is available at once, any incremental learning method is
either only an incremental implementation of an equivalent batch learning
algorithm, or an approximation to it.

f is non-stationary. Learning a model of a non-stationary generating process
is only possible if the process is only slowly varying, that is, if it changes
slowly with respect to the frequency that it is observed. Hence, it is rea-
sonable to assume stationarity at least in a limited time-frame. It is mod-
elled by putting more weight on later observations, as earlier observations
give general information about the process but might reflect it in an out-
dated state. Such recency-weighting of the observations is very naturally
achieved within incremental learning by assigning the current model a
lower weight than new observations.

The advantage of incremental learning methods over batch learning meth-
ods are that the former can handle observations that arrive sequentially as a
stream, and that they more naturally handle non-stationary processes, even
though the second feature can also be simulated by batch learning methods
by weighting the different observations according to their temporal sequence1.
On the downside, when compared to batch learning, incremental learners are
generally less transparent in what exactly they learn, and dynamically more
complex.

With respect to the different tasks, incremental learners are particularly
suited to model-free RL, where the value function estimate is learned incre-
mentally and therefore changes slowly. Given that all data is available at once,
regression and classification tasks are best handled by batch learners.

From the theoretical perspective, incremental learners can be derived from
a batch learner that is applied to solve the same task. This has the advantage

1 Naturally, in the case of weighting observations according to their temporal se-
quence, the ordering of these observations is – in contrast to what was stated
previously in the batch learning context – of significance

3.1 Task Definitions 39

of preserving the transparency of the batch learning method and acquiring
the flexibility of the incremental method. This principle is illustrated with the
following example.

Example 3.2 (Relating Batch and Incremental Learning). We want to estimate
the probability of a tossed coin showing head, without any initial bias about
its fairness. We perform N experiments with no input X = ∅ and outputs
Y = {0, 1}, where 0 and 1 stand for tail and head respectively. Adopting a
frequentist approach, the probability of tossing a coin resulting in head can
be estimated by

pN (H) =
1

N

N
∑

n=1

yn, (3.5)

where pN (H) stands for the estimated probability of head after N experi-
ments. This batch learning approach can be easily turned into an incremental
approach by

pN (H) =
1

N
yN +

1

N

N−1
∑

n=1

yn = pN−1(H) +
1

N
(yN − pN−1(H)), (3.6)

starting with p1(H) = y1. Hence, to update the model pN−1(H) with the new
observation yN , one only needs to maintain the number N of experiments so
far. Comparing (3.5) and (3.6) it is apparent that, whilst the incremental ap-
proach yields the same results as the batch approach, it is far less transparent
in what it is actually calculating.

Let us now assume that the coin changes its properties slowly over time,
and we therefore trust recent observations more. This is achieved by modifying
the incremental update to

pN (H) = pN−1(H) + γ(yN − pN−1(H)), (3.7)

where 0 < γ ≤ 1 is the recency factor that determines the influence of past
observations to the current estimate. Recursive substitution of pn(H) results
in the batch learning equation

pN (H) = (1 − γ)Np0(H) +
N

∑

n=1

γ(1 − γ)N−nyn. (3.8)

Inspecting this equation reveals that observations n experiments back in time
are weighted by γ(1 − γ)n. Additionally, it can be seen that an initial bias
p0(H) is introduced that decays exponentially with the number of available
observations. Again, the batch learning formulation has led to greater insight
and transparency.

40 3 A Learning Classifier Systems Model

Are LCS Batch Learners or Incremental Learners?

LCS are often considered to be incremental learners. While they are usually
implemented as such, there is no reason not to design them as batch learners
when applying them to regression or classifications tasks, given that all data is
available at once. Indeed, Pittsburgh-style LCS usually require an individual
representing a set of classifiers to be trained on the full data, and hence can
be interpreted as incrementally implemented batch learners when applied to
regression and classification tasks.

Even Michigan-style LCS can acquire batch learning when the classifiers
are trained independently: each classifier can be trained on the full data at
once and is later only queried for its fitness evaluation and its prediction.

As the aim is to understand what LCS are learning, we – for now – will pre-
fer transparency over performance. Hence, the LCS model is predominantly
described from a batch learning perspective, although, throughout Chaps. 5,
6 and 7, incremental learning approaches that lead to similar results will also
be discussed. Still, the prototype system that is developed is only fully de-
scribed from the batch learning perspective. How to turn this system into an
incremental learner is a topic of future research.

3.2 LCS as Parametric Models

While the term model may be used in many different ways, it is here defined as
a collection of possible hypotheses about the data-generating process. Hence,
the choice of model determines the available hypotheses and therefore biases
the expressiveness about this process. Such a bias represents the assumptions
that are made about the process and its stochasticity. Understanding the
assumptions that are introduced with the model allows for making statements
about its applicability and performance.

Example 3.3 (Different Linear Models and their Assumptions). A linear rela-
tion between inputs and outputs with constant-variance Gaussian noise ǫ leads
to least squares (that is, using the L2 loss function) linear regression. Alter-
natively, assuming the noise to have a Cauchy distribution results in linear
regression using the L1 loss function. As a Cauchy distribution has a longer
tail than a Gaussian distribution, it is more resilient to outliers. Hence it is
considered as being more robust, but the L1 norm makes it harder to train
[67]. This shows how an assumption of a model about the data-generating
process can give us information about its expected performance.

Training a model means finding the hypothesis that is closest to what the
data-generating process is assumed to be. For example, in a linear regression
model the space of hypotheses is all hyper-planes in the input/output space,
and performing linear regression means picking the hyper-plane that best
explains the available observations.

3.2 LCS as Parametric Models 41

The choice of model strongly determines how hard it is to train. While
more complex models are usually able to express a larger range of possible
hypotheses, this larger range also makes it harder for them to avoid overfitting
and underfitting. Hence, very often, overfitting by minimising the empirical
risk is counterbalanced by reducing the number of hypotheses that a model
can express, thus making the assumptions that a model introduces more im-
portant.

Example 3.4 (Avoiding Overfitting in Artificial Neural Networks). Reducing
the number of hidden neurons in a feed-forward neural network is a popular
measure of avoiding overfitting the training data. This measure effectively re-
duces the number of possible hypothesis that the model is able to express and
as such introduces a stronger structural bias. Another approach to avoiding
overfitting in neural networks training is weight decay that exponentially de-
cays the magnitude of the weight of the neural connections in the network.
While not initially designed as such, weight decay is equivalent to assuming
a zero mean Gaussian prior on the weights and hence biasing them towards
smaller values. This prior is again equivalent to assuming smoothness of the
target function [109].

Having underlined the importance of knowing the underlying model of a
method, the family of parametric models is introduced, in order to identify
LCS as a member of that family. The description is based on reflections on
what classifiers actually are and do, and how they cooperate to form a model.
While a general LCS model overview and its training is given, more details
have to wait until after the a formal probabilistic LCS model is introduced in
the following chapter.

3.2.1 Parametric Models

The chosen hypothesis during model training is usually determined by a set of
adjustable parameters θ. Models for which the number of parameters is inde-
pendent of the training set and remains unchanged during model training are
commonly referred to as parametric models. In contrast, non-parametric mod-
els are models for which the number of adjustable parameters either depends
on the training set, changes during training, or both.

Another property of a parametric model is its structure M (often also
referred to as scale). Given a model family, the choice of structure determines
which model to use from this family. For example, considering the family of
feed-forward neural networks with a single hidden layer, the model structure
is the number of hidden neurons and the model parameters are the weights
of the neural connections. Hence, the model structure is the adjustable part
of the model that remain unchanged during training but might determine the
number of parameters.

With these definitions, our aims can be re-formulated: Firstly, and ade-
quate model structure M is to be found that provides the model hypotheses

42 3 A Learning Classifier Systems Model

f̂M(x;θ). Secondly, the model parameter values θ need to be found such that
the expected risk for the chosen loss function is minimised.

3.2.2 An LCS Model

An LCS forms a global model by the combination of local models, represented
by the classifiers. The number of classifiers can change during the training
process, and so can the number of adjustable parameters by action of the GA.
Hence, an LCS is not a parametric model per se.

An LCS can be turned into a parametric model by assuming that the
number of classifiers is fixed, and that each classifier represents a parametric
model. While this choice seems arbitrary at first, it becomes useful for later
development. Its consequences are that both the number of classifiers and how
they are located in the input space are part of the model structure M and are
not modified while adjusting the model parameters. The model parameters θ

are the parameters of the classifiers and those required to combine their local
models.

Consequently, training an LCS is conceptually split into two parts: Finding
a good model structure M, that is, the adequate number of classifiers and their
location, and for that structure the values of the model parameters θ. This
interpretation justifies calling LCS adaptive models.

Before providing more details on how to find a good model structure, let
us first assume a fixed model structure with K classifiers and investigate in
more detail the components of such a model.

3.2.3 Classifiers as Localised Models

In LCS, the combination of condition and action of a classifier determines the
inputs that a classifier matches. Hence, given the training set, one classifier
matches only a subset of the observations in that set. It can be said that a
classifier is localised in the input space, where its location is determined by
the inputs that it matches.

Matching

Let Xk ⊆ X be the subset of the input space that classifier k matches. The
classifier is trained by all observations that it matches, and hence its aim is
to provide a local model f̂k(x;θk) that maps Xk into Y, where θk is the set of
parameters of the model of classifier k. More flexibly, matching can be defined
by a matching function mk : X → [0, 1] specific to classifier k, and given by
the indicator function for the set Xk,

mk(x) =

{

1 if x ∈ Xk,
0 otherwise.

(3.9)

3.2 LCS as Parametric Models 43

The advantage of using a matching function mk rather than a set Xk is that
the former allows for degrees of matching in-between 0 and 1 – a feature that
we will be made use of in later chapters. Also note, that representing matching
by Xk or the matching function mk makes it independent of the choice of rep-
resentation of the condition/action of a classifier. This is an important point,
as it makes all future developments valid for all choices of representation.

Local Classifier Model

The local model of a classifier is usually a regression model with no particular
restrictions. As discussed in Section 2.3.1, initially only simple averaging pre-
dictions were used, but more recently, classifiers have been extended to use
linear regression models, neural networks, and SVM regression. While aver-
agers are just a special case of linear models, neural networks might suffer
from the problem of multiple local optima [107], and SVM regression has no
clean approach to incremental implementations [160]. Hence, we will restrict
ourselves to the well-studied class of linear models as a good trade-off between
expressive power and complexity of training, and equally easily trainable clas-
sification models. Both are discussed in more depth in Chaps. 4 and 5.

Input to Matching and Local Models

Note that in LCS the input given to the matching function and that given
to the classifier’s model usually differ in that the input to the model is often
formed by applying a transfer function to the input given to the matching
mechanism. Nonetheless, to keep the notation uncluttered it is assumed that
the given input x contains all available information and both matching and the
local model selectively choose and modify the components that they require
by an implicit transfer function.

Example 3.5 (Inputs to Matching and Local Model). Let us assume that both
the input and the output space are 1-dimensional, that is, X = R and Y = R,
and that we perform interval matching over the interval [lk, uk], such that
mk(x) = 1 if lk ≤ x ≤ uk, and mk(x) = 0 otherwise. Applying the linear

model f̂(x;wk) = xwk to the input, with wk being the adjustable parameter
of classifier k, one can only model straight lines through the origin. However,
applying the transfer function φ(x) = (1, x)T allows for the introduction of

an additional bias to get f̂(x;wk) = wT
k φ(x) = wk1 + xwk2, with wk =

(wk1, wk2)
T ∈ R

2, which is an arbitrary straight line. In such a case, the input
is assumed to be x′ = (1, x)T , and the matching function to only operate
on the second component of that input. Hence, both matching and the local
model can be applied to the same input. A more detailed discussion about
different transfer functions and their resulting models is given in Sect. 5.1.1.

44 3 A Learning Classifier Systems Model

3.2.4 Recovering the Global Model

To recover the global model from K local models, they need to be combined in
some meaningful way. For inputs that only a single classifier matches, the best
model is that of the matching classifier. However, there are no restrictions on
how many classifiers can match a single input. Therefore, in some cases, it is
necessary to mix the local models of several classifiers that match the same
input.

There are several possible approaches to mixing classifier models, each
corresponding to different assumptions about the data-generating process. A
standard approach in introduced in Chap. 4 and alternatives are discussed in
Chap. 6.

3.2.5 Finding a Good Model Structure

The model structure M is given by the number of classifiers and their lo-
calisation. As the localisation of a classifier k is determined by its matching
function mk, the model structure is completely specified by the number of
classifiers K and their matching functions M = {mk}, that is, M = {K,M}.

To find a good model structure means to find a structure that allows for
hypotheses about the data-generating process that are close to the process
suggested by the available observations. Thus, finding a good model struc-
ture implies dealing with over and underfitting of the training set. A detailed
treatment of this topic is postponed to Chap. 7, and for now its is assumed
that a good model structure is known.

3.2.6 Considerations for Model Structure Search

The space of possible model structures is potentially huge, and hence to search
this space, evaluating the suitability of a single model structure M to explain
the data needs to be efficient to keep searching the model structure space
computationally tractable. Additionally, one wants to guide the search by
using all the available information about the quality of the classifiers within
a certain model structure by fitting this model structure to the data.

Each classifier in the LCS model represents some information about the
input/output mapping, limited to the subspace of the input space that it
matches. Hence, while preserving classifiers that seem to provide a good model
of the matched data, the model structure ought to be refined in areas of the
input space for which none of the current classifiers provides an adequate
model. This can be achieved by either modifying the localisation of current
classifiers that do not provide an adequate fit, removing those classifiers, or
adding new classifiers to compare their goodness-of-fit to the current ones.
Intuitively, interpreting a classifier as a localised hypothesis for the data-
generating process, we want to change or discard bad hypotheses, or add

3.2 LCS as Parametric Models 45

new hypotheses to see if they are favoured in comparison to already existing
hypotheses.

In terms of the model structure search, the search space is better traversed
by modifying the current model structure rather than discarding it at each
search step. By only modifying part of the model, we have satisfied the aim
of facilitating knowledge of the suitability of the current model structure to
guide the structure search. Additionally, if only few classifiers are changed in
their localisation in each step of the search, only modified or added classifiers
need to be re-trained, given that the classifiers are trained independently. This
is an important feature that makes the search more efficient, and that will be
revisited in Sect. 4.4.

Such a search strategy clearly relates to how current LCS traverse the
search space: In Michigan-style LCS, such as XCS, new classifiers are added
either if no classifier is localised in a certain area of the input space, or to pro-
vide alternative hypotheses by merging and modifying the localisation struc-
ture of two other current classifiers with a high goodness-of-fit. Classifiers in
XCS are removed with a likelihood that is proportional to on average how
many other classifiers match the same area of the input space, causing the
number of classifiers that match a particular input to be about the same for
all inputs. Pittsburgh-style LCS also traverse the structure search space by
merging and modifying sets of classifiers of two model structures that were
evaluated to explain the data well. However, few current Pittsburgh-style LCS

retain the evaluation of single classifiers to improve the efficiency of the search
– a feature that is used in the prototype implementation described in Chap. 8.

3.2.7 Relation to the Initial LCS Idea

Recall that originally LCS addressed the problems of parallelism and coordi-
nation, credit assignment, and rule discovery, as described in Sect. 2.2.1. The
following describes how these problems are addressed in the proposed model.

Parallelism is featured by allowing several classifiers to be overlapping, that
is, to be localised partially in the same areas of the input space. Hence, they
compete locally by providing different models for the same data, and cooperate
globally by providing a global model only in combination. Coordination of
the different classifiers is handled on one hand by the model component that
combines the local models into a global model, and on the other hand by
the model structure search that removes or changes classifiers based on their
contribution to the full model.

Credit assignment is to assign external reward to different classifiers, and
is mapped to regression and classification tasks that fit the model to the data,
as the reward is represented by the output. In sequential decision tasks, credit
assignment is additionally handled by the reinforcement learning algorithm,
which will be discussed in detail in Chap. 9.

Lastly, the role of discovering new rules, that is, classifiers with a better
localisation, is performed by the model structure search. How to use current

46 3 A Learning Classifier Systems Model

knowledge to introduce new classifiers depends strongly on the choice of rep-
resentation for the condition and action of a classifier. As the presented work
does not make any assumptions about the representation, it does not deal with
this issue in detail, but rather relies on the body of prior work (for example,
[42, 39, 167, 147, 150, 209]) that is available on this topic.

3.3 Summary and Outlook

The task of LCS has been identified to find a good model that forms a hy-
pothesis about the form of the data-generating process, based on a finite set
of observations. The process maps an input space into an output space, and
the model provides a possible hypothesis for this mapping. The task of finding
a good model is made more complex as only a finite set of observations of the
input/output mapping are available that are perturbed by measurement noise
and the possible stochasticity of the process, and this task is dealt with by
the field of model selection. The difference between minimising the expected
risk, which is the difference between the real data-generating process and our
model, and minimising the empirical risk, which is the difference between the
observations available of that process and our model, has been emphasised.

Regression, classification and sequential decision tasks differ in the form
of the input and output spaces and in the assumptions made about the data-
generating process. For both regression and classification tasks it is assumed
that the process to be representable by a smooth function with an additive
zero-mean noise term. While sequential decision tasks as handled by RL also
have a regression task at their core, they have special requirements on the
stability of the learning method and therefore receive a separate treatment in
Chap. 9.

A model was characterised as being a collection of possible hypotheses
about the nature of the data-generating process, and training a model was
defined as finding the hypothesis that is best supported by the available ob-
servations of that process. The class of parametric models was introduced,
characterised by an unchanging number of model parameters while the model
is trained, in contrast to the model structure of a parametric model, which is
the part of the model that is adjusted before training it, and determines the
number of adjustable parameters during model training.

The LCS model that was described in this chapter and forms the basis of
further developments combines a set of local models (that is, the classifiers)
to a global model. While LCS are not parametric models per se, they can
be characterised as such by defining the model structure as the number of
classifiers and their localisation, and the model parameters as the parameters
of the classifiers and the ones required for combining the local models. As a
result, the task of training LCS is conceptually split into finding a good model
structure, that is, a good set of classifiers, and training these classifiers with
the available training set.

3.3 Summary and Outlook 47

Finding a good model structure requires us to deal with the topic of model
selection and the trade-off between overfitting and underfitting. As this re-
quires a good understanding of the LCS model itself, the problem of evaluat-
ing the quality of a model structure will not be handled before Chap. 7. Until
then, the model structure M is assumed to be a constant.

The next chapter discusses how to train an LCS model given a certain
model structure. In other words, it concerns how to adjust the model param-
eters in the light of the available data. The temporary aim at this stage is to
minimise the empirical risk. Even though this might lead to overfitting, it still
gives valuable insights into how to train the LCS model, and its underlying
assumptions about the data-generating process. We proceed by formulating
a probabilistic model of LCS in Chap. 4 based on a generalisation of the re-
lated Mixtures-of-Experts model. Furthermore, more details on training the
classifiers are given in Chap. 5, and alternatives for combining the local clas-
sifier models to a global model are given in Chap. 6, assuming that the model
structure remains unchanged. After that we return to developing a principled
approach to finding a good set of classifiers, that is, a good model structure.

4

A Probabilistic Model for LCS

Having conceptually defined the LCS model, it will now be embedded into
a formal setting. The formal model is initially designed for a fixed model
structure M; that is, the number of classifiers and where they are localised in
the input space is constant during training of the model. Even though the LCS

model could be characterised purely by its functional form [79], a probabilistic
model will be developed instead. Its advantage is that rather than getting a
point estimate f̂(x) for the output y given some input x, the probabilistic
model provides the probability distribution p(y|x,θ) that for some input x
and model parameters θ describes the probability density of the output being
the vector y. From this distribution its is possible to form a point estimate
from its mean or its mode, and additionally to get information about the
certainty of the prediction by the spread of the distribution.

This chapter concentrates on modelling the data by the principle of max-
imum likelihood: given a set of observations D = {X,Y}, the best model
parameters θ are the ones that maximise the probability of the observations
given the model parameters p(D|θ). As described in the previous chapter this
might lead to overfitting the data, but nonetheless it results in a first idea
about how the model can be trained, and relates it closely to XCS, where
overfitting is controlled on the model structure level rather than the model
parameter level (see App. B). Chapter 7 generalises this model and introduces
a training method that avoids overfitting.

The formulation of the probabilistic model is guided by a related machine
learning model: the Mixtures-of-Expert (MoE) model [123, 124] fits the data
by a fixed number of localised experts. Even though not identified by previ-
ous LCS research, there are strong similarities between LCS and MoE when
relating the classifiers of LCS to the experts of MoE. However, they differ in
that the localisation of the experts in MoE is changed by a gating network
that assigns observations to experts, whereas in LCS the localisation of clas-
sifiers is defined by the matching functions and is fixed for a constant model
structure. To relate these two approaches, the model is modified such that
it acts as a generalisation to both the standard MoE model and LCS. Fur-

50 4 A Probabilistic Model for LCS

thermore, difficulties in training the emerging model are solved by detaching
expert training from training the gating network.

Firstly, the standard MoE model [124] is introduced, and its training and
expert localisation is discussed. This is followed in Sect. 4.2 by a discussion of
expert models for both regression and classification. To relate MoE to LCS,
the MoE model is generalised in Sect. 4.3, together with how its training has
to be modified to accommodate these generalisations. Identifying difficulties
with the latter, a modified training scheme is introduced in Sect. 4.4, that
makes the introduced model more similar to XCS.

4.1 The Mixtures-of-Experts Model

The MoE model is probably best explained from the generative point-of-view:
given a set of K experts, each observation in the training set is assumed to be
generated by one and only one of these experts. Let z = (z1, . . . , zK)T be a
random binary vector, where each of its elements zk is associated with an ex-
pert and indicates whether that expert generated the given observation (x,y).
Given that expert k generated the observation, then zj = 1 for j = k, and
zj = 0 otherwise, resulting in a 1-of-K structure of z. The introduced random
vector is a latent variable, as its values cannot be directly observed. Each ob-
servation (xn,yn) in the training set has such a random vector zn associated
with it, and Z = {zn} denotes the set of latent variables corresponding to
each of the observations in the training set.

Each expert provides a probabilistic mapping X → Y that is given by
the conditional probability density p(y|x,θk), that is, the probability of the
output being vector y, given the input vector x and the model parameters θk

of expert k. Depending on whether we deal with regression or classification
tasks, experts can represent different parametric models. Leaving the expert
models unspecified for now, linear regression and classification models will be
introduced in Sect. 4.2.

4.1.1 Likelihood for Known Gating

A common approach to training probabilistic models is to maximise the like-
lihood of the outputs given the inputs and the model parameters, a principle
known as maximum likelihood . As will be shown later, maximum likelihood
training is equivalent to minimising the empirical risk, with a loss function
depending on the probabilistic formulation of the model.

Following the standard assumptions of independent observations, and ad-
ditionally assuming knowledge of the values of the latent variables Z, the
likelihood of the training set is given by

p(Y|X,Z,θ) =

N
∏

n=1

p(yn|xn, zn,θ), (4.1)

4.1 The Mixtures-of-Experts Model 51

where θ stands for the model parameters. Due to the 1-of-K structure of each
zn, the likelihood for the nth observation is given by

p(yn|xn, zn,θ) =

K
∏

k=1

p(yn|xn,θk)znk , (4.2)

where znk is the kth element of zn. As only one element of zn can be 1, the
above expression is equivalent to the jth expert model such that znj = 1.

As the logarithm function is monotonically increasing, maximising the log-
arithm of the likelihood is equivalent to maximising the likelihood. Combining
(4.1) and (4.2), the log-likelihood ln p(Y|X,Z,θ) results in

ln p(Y|X,Z,θ) =

N
∑

n=1

K
∑

k=1

znk ln p(yn|xn,θk). (4.3)

Inspecting (4.3) we can see that each observation n is assigned to the single
expert for which znk = 1. Hence, it is maximised by maximising the likelihood
of the expert models separately, for each expert based on its assigned set of
observations.

4.1.2 Parametric Gating Network

As the latent variables Z are not directly observable, we do not know the values
that they take and therefore cannot maximise the likelihood introduced in
the previous section directly. Rather, a parametric model for Z, known as the
gating network , is used instead and trained in combination with the experts.

The gating network used in the standard MoE model is based on the
assumption that the probability of an expert having generated the observation
(x,y) is log-linearly related to the input x. This is formulated by

gk(x) ≡ p(zk = 1|x,vk) ∝ exp(vT
k x), (4.4)

stating that the probability of expert k having generated observation (x,y) is
proportional to the exponential of the inner product of the input x and the
gating vector vk of the same size as x. Normalising p(zk = 1|x,vk), we get

gk(x) ≡ p(zk = 1|x,vk) =
exp(vT

k x)
∑K

j=1 exp(vT
j x)

, (4.5)

which is the well-known softmax function, and corresponds to the multinomial
logit model in Statistics that is often used to model consumer choice [169]. It
is parametrised by one gating vector vk per expert, in combination forming
the set V = {vk}. Fig. 4.1 shows the directed graphical model that illustrates
the structure and variable dependencies of the Mixtures-of-Experts model.

52 4 A Probabilistic Model for LCS

yn

xn

znk

vk

θk

K

experts

N

data

Fig. 4.1. Directed graphical model of the Mixtures-of-Experts model. The circular
nodes are random variables (znk), which are observed when shaded (yn). Labels
without nodes are either constants (xn) or adjustable parameters (θk, vk). The
boxes are “plates”, comprising replicas of the entities inside them. Note that znk

is shared by both boxes, indicating that there is one z for each expert for each
observation

To get the log-likelihood l(θ;D) ≡ ln p(Y|X,θ), we use the 1-of-K struc-
ture of z to express the probability of having a latent random vector z for a
given input x and a set of gating parameters V by

p(z|x,V) =

K
∏

k=1

p(zk = 1|x,vk)zk =

K
∏

k=1

gk(x)zk . (4.6)

Thus, by combining (4.2) and (4.6), the joint density over y and z is given by

p(y, z|x,θ) =
K
∏

k=1

gk(x)zkp(y|x,θk)zk . (4.7)

By marginalising1 over z, the output density results in

p(y|x,θ) =
∑

z

K
∏

k=1

gk(x)zkp(y|x,θk)zk =
K

∑

k=1

gk(x)p(y|x,θk), (4.8)

and subsequently, the log-likelihood l(θ;D) is

l(θ;D) = ln

N
∏

n=1

p(yn|xn|θ) =

N
∑

n=1

ln

K
∑

k=1

gk(xn)p(yn|xn,θk). (4.9)

1 Given a joint density p(x, y), one can get p(y) by marginalising over x by

p(y) =

Z

p(x, y)dx.

The same principle applies to getting p(y|z) from the conditional density p(x, y|z).

4.1 The Mixtures-of-Experts Model 53

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g1(x)

Fig. 4.2. Plot of the softmax function g1(x) by (4.5) with inputs x = (1, x1, x2)
T ,

and gating parameters v1 = (0, 0, 1), v2 = (0, 1, 0)

Example 4.1 (Gating Network for 2 Experts). Let us consider the input space
DX = 3, where an input is given by x = (1, x1, x2)

T . Assume two experts with
gating parameters v1 = (0, 0, 1)T and v2 = (0, 1, 0)T . Then, Fig. 4.2 shows the
gating values g1(x) for Expert 1 over the range −5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5.
As can be seen, we have g1(x) > 0.5 in the input subspace x1 −x2 < 0. Thus,
with the given gating parameters, Expert 1 mainly models observations in
this subspace. Overall, the gating network causes a soft linear partitioning of
the input space along the line x1 − x2 = 0 that separates the two experts.

4.1.3 Training by Expectation-Maximisation

Rather than using gradient descent to find the experts and gating network
parameters θ that maximise the log-likelihood (4.9) [123], we can make use of
the latent variable structure and apply the expectation-maximisation (EM)
algorithm [72, 124]. It begins with the observation that maximisation of the
likelihood is simplified if the values of the latent variables were known, as in
(4.3). Hence, assuming that Z is part of the data, D = {X,Y} is referred to
as the incomplete data, and D ∪ {Z} = {X,Y,Z} is known as the complete
data. The EM-algorithm proceeds with the expectation step, by finding the
expectation of the complete data log-likelihood EZ(l(θ;D ∪ {Z})) with the
current model parameters θ fixed, where l(θ;D ∪ {Z}) ≡ ln p(Y,Z|X,θ) is
the logarithm of the joint density of the outputs and the values of the la-
tent variables. In the maximisation step the above expectation is maximised
with respect to the model parameters. When iterating this procedure, the in-
complete data log-likelihood l(θ;D) is guaranteed to increase monotonically
until a maximum is reached [178]. More details on the application of the EM-
algorithm to train the MoE model are given by Jordan and Jacobs [124]. We
will now consider each step in turn.

54 4 A Probabilistic Model for LCS

The Expectation Step

Using (4.7), the complete-data log-likelihood is given by

l(θ;D ∪ {Z}) ≡ ln p(Y,Z|X,θ)

= ln

N
∏

n=1

p(yn, zn|xn,θ)

=

N
∑

n=1

K
∑

k=1

znk (ln gk(xn) + ln p(yn|xn,θk)) (4.10)

where θ is the set of expert parameters {θ1, . . . ,θK} and gating parameters
V. When fixing these parameters, the latent variables are the only random
variables in the likelihood, and hence its expectation is

EZ (l(θ;D ∪ {Z})) =
N

∑

n=1

K
∑

k=1

rnk (ln gk(xn) + ln p(yn|xn,θk)) , (4.11)

where rnk ≡ E(znk) is commonly referred to as the responsibility of expert k
for observation n [20] and by the use of Bayes’ rule and (4.8) evaluates to

rnk ≡ E(znk) = p(znk = 1|xn,yn,θ)

=
p(znk = 1|xn,vk)p(yn|xn,θk)

p(yn|xn,θ)

=
gk(xn)p(yn|xn,θk)

∑K
j=1 gj(xn)p(yn|xn,θj)

. (4.12)

Hence, the responsibilities are distributed according to the current gating and
goodness-of-fit of an expert in relation to the gating and goodness-of-fit of the
other experts.

The Maximisation Step

In the maximisation step we aim at adjusting the model parameters to max-
imise the expected complete data log-likelihood. gk(xn) and p(yn|xn,θk) do
not share any parameters, and so maximising (4.11) results in the two inde-
pendent maximisation problems

max
V

N
∑

n=1

K
∑

k=1

rnk ln gk(xn), (4.13)

max
θ

N
∑

n=1

K
∑

k=1

rnk ln p(yn|xn,θk). (4.14)

4.1 The Mixtures-of-Experts Model 55

Note that the responsibilities are evaluated with the previous model param-
eters and are not considered as being functions of these parameters. The
function concerning the gating parameters V can be maximised by the Iter-
atively Re-weighted Least Squares (IRLS) algorithm as described in Chap. 6
(see also [124, 20]). The expert parameters can be modified independently,
and the method depends on the expert model. Their training is described
when introducing their models in Sect. 4.2.

To summarise, l(θ;D) is maximised by iterating over the expectation and
the maximisation steps. In the expectation step, the responsibilities are com-
puted for the current model parameters. In the maximisation step, the model
parameters are updated with the computed responsibilities. Convergence of
the algorithm can be determined by monitoring the result of (4.9).

4.1.4 Localisation by Interaction

The experts in the standard MoE model are localised in the input space
through the interaction of expert and gating network training: after the gating
is randomly initialised, the responsibilities are calculated by (4.12) according
to how well the experts fit the data in the areas of the input space that they
are assigned to. In the maximisation step, performing (4.13) tunes the gating
parameters such that the gating network fits best the previously calculated
responsibilities. Equation (4.14) causes the experts to be only trained on the
areas that they are assigned to by the responsibilities. The next expectation
step re-evaluates the responsibilities according to the new fit of the experts,
and the maximisation step adapts the gating network and the experts again.
Hence, iterating the expectation and the maximisation step causes the experts
to be distributed according to their best fit to the data.

The pattern of localisation is determined by the form of the gating model.
As previously demonstrated, the softmax function causes a soft linear partition
of the input space. Thus, the underlying assumption of the model is that the
data was generated by some processes that are linearly separated in the input
space. The model structure becomes richer by adding hierarchies to the gating
network [124]. That would move MoE to far away from LCS, which is why
it will not be discussed any further.

4.1.5 Training Issues

The likelihood function of MoE is neither convex nor unimodal [21]. Hence,
training it by using a hill-climbing procedure such as the EM-algorithm will
not guarantee that we find the global maximum. Several approaches have been
developed to deal with this problem (for example, [21, 5]), all of which are
either based on random restart or stochastic global optimisers. Hence, they
require several training epochs and/or a long training time. While this is not
an issue for MoE where the global optimum only needs to be found once,
it is not an option for LCS where the model needs to be (at least partially)

56 4 A Probabilistic Model for LCS

re-trained for each change in the model structure. A potential LCS-related
solution will be presented in Sect. 4.4.

4.2 Expert Models

So far, p(y|x,θk) has been left unspecified. Its form depends on the task that
is to be solved, and differs for regression and classification tasks. Here, we
only deal with the LCS-related univariate regression task and the multiclass
classification tasks, for which the expert models are introduced in the following
sections.

4.2.1 Experts for Linear Regression

For each expert k, the linear univariate regression model (that is, DY = 1) is
characterised by a linear relation of the input x and the adjustable parameter
wk, which is a vector of the same size as the input. Hence, the relation between
the input x and the output y is modelled by a hyper-plane wT

k x−y = 0. Addi-
tionally, the stochasticity and measurement noise are modelled by a Gaussian.
Overall, the probabilistic model for expert k is given by

p(y|x,wk, τk) = N (y|wT
k x, τ−1

k) =
(τk

2π

)1/2

exp
(

−τk

2
(wT

k x − y)2
)

, (4.15)

where N stands for a Gaussian, and the model parameters θk = {wk, τk} are
the DX -dimensional weight vector wk and the noise precision (that is, inverse
variance) τk. The distribution is centred on the inner product wT

k x, and its
spread is inversely proportional to τk and independent of the input.

As we give a detailed discussion about the implications of assuming this
expert model and various forms of its incremental training in Chap. 5, let us
here only consider how it specifies the maximisation step of the EM-algorithm
for training the MoE model, in particular with respect to the weight vector
wk: Combining (4.14) and (4.15), the term to maximise becomes

N
∑

n=1

K
∑

k=1

rnk ln p(yn|xn,wk, τk) =

N
∑

n=1

K
∑

k=1

rnk

(

1

2
ln

τk

2π
− τk

2
(wT

k xn − yn)2
)

= −
K

∑

k=1

τk

2

N
∑

n=1

rnk(wT
k xn − yn)2 + const.,

where the constant terms absorbs all terms that are independent of the weight
vectors. Considering the experts separately, the aim for expert k is to find

min
wk

N
∑

n=1

rnk(wT
k xn − yn)2, (4.16)

4.2 Expert Models 57

which is a weighted linear least squares problem. This shows how the assump-
tion of a Gaussian noise locally leads to minimising the empirical risk with
the L2 loss function.

4.2.2 Experts for Classification

For classification, assume that the number of classes is DY , and the outputs are
the vectors y = (y1, . . . , yDY

)T with all elements being yj = 0, except for the
element yj̄ = 1, where j̄ is the class associated with this output vector. Thus,
similarly to the latent vector z, the different y’s obey a 1-of-DY structure.

The expert model p(y|x,θk) gives the probability of the expert having
generated an observation of the class specified by y. Analogous to the gating
network (4.4), this model could assume a log-linear relationship between this
probability and the input x, which implies that p(y|x,θk) is assumed to vary
with x. However, to simplify interpretation of the expert model, it will be
assumed that this probability remains constant over all inputs that the expert
is responsible for, that is

p(y|x,wk) =

DY
∏

j=1

w
yj

kj , with

DY
∑

j=1

wkj = 1. (4.17)

Thus, p(y|x,wk) is independent of the input x and parametrised by θk = wk,
and for any given y representing class j̄, the model’s probability is given by
wj̄ , the j̄th element of wk.

By combining (4.14) and (4.17), the term to maximise in the M-step of
the EM algorithm becomes

N
∑

n=1

K
∑

k=1

rnk ln p(yn|xn,wk) =

N
∑

n=1

K
∑

k=1

rnk

DY
∑

j=1

ynj lnwkj ,

under the constraint
∑

j wkj = 1 for all k. Considering each expert separately,
expert k has to solve the constraint optimisation problem

max
wk

N
∑

n=1

rnk

DY
∑

j=1

ynj lnwnj , (4.18)

subject to

DY
∑

j=1

wkj = 1.

While the concepts introduced in the following sections are valid for any
form of expert models, a detailed description of how to train the above expert
models to find its parameters is given in Chap. 5.

58 4 A Probabilistic Model for LCS

4.3 Generalising the MoE Model

The standard MoE model assumes that each observation was generated by
one and only one expert. In this section, the model will be made more LCS-
like by replacing the term “expert” with “classifier”, and by introducing the
additional assumption that a classifier can only have produced the observation
if it matches the corresponding input. The following sections implement this
assumption and discuss its implications.

4.3.1 An Additional Layer of Forced Localisation

Let us recall that for a certain observation (x,y), the latent variable z deter-
mines which classifier generated this observation. The generalisation that is
introduced assumes that a classifier k can have only generated this observa-
tion, that is, zk = 1, if it matches the corresponding input.

Let us introduce an additional binary random vector m = (m1, . . . ,mK)T ,
each element being associated with one classifier 2. The elements of m are 1
if and only if the associated classifier matches the current input x, and 0
otherwise. Unlike z, m does not comply to the 1-of-K structure, as more than
one classifier can match the same input. The elements of the random vector
are linked to the matching function by

p(mk = 1|x) = mk(x), (4.19)

that is, the value of a classifier’s matching function determines the probability
of that classifier matching a certain input.

To enforce matching, the probability for classifier k having generated ob-
servation (x,y), given by (4.4), is redefined to be

p(zk = 1|x,vk,mk) ∝
{

exp(vT
k φ(x)) if mk = 1 for x,

0 otherwise,
(4.20)

where φ is a transfer function, whose purpose will be explained later and
which can for now be assumed to be the identity function, φ(x) = x. Thus,
the differences from the previous definition (4.4) are the additional transfer
function and the condition on mk that locks the generation probability to 0
if the classifier does not match the input. Removing the condition on mk by
marginalising it out results in

gk(x) ≡ p(zk = 1|x,vk) ∝
∑

m∈{0,1}

p(zk = 1|x,vk,mk)p(mk = m|x)

= 0 + p(zk = 1|x,vk,mk)p(mk = 1|x)

= mk(x) exp(vT
k φ(x)). (4.21)

2 While the symbol m also refers to the matching function, its use as either the
matching function or the random variable that determines matching is apparent
from its context.

4.3 Generalising the MoE Model 59

Adding the normalisation term, the gating network is now defined by

gk(x) ≡ p(zk = 1|x,vk) =
mk(x) exp(vT

k φ(x))
∑K

j=1 mj(x) exp(vT
j φ(x))

. (4.22)

As can be seen when comparing it to (4.5), the additional layer of localisation
is specified by the matching function, which reduces the gating to gk(x) = 0
if the classifier does not match x, that is, if mk(x) = 0.

yn

xn

znk

mnk

mk

vk

θk

K

classifiers

N

data

Fig. 4.3. Directed graphical model of the generalised Mixtures-of-Experts model.
See the caption of Fig. 4.1 for instructions on how to read this graph. When com-
pared to the Mixtures-of-Expert model in Fig. 4.1, the latent variables znk depends
additionally on the matching random variables mnk, whose values are determined
by the mixing functions mk and the inputs xn

As classifiers can only generate observations if they match the correspond-
ing input, the classifier model itself does not require any modification. Ad-
ditionally, (4.9) is still valid, as zk = 1 only if mk = 1 by (4.20). Figure 4.3
shows the graphical model that, when compared to Fig. 4.1, illustrates the
changes that are introduces by generalising the MoE model.

4.3.2 Updated Expectation-Maximisation Training

The only modifications to the standard MoE are changes to the gating net-
work, expressed by gk. As (4.12), (4.13) and (4.14) are independent of the
functional form of gk, they are still valid for the generalised MoE. Therefore,
the expectation step of the EM-algorithm is again performed by evaluating the
responsibilities by (4.12), and the gating and classifier models are updated by
(4.13) and (4.14). Convergence of the algorithm is again monitored by (4.9).

60 4 A Probabilistic Model for LCS

4.3.3 Implications on Localisation

Localisation of the classifiers is achieved on one hand by the matching function
of the classifiers, and on the other hand by the combined training of gating
networks and classifiers.

Let us first consider the case when the nth observation (xn,yn) is matched
by one and only one classifier k, that is mj(xn) = 1 only if j = k, and
mj(xn) = 0 otherwise. Hence, by (4.22), gj(xn) = 1 only if j = k, and
gj(xn) = 0 otherwise, and consequently by (4.12), rnj = 1 only if j = k, and
rnj = 0 otherwise. Therefore, full responsibility for the observation is given
to the one and only matching classifier, independent of its goodness-of-fit.

On the other hand, assume that the same observation (xn,yn) is matched
by all classifiers, that is mj(xn) = 1 for all j ∈ {1, . . . ,K}, and assume
the identity transfer function φ(x) = x. In that case, (4.22) reduces to the
standard MoE gating network (4.5) and we perform a soft linear partitioning
as described in Sect. 4.1.4.

In summary, localisation by matching determines for which areas of the
input space the classifiers attempt to model the observations. In areas where
they match, they are distributed by soft linear partitions as in the standard
MoE model. Hence, we can acquire a two-layer intuition on how localisation
is performed: Matching determines the rough areas where classifiers are re-
sponsible to model the observations, and the softmax function then performs
the fine-tuning in areas of overlap between classifiers.

4.3.4 Relation to Standard MoE Model

The only difference between the generalised MoE model and the standard
MoE model is the definition of the gating model gk. Comparing the standard
model (4.5) with its generalisation (4.22), the standard model is recovered
from the generalisation by having mk(x) = 1 for all k and x, and the identity
transfer function φ(x) = x for all x. Defining the matching functions in such
a way is equivalent to having each classifier match all inputs. This results in
a set of classifiers that all match the whole input space, and localisation is
performed by soft linear partitioning of the gating network.

4.3.5 Relation to LCS

This generalised MoE model satisfies all characteristics of LCS outlined in
Sect. 3.2: Each classifier describes a localised model with its localisation de-
termined by the model structure, and the local models are combined to form
a global model. So given that the model can be trained efficiently, and that
there exists a good mechanism for searching the space of model structures,
do we already have an LCS? While some LCS researchers might disagree —
partially because there is no universal definition of what an LCS is and LCS

4.3 Generalising the MoE Model 61

appear to be mostly thought of in algorithmic terms rather than in terms of
the model that they describe — the author believes that this is the case.

However, the generalised MoE model has a feature that no LCS has ever
used: beyond the localisation of classifiers by their matching function, the re-
sponsibilities of classifiers that share matching inputs is further distributed by
the softmax function. While this feature might lead to a better fit of the model
to the data, it blurs the observation/classifier association by extending it be-
yond the matching function. Nonetheless, the introduced transfer function φ
can be used to level this effect: when defined as the identity function φ(x) = x,
then by (4.21) the probability of a certain classifier generating an observation
for a matching input is log-linearly related to the input x. However, by setting
φ(x) = 1 for all x, the relation is reduced to gk(x) ∝ mk(x) exp(vk), where
the gating parameter vk reduces to the scalar vk. Hence, the gating weight
becomes independent of the input (besides the matching) and only relies on
the constant vk through exp(vk). In areas of the input space that several
classifiers match, classifiers with a larger vk have a stronger influence when
forming a prediction of the global model, as they have a higher gating weight.
To summarise, setting φ(x) = 1 makes gating independent of the input (be-
sides the matching) and the gating weight for each classifier is determined
by a single scalar that is independent of the current input x that it matches.
Further details and alternative models for the gating network are discussed in
Chap. 6.

Note that φ(x) = 1 is not applicable in the standard MoE model, that is,
when all classifiers match the full input space. In this case, we have neither
localisation by matching nor by the softmax function. Hence, the global model
is not better at modelling the data than a single local model applied to the
whole data.

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g1(x)

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g2(x)

(a) (b)

Fig. 4.4. Plots showing the generalised softmax function (4.22) for 2 classifiers
with inputs x = (1, x1, x2)

T and φ(x) = x, where Classifier 1 in plot (a) has gating
parameters v1 = (0, 0, 1)T and matches a circle of radius 3 around the origin, and
Classifier 2 in plot (b) has gating parameters v2 = (0, 1, 0)T and matches all inputs

62 4 A Probabilistic Model for LCS

Example 4.2 (Localisation by Matching and the Softmax Function). Consider
the same setting as in Example 4.1, and additionally φ(x) = x for all x and
the matching functions

m1(x) =

{

1 if
√

x2
1 + x2

2 ≤ 3,
0 otherwise,

(4.23)

and m2(x) = 1 for all x. Therefore, Classifier 1 matches a circle of radius 3
around the origin, and Classifier 2 matches the whole input space. The values
for g1(x) and g2(x) are shown in Figs. 4.4(a) and 4.4(b), respectively. As can
be seen, the whole part of the input space that is not matched by Classifier 1
is fully assigned to Classifier 2 by g2(x) = 1. In the circular area where both
classifiers match, the softmax function performs a soft linear partitioning of
the input space, just as in Fig. 4.2.

The effect of changing the transfer function to φ(x) = 1 is visualised in
Fig. 4.5, and shows that in such a case no linear partitioning takes place.
Rather, in areas of the input space that both classifiers match, (4.22) assigns
the generation probabilities input-independently in proportion the exponen-
tial of the gating parameters v1 = 0.7 and v2 = 0.3.

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g1(x)

-4

-2

 0

 2

 4

x1
-4

-2
 0

 2
 4

x2

 0

 0.2

 0.4

 0.6

 0.8

 1

g2(x)

(a) (b)

Fig. 4.5. Plots showing the generalised softmax function (4.22) for 2 classifiers
with inputs x = (1, x1, x2)

T and φ(x) = 1, where Classifier 1 in plot (a) has gating
parameters v1 = 0.7 and matches a circle of radius 3 around the origin, and Classifier
2 in plot (b) has gating parameters v2 = 0.3 and matches all inputs

Besides localisation beyond matching, the generalised MoE model has
another feature that distinguishes it from any previous LCS3: it allows for
matching by a degree of the range [0, 1] rather than by just specifying where a

3 While Butz seems to have experimented with matching by a degree in [42], he does
not describe how it is implemented and only states that “Preliminary experiments
in that respect [. . .] did not yield any further improvement in performance”.
Furthermore, his hyper-ellipsoidal conditions [42, 53] might look like matching

4.4 Independent Classifier Training 63

classifier matches and where it does not (as, for example, specified by set Xk

and (3.9)). Additionally, by (4.19), this degree has the well-defined meaning
of the probability p(mk = 1|x) of classifier k matching input x. Alternatively,
by observing that E(mk|x) = p(mk = 1|x), this degree can also be interpreted
as the expectation of the classifier matching the corresponding input. Overall,
matching by a degree allows the specification of soft boundaries of the matched
areas which can be interpreted as the uncertainty about the exact area to
match4, justified by the limited number of data available. This might solve
issues with hard classifier matching boundaries when searching for good model
structures, which can occur when the input space X is very large or even
infinite, leading to a possibly infinite number of possible model structures.
In that case, smoothing the classifier matching boundaries – as employed in
Chap. 8 – makes fully covering the input space with classifiers easier.

4.3.6 Training Issues

If each input is only matched by a single classifier, each classifier model is
trained separately, and the problem of getting stuck in local maxima does not
occur, analogous to the discussion that follows in Sect. 4.4.3. Classifiers with
overlapping matching areas, on the other hand, cause the same training issues
as already discussed for the standard MoE model in Sect. 4.1.5, which causes
the model training to be time-consuming.

In the presented approach, LCS training is conceptually split into two
parts: training the model for a fixed model structure, and searching the space
of possible model structures. To do the latter, evaluation of a single model
structure by training the model needs to be efficient. Hence, the current train-
ing strategy is hardly a viable option. However, identifying the cause for local
maxima allows for modifying the model to avoid those and therefore make
model training more efficient, as shown in the next section.

4.4 Independent Classifier Training

The assumption of the standard MoE model is that any observation is gener-
ated by one and only one classifier. This was generalised by adding the restric-
tion that any classifier can only have generated an observation if it matches
the input associated with this observation, thereby adding an additional layer
of forced localisation of the classifiers in the input space.

by degree on initial inspection, but as he determines matching by a threshold on
the basis function, matching is still binary. Fuzzy LCS (for example, [61]), on the
other hand, provide matching by degree but are usually not developed from the
bottom up which makes modifying the parameter update equations difficult.

4 Thanks to Dr. Dan Richardson, University of Bath, for this interpretation.

64 4 A Probabilistic Model for LCS

Here, a change rather than a generalisation is introduced to the model
assumptions: as before it is assumed that the data is generated by a combi-
nation of localised processes, but the role of the classifiers is changed from
cooperating with other classifiers in order to locally model the observations
that it matches to modelling all observations that it matches, independent
of the other classifiers that match the same inputs. This distinction becomes
clearer once the resulting formal differences have been discussed in Sects. 4.4.2
and 4.4.3.

The motivation behind this change is twofold: firstly, it removes local max-
ima and thus simplifies classifier training, and secondly, it simplifies the intu-
ition behind what a classifier models. Firstly, these motivations are discussed
in more details, followed by their implication on training the model and the
assumptions about the data-generating process.

4.4.1 The Origin of Local Maxima

Following the discussion in Sect. 4.1.5, local maxima of the likelihood func-
tion are the result of the simultaneous training of the classifiers and the gating
network. In the standard MoE model, this simultaneous training is necessary
to provide the localisation of the classifiers in the input space. In the intro-
duced generalisation, on the other hand, a preliminary layer of localisation
is provided by the matching function, and the interaction between classifiers
and the gating network is only required for inputs that are matched by more
than one classifier. This was already demonstrated in Sect. 4.3.3, where it was
shown that classifiers acquire full responsibility for inputs that they match
alone. Hence, in the generalised MoE, local maxima only arise when classi-
fiers overlap in the input space.

4.4.2 What does a Classifier Model?

By (4.14), a classifier aims at maximising the sum of log-likelihoods of all
observations, weighted by the responsibilities. By (4.12) and (4.22), these
responsibilities can only be non-zero if the classifier matches the corresponding
inputs, that is, rnk > 0 only if mk(xn) > 0. Hence, by maximising (4.14), a
classifier only considers observations that it matches.

Given that an observation (xn,yn) is matched by a single classifier k, it
was established in Sect. 4.3.3 that rnk = 1 and rnj = 0 for all j 6= k. Hence,
(4.14) assigns full weight to classifier k when maximising the likelihood of this
observation. Consequently, given that all observations that a classifier matches
are matched by only this classifier, the classifier models these observations in
full, independent of the other classifiers5.

5 XCS has the tendency to evolve sets of classifiers with little overlap in the areas
that they match. In such cases, all classifiers model their assigned observations
in full, independent of if they are trained independently or in combination.

4.4 Independent Classifier Training 65

Let us consider how observations are modelled that are matched by more
than one classifier: as a consequence of (4.12), the non-negative responsibilities
of all matching classifiers sum up to 1, and are therefore between 0 and 1.
Hence, by (4.14), each matching classifier assigns less weight to modelling
the observation than if it would be the only classifier matching it. Intuitively,
overlapping classifiers “share” the observation when modelling it.

To summarise, i) a classifier only models observations that it matches, ii) it
assigns full weight to observations that no other classifier matches, and iii) it
assigns partial weight to observations that other classifiers match. Expressed
differently, a classifier fully models all observations that it matches alone, and
partially models observations that itself and other classifiers match. Conse-
quently, the local model provided by a classifier cannot be interpreted by their
matching function alone, but also requires knowledge of the gating network
parameters. Additionally, when changing the model structure as discussed in
Sect. 3.2.6 by adding, removing, or changing the localisation of classifiers,
all other overlapping classifiers need to be re-trained as their model is now
incorrect due to changing responsibilities. These problems can be avoided by
training the classifiers independently of each other, making the classifier model
more transparent.

4.4.3 Introducing Independent Classifier Training

Classifiers are trained independently if we replace the responsibilities rnk in
(4.14) by the matching functions mk(xn) to get

max
θ

K
∑

n=1

K
∑

k=1

mk(xn) ln p(yn|xn,θk). (4.24)

Hence, a classifier models all observations that it matches, independent of the
other classifiers. Thus, the first goal of simplifying the intuition about what
a single classifier models is reached. While this does not cause any change
for observations that are matched by a single classifier, observations that
are matched by several classifiers are modelled by each of these classifiers
independently rather than shared between them. This independence is shown
by the graphical model in Fig. 4.6, which illustrates the model of a single
classifier k.

With this change, the classifiers are independent of the responsibilities and
subsequently also of the gating network. Thus, they can be trained completely
independently, and the model structure can be modified by adding, removing,
or changing classifier locations without re-training the other classifiers that
are currently in the model, and thereby make searching the space of possible
model structures more efficient.

An additional consequence of classifiers being trained independently of the
responsibilities is that for standard choices of the local models (see, for exam-
ple [124]), the log-likelihood (4.24) is concave for each classifier. Therefore, it

66 4 A Probabilistic Model for LCS

yn

mnk

xnmk

θk

N

data

Fig. 4.6. Directed graphical model for training classifier k independently. See the
caption of Fig. 4.1 for instructions on how to read this graph. Note that the values
of the matching random variables mnk are determined by the matching function mk

and the inputs xn

has a unique maximum and consequently we cannot get stuck in local maxima
when training individual classifiers.

4.4.4 Training the Gating Network

Training the gating network remains unchanged, and therefore is described
by (4.12) and (4.13). Given a set of trained classifiers, the responsibilities are
fully specified by evaluating (4.12). Hence, the log-likelihood of the gating
network (4.13) is a concave function (for example, [21]), and therefore has a
unique maximum.

Thus, the classifier models have unique optima and can be trained indepen-
dently of the gating network by maximising a concave log-likelihood function.
Furthermore, the gating network depends on the goodness-of-fit of the classi-
fiers, but as they are trained independently, the log-likelihood function of the
gating network is also concave. Therefore, the complete model has a unique
maximum likelihood, and as a consequence, the second goal of removing local
maxima to ease training of the model is reached.

4.4.5 Implications on Likelihood and
Assumptions about the Data

Letting a classifier model match each observation with equal weight violates
the assumption that each observation was generated by one and only one
classifier for observations that are matched by more than one classifier. Rather,
the model of each classifier can be interpreted as a hypothesis for a data-
generating process that generated all observations of the matched area of the
input space.

The gating network, on the other hand, was previously responsible for
modelling the probabilities of some classifier having produced some observa-
tion, and the classifiers were trained according to this probability. While the

4.5 A Brief Comparison to Linear LCS Models 67

gating network still has the same purpose when the classifiers are trained inde-
pendently, the estimated probability is not fed back to the classifiers anymore.
The cost of this lack of feedback is a worse fit of the model to the data, which
results in a lower likelihood of the data given the model structure.

Note, however, that independent classifier training only causes a change
in the likelihood in areas where more than one classifier matches the same
input. Hence, we only get a lower likelihood if classifiers have large areas of
overlap, and it is doubtful that such a solution is ever desired. Nonetheless,
the potentially worse fit needs to be offset by the model structure search to
find solutions with sufficiently minimal overlap between different classifiers.

As the gating network is not gating the observations to the different clas-
sifiers anymore, but rather mixes the independently trained classifier models
to best explain the available observations, it will in the remaining chapters be
referred to as the mixing model rather than the gating network.

4.5 A Brief Comparison to Linear LCS Models

The LCS model introduced in this chapter is a non-linear model as both the
classifiers and the mixing model have tunable parameters. It is in its structure
very similar to XCS and its derivatives, as well as to other LCS that train is
classifiers independently (for example, CCS [156, 157]).

Another popular structure for LCS models is a linear one, which is charac-
terised by the output estimate f̂M(x;θ) being a linear function of the model
parameters θ. Assuming a linear classifier model (4.15) and a output estimate

f̂M(x;θ) formed by the mean of p(y|x,θ) by (4.8), this estimate is given by

f̂M(x;θ) = E(y|x,θ) =

K
∑

k=1

gk(x)wT
k x. (4.25)

In order for f̂M to be a linear in θ, the gk’s have to be independent of the
parameters, unlike for the generalised MoE where they are parametrised by
V ∈ θ. This causes the log-likelihood l(D;θ) to be convex with respect to the
wk’s, with a unique maximum that is easy to find.

The linear LCS model can have different instantiations by specifying the
gk’s differently. Due to their current use in LCS, two of these instantiations
are of particular interest. The first is given by gk(x) = mk(x), such that (4.25)
becomes

f̂M(x;θ) =

K
∑

k=1

mk(x)wT
k x. (4.26)

Therefore, for each input x, the models of all matching classifiers are effec-
tively agglomerated. This clearly shows that the classifiers do not form their
predictions independently. As a consequence, classifiers cannot be interpreted
as localised models, but are rather localised components of the model that is

68 4 A Probabilistic Model for LCS

formed by the combination of all classifiers. While this by itself is not neces-
sarily a drawback, the need to re-train overlapping classifiers when adding or
removing classifiers to search the model structure space is clearly a disadvan-
tage of the linear structure, and generally of all structures that do not train
classifiers independently. Also, due to the interaction of overlapping classifiers,
there is no clear indicator of the quality of a single classifier. LCS instances
that use this agglomerating structure are ZCS [243], as identified by Wada et
al. [231], and an LCS developed by Booker [24]. In both cases, the quality
measure of classifier k is a measure of the magnitude of its parameters wk –
a method called “fitness sharing” in the case of ZCS6.

An alternative to agglomerating classifiers in linear models is to average
over them by using gk(x) = mk(x)/

∑

k̄ mk̄(x), such that (4.25) becomes

f̂M(x;θ) =

K
∑

k=1

mk(x)
∑

k̄ mk̄(x)
wT

k x. (4.27)

Note that this form is very similar to the gating network (4.22) of the gener-
alised MoE, with the difference that the average is not weighted by the quality
of the prediction of the classifiers. Thus, the fit of this model will be certainly
worse than the weighted averaging of the generalised MoE. Also, even though
now the predictions of overlapping classifiers do not directly depend one each
other, the value of gk(x) still depends on other classifiers matching the same
input x. Thus, classifiers are not trained independently, and they needs to be
re-trained in case of the removal or addition of overlapping classifiers. An in-
stance of this form of linear LCS was introduced by Wada et al. as a linearised
version of XCS [230].

It needs to be emphasised that this section is not supposed to demonstrate
the superiority of the introduced LCS model and its currently used instances
over LCS based on linear models. Rather, it attempts to point out significant
differences between these two model types and its consequences. Having a
linear model structure removes the need of an explicit mixing model and
simplifies finding the model parameters for a fixed model structure, but this
comes at the price of having to re-train the model once this structure changes.
Using non-linear models, on the other hand, requires a mixing model and
the introduction of independent classifier training (as a rather unsatisfying
solution) to simplify the training of a single model structure, but simplifies
changing this structure and provides a clearer interpretation of the model
formed by a single classifier.

6 It is not clear if such a quality measure is indeed useful in all occasions. Booker
proposed to consider classifiers with low parameter values as bad classifiers, as
“The ones with large weights are the most important terms in the approxima-
tion” [25], but would that also work in cases where low parameter values are
actually good parameter values? One can easily imaging a part of a function that
is constantly 0 and thus requires 0 parameter values to model it.

4.6 Discussion and Summary 69

4.6 Discussion and Summary

In this chapter, a probabilistic LCS model was introduced as a generalisation
of the MoE model, by adding matching as a form of forced localisation of
the experts. Additionally, training was simplified by handling the classifiers
independently of the gating network. The resulting probabilistic LCS model
acts as the basis for further development in this book. In fact, solving (4.24) to
train the classifiers forms the basis of the next chapter. The chapter thereafter
deals with the mixing model by describing how the solution to (4.13) can
be found exactly and by approximation. Thus, in combination, the following
two chapters describe in detail how the model can be trained by maximum
likelihood, both by batch learning and incrementally.

Even though we have approached the LCS model from a different per-
spective, the resulting structure is very similar to a currently existing LCS:
XCS and its derivatives follow the same path of independently training the
classifier models and combining them by a mixing model. While in XCS it is
not explicitly identified that the classifiers are indeed trained independently,
this fact becomes apparent in the next chapter, where it is shown that the
classifier parameter update equations that result from independent classifier
training resemble those of XCS. The mixing model used by XCS does not
conform to the generalised softmax function but rather relies on heuristics, as
is demonstrated in Chap. 6.

Independent classifier training moves LCS closer to ensemble learning.
This similarity has been exploited recently by Brown, Marshall and Kovacs
[30, 166], who have used knowledge from ensemble learning and other machine
learning methods to improve the performance of UCS [164]. Even though this
direction is very promising, the direct link between LCS and ensemble learning
will not be considered further in this book.

In summary, amongst currently popular LCS, the presented model is most
similar to XCS(F). It combines independently trained classifiers by a mixing
model to provide a global model that aims at explaining the given observa-
tions. This particular model type was chosen not to represent the “best” LCS

model, but as an example to demonstrate the model-based approach. Other
LCS model are equally amendable to this approach, but for the beginning,
only a single model type is fully considered. As in this model type the classi-
fiers are trained independently of each other, it is possible to concentrate on
the training of a single classifier, as is done in the following chapter.

5

Training the Classifiers

The model of a set of classifiers consists of the classifiers themselves and the
mixing model. The classifiers are localised linear regression or classification
models that are trained independently of each other, and their localisation is
determined by the matching function mk. This chapter is entirely devoted to
the training of a single classifier and mainly focuses on the linear regression
models, but also briefly discusses classification at the end of the chapter.

The linear classifier model was already introduced in Sec. 4.2.1, but here
more details are provided about its underlying assumptions, and how it can
be trained in both a batch learning and an incremental learning way. Most
of the concepts and methods in this chapter are well known in statistics (for
example, [98]) and adaptive filter theory (for example, [108]), but have not
been put into the context of LCS before.

In training a classifier we focus on solving (4.24), which emerges from ap-
plying the principle of maximum likelihood to the LCS model. Maximising
the likelihood minimises the empirical rather than the expected risk, which
might lead to overfitting. Nonetheless, it provides a first approach to training
the classifiers, and results in parameter update equations that are for regres-
sion models mostly equivalent to the ones used in XCS(F), which confirms
that the LCS model is in its structure similar to XCS(F). Chapter 7 returns
to dealing with over- and underfitting, with methods that are closely related
to the methods derived in this chapter.

The classifier model parameters to estimate are the weight vector and its
noise variance for the linear regression model, and the weight vector alone for
the classification model. The noise variance is a good indicator of the goodness-
of-fit of the linear model and is also used in a modified form to estimate the
accuracy of a classifier in XCS and its variants. In general, it is useful to
guide the model structure search as we have already discussed in Sect. 3.2.6,
and thus having a good estimate of the noise variance is advantageous. Thus,
we put special emphasis on how to estimate it efficiently and accurately. For
the classification model, a classifier quality measure emerges naturally from

72 5 Training the Classifiers

the estimated weight vector and does not need to be estimated separately, as
shown in Sect. 5.5.

Since each classifier is trained independently (see Sect. 4.4), this chapter
focuses exclusively on the training of a single classifier k. To keep the nota-
tion uncluttered, the subscript k is dropped; that is, the classifier’s matching
function mk is denoted m, the model parameters θk = {wk, τk} become w

and τ , and the estimate f̂k provided by classifier k is denoted f̂ . For any fur-
ther variables introduced throughout this chapter it will be explicitly stated
whether they are local to a classifier.

Firstly, the linear regression classifier model and its underlying assump-
tions are introduced, followed in Sect 5.2 by how to estimate its parameters
if all training data is available at once. Incremental learning approaches are
discussed in Sect. 5.3, where gradient-based and exact methods of tracking the
optimal weight vector estimate are described. Estimating the noise variance
simultaneously is discussed for both methods in Sect. 5.3.7. In Sect. 5.4, slow
convergence of gradient-based methods is demonstrated empirically. Turning
to classification, the training of these models is discussed in Sect. 5.5, after
which the chapter is summarised by putting its content into the context of
current LCS.

5.1 Linear Classifier Models and
Their Underlying Assumptions

Linear regression models were chosen as a good balance between the expres-
siveness of the model and the ease of training the model (see Sect. 3.2.3). The
univariate linear model has already been introduced Sect. 4.2.1, but here, its
underlying assumptions and implications are considered in more detail.

5.1.1 Linear Models

A linear model assumes a linear relation between the inputs and the output,
parametrised by a set of model parameters. Given an input vector x with
DX elements, the model is parametrised by the equally-sized random vector
ω with realisation w, and assumes that the scalar output random variable υ
with realisation y follows the relation

υ = ωT x + ǫ, (5.1)

where ǫ is a zero-mean Gaussian random variable that models the stochasticity
of the process and the measurement noise. Hence, ignoring for now the noise
term ǫ, its is assumed that the process generates the output by a weighted
sum of the components of the input, as becomes very clear when considering
a realisation w of ω, and rewriting the inner product

5.1 Linear Classifier Models and Their Underlying Assumptions 73

wT x ≡
∑

i

wixi, (5.2)

where wi and xi are the ith element of w and x respectively.
While linear models are usually augmented by a bias term to offset them

from the origin, it will be assumed that the input vector always contains a
single constant element (which is usually fixed to 1), which has the equal
effect. For example, consider the input space to be the set of reals; that is
X = R, DX = 1 and both x and w are scalars. In such a case, the assumption
of a linear model implies that the observed output follows xw, which is a
straight line through the origin with slope w. To add the bias term, we can
instead assume an augmented input space X ′ = {1} × R, with input vectors
x′ = (1,x)T , resulting in the linear model wT x′ = w1 + w2x – a straight line
with slope w2 and bias w1. Equally, the input vector can be augmented by
other elements to extend the expressiveness of the linear model, as shown in
the following example:

Example 5.1 (Common Classifier Models used in XCS(F)). Initially, classifiers
in XCS [244, 245] only provided a single prediction, independent of the input.
Such behaviour is equivalent to having the scalar input xn = 1 for all n, as
the weight w then models the output as an average over all matched outputs,
as will be demonstrated in Example 5.2. Hence, such classifiers will be called
averaging classifiers.

Later, Wilson introduced XCSF (the F standing for “function”), that
initially used straight lines as the local models [248]. Hence, in the one-
dimensional case, the inputs are given by xn = (1, in) to model the output
by w1 + w2in, where in is the variable part of the input. This concept was
taken further by Lanzi et al. [144] by applying 2nd and 3rd order polynomials,
using the input vectors xn = (1, in, i2n)T and xn = (1, in, i2n, i3n)T respectively.
Naturally, the input vector does not need to be restricted to taking in to some
power, but allows for the use of arbitrary functions. These functions are known
as basis functions, as they construct the base of the input space. Nonetheless,
increasing the complexity of the input space makes it harder to interpret the
local models. Hence, if it is the aim to understand the localised model, these
models should be kept simple – such as straight lines.

5.1.2 Gaussian Noise

The noise term ǫ captures the stochasticity of the data-generating process and
the measurement noise. In the case of linear models, the inputs and outputs
are assumed to stand in a linear relation. Every deviation from this relation
is captured by ǫ and is interpreted as noise. Hence, assuming the absence of
measurement noise, the fluctuation of ǫ gives information about the adequacy
of assuming a linear model. In other words, if the variance of ǫ is small, then
inputs and outputs do indeed follow a linear relation. Hence, the variance of
ǫ can be used as a measure of how well the local model fits the data. For

74 5 Training the Classifiers

that reason, the aim is not only to find a weight vector that maximises the
likelihood, but also to simultaneously estimate the variance of ǫ.

For linear models it is common to assume that the random variable ǫ
representing the noise has zero mean, constant variance, and follows a normal
distribution [98], that is ǫ ∼ N (0, τ−1), where τ is the noise precision (inverse
noise variance). Hence, in combination with (5.1), and for some realisation w
of ω and input x, the output is modelled by

υ ∼ p(y|x,w, τ−1) = N (y|wT x, τ−1) =
(τ

2π

)1/2

exp
(

−τ

2
(wT x − y)2

)

,

(5.3)
which defines the probabilistic model of a linear regression and forms the core
of its investigation.

That the assumption of Gaussian noise is sensible is discussed at length
by Maybeck [168, Chap. 1].

5.1.3 Maximum Likelihood and Least Squares

To model the matched observations, a classifier aims at maximising the prob-
ability of these observations given its model, as formally described by (4.24).
Combined with the linear model (5.3), the term to maximise by a single clas-
sifier k is given by

N
∑

n=1

m(xn) ln p(yn|xn,w, τ−1) =

N
∑

n=1

m(xn)

(

−1

2
ln(2π) +

1

2
ln τ − τ

2
(wT xn − yn)2

)

. (5.4)

As already shown in Sect. 4.2.1, maximising (5.4) with respect to the
weight vector w results in the weighted least squares problem,

min
w

N
∑

n=1

m(xn)
(

wT xn − yn

)2
, (5.5)

where the weights are given by the classifier’s matching function. Thus, to
determine w by maximum likelihood, we only consider observations for which
m(xn) > 0, that is, which are matched.

To determine the noise precision of the fitted model, we maximise (5.4)
with respect to τ , resulting in the problem

max
τ

(

ln(τ)

N
∑

n=1

m(xn) + τ

N
∑

n=1

m(xn)
(

wT xn − yn

)2

)

, (5.6)

where w is the weight vector determined by (5.5).
The rest of this chapter is devoted to discussing batch and incremental

learning solutions to (5.5) and (5.6), starting with batch learning.

5.2 Batch Learning Approaches to Regression 75

5.2 Batch Learning Approaches to Regression

When performing batch learning, all data D is assumed to be available at once
(see Sect. 3.1.5). Hence, we have full knowledge of {xn, yn}, N and, knowing
the current model structure M, also of the classifier’s matching function m.

Let us now apply this approach to find the classifier’s model parameters
by solving (5.5) and (5.6).

Notation

The following notation is used in this and the remaining chapters: let x,y ∈
R

M be vectors, and A ∈ R
M ×R

M a diagonal matrix. Let 〈x,y〉 ≡ xT y be the
inner product of x and y, at let 〈x,y〉A ≡ xT Ay be the inner product weighted
by A, forming the inner product space 〈·, ·〉A. Then, ‖x‖A ≡

√

〈x,x〉A is the
norm associated with the inner produce space 〈·, ·〉A. Any two vectors x, x̄
are said to be A-orthogonal, if 〈x, x̄〉A = 0. Note that ‖x‖ ≡ ‖x‖I is the
Euclidean norm, where I is the identity matrix.

5.2.1 The Weight Vector

Using the matrix notation introduced in (3.4), and defining the diagonal N×N
matching matrix Mk of classifier k by Mk = diag(m(x1), . . . ,m(xN)), in this
chapter simply denoted M, (5.5) can be rewritten to

min
w

(

(Xw − y)T M(Xw − y)
)

= min
w

‖Xw − y‖2
M . (5.7)

Thus, the aim is to find the w that minimises the weighted distance between
the estimated outputs Xw and the observed outputs y in the inner product
space 〈·, ·〉M . This distance is convex with respect to w and therefore has a
unique minimum [27]. Note that as the output space is single-dimensional, the
set of observed outputs is given by the vector y rather than the matrix Y.

The solution to (5.7) is found by setting its first derivative to zero, resulting
in

ŵ =
(

XT MX
)−1

XT My. (5.8)

Alternatively, a numerically more stable solution that can also be computed
if XT MX is singular and therefore cannot be inverted, is

ŵ =
(√

MX
)+ √

My, (5.9)

where X+ ≡ (XT X)−1XT denotes the pseudo-inverse of matrix X [20].
Using the weight vector according to (5.8), the matching-weighted vector

of estimated outputs Xŵ evaluates to

Xŵ = X
(

XT MX
)−1

XT My. (5.10)

76 5 Training the Classifiers

Observe that X(XT MX)−1XT M is a projection matrix that projects the
vector of observed outputs y onto the hyperplane {Xw|w ∈ R

DX } with re-
spect to 〈·, ·〉M . This result is intuitively plausible, as the w that minimises
the weighted distance ‖Xw − y‖M between the observed and the estimated
outputs is the closest point on this hyperplane to y with respect to 〈·, ·〉M ,
which is the orthogonal projection of y in 〈·, ·〉M onto this plane. This concept
will be used extensively in Chap. 9.

5.2.2 The Noise Precision

Equation (5.6) needs to be solved in order to get the maximum likelihood
noise precision. As before, we evaluate the maximum of (5.6) by setting its
first derivative with respect to τ to zero, to get

τ̂−1 = c−1‖Xŵ − y‖2
M

, (5.11)

where

ck =

N
∑

n=1

mk(xn) = Tr(Mk), (5.12)

is the match count of classifier k, and is in this chapter simply denoted c.
Tr(M) denotes the trace of the matrix M, which is the sum of its diagonal
elements. Hence, the inverse noise precision, that is, the noise variance, is
given by the average squared error of the model output estimates over all
matched observations.

Note, however, that the precision estimate is biased, as it is based on
another estimate ŵ [98, Chap. 5]. This can be accounted for by instead using

τ̂−1 = (c − DX)−1‖Xŵ − y‖2
M

, (5.13)

which is the unbiased estimate of the noise precision.
To summarise, the maximum likelihood model parameters of a classifier

using batch learning are found by first evaluating (5.8) to get ŵ and then
(5.13) to get τ̂ .

Example 5.2 (Batch Learning with Averaging Classifiers). Averaging classi-
fiers are characterised by using xn = 1 for all n for their linear model. Hence,
we have X = (1, . . . , 1)T , and evaluating (5.8) results in the scalar weight
estimate

ŵ = c−1
N

∑

n=1

m(xn)yn, (5.14)

which is the outputs yn averaged over all matched inputs. Note that, as dis-
cussed in Sect. 3.2.3, the inputs to the matching function as appearing in
m(xn) are not necessarily the same as the ones used to build the local model.
In the case of averaging classifiers this differentiation is essential, as the inputs

5.3 Incremental Learning Approaches to Regression 77

xn = 1 used for building the local models do not carry any information that
can be used for localisation of the classifiers.

The noise precision is determined by evaluating (5.13) and results in

τ̂−1 = (c − 1)−1
N

∑

n=1

m(xn)(ŵ − yn)2, (5.15)

which is the unbiased average over the squared deviation of the outputs from
their average, and hence gives an indication of which prediction error can be
expected from the linear model.

5.3 Incremental Learning Approaches to Regression

Having derived the batch learning solution, let us now consider the case
where we want to update our model with each additional observation. In
particular, assume that the model parameters ŵN and τ̂N are based on
N observations, and the new observations (xN+1, yN+1) are to be incorpo-
rated, to get the updated parameters ŵN+1 and τ̂N+1. The following nota-
tion will be used: XN ,yN , MN , and cN denote the input, output, match-
ing matrix, and match count respectively, after N observations. Similarly,
XN+1,yN+1,MN+1, cN+1 stand for the same objects after knowing the addi-
tional observation (xN+1, yN+1).

Several methods can be used to perform the model parameter update,
starting with computationally simple gradient-based approaches, to more
complex, but also more stable methods. Since quickly obtaining a good idea
of the quality of the model of a classifier is important, and as the noise pre-
cision quality measure after (5.6) relies on the weight estimate, the speed of
convergence with respect to estimating both w and τ needs to be considered
in addition to the computational costs of the methods.

Firstly, a well-known adaptive filter theory principle concerning the opti-
mality of incremental linear models will be derived. Then we consider some
gradient-based approaches, followed by approaches that recursively track the
least-squares solution. All this only concerns the weight vector update w.
Similar methods will be applied to the noise precision τ in Sect. 5.3.7.

5.3.1 The Principle of Orthogonality

The Principle of Orthogonality determines when the weight vector estimate
ŵN is optimal in the weighted least squares sense of (5.5):

Theorem 5.3 (Principle of Orthogonality (for example, [108])). The
weight vector estimate ŵN after N observations is optimal in the sense of
(5.5) if the sequence of inputs {x1, . . . ,xN} is MN -orthogonal to the sequence
of estimation errors {(ŵT

Nx1 − y1), . . . , (ŵ
T
NxN − yN)}, that is

78 5 Training the Classifiers

〈XN ,XNŵN − yN 〉MN
=

N
∑

n=1

m(xn)xn

(

ŵT
Nxn − yn

)

= 0. (5.16)

Proof. The solution of (5.5) is found by setting the first derivative of (5.7) to
zero to get

2XT
NMNXN ŵN − 2XT

NMNyN = 0.

The result follows from rearranging the expression.

By multiplying (5.16) by ŵN , a similar statement can be made about the
output estimates:

Corollary 5.4 (Corollary to the Principle of Orthogonality (for ex-
ample, [108])). The weight vector estimate ŵN after N observations is opti-
mal in the sense of (5.5) if the sequence of output estimates {ŵT

Nx1, . . . , ŵ
T
NxN}

is MN -orthogonal to the sequence of estimation errors {(ŵT
Nx1−y1), . . . , (ŵ

T
NxN−

yN)}, that is

〈XNŵN ,XNŵN − yN 〉MN
=

N
∑

n=1

m(xn)ŵT
Nxn

(

ŵT
Nxn − yn

)

= 0. (5.17)

Hence, when having a ŵN that minimises ‖XNŵN − yN‖MN
, both the

sequence of inputs and output estimates are MN -orthogonal to the estimation
errors. In other words, the hyperplane spun by the vectors XN and XN ŵN is
MN -orthogonal to the vector of estimation errors (XNŵN − yN), and there-
fore, the output estimate is an orthogonal projection onto this hyperplane with
respect to 〈·, ·〉MN

. This conforms to the batch learning solution introduced
in Sect. 5.2.1.

5.3.2 Steepest Gradient Descent

Steepest gradient descent is a well-known method for function minimisation,
based on following the gradient of that function. Applied to (5.5), it can be
used to find the weight vector that minimises the squared error. However,
it is only applicable if all observations are known at once, which is not the
case when performing incremental learning. Nonetheless, it is discussed here
as it gives valuable insights into the stability and speed of convergence of
other gradient-based incremental learning methods that are described in later
sections.

As for batch learning, let X,y,M and c be the output matrix, the input
vector, the matching vector, and the match count respectively, given all N
observations. Then, steepest gradient descent is defined by

wn+1 = wn − γn+1
1

2
∇wn

(

‖Xwn − y‖2
M

)

, (5.18)

5.3 Incremental Learning Approaches to Regression 79

starting at some arbitrary w0, and hence generating a sequence of weight
vectors {w0,w1, . . . } by performing small steps along the gradient of the
squared error. Note that n does in this case refer to the iteration number of
the method rather than to the index of the observation, and γn > 0 is the
step size in the nth iteration. Evaluating the gradient ∇wn

with respect to
wn results in the algorithm

wn+1 = wn − γn+1X
T M(Xwn − y). (5.19)

With each step along the gradient, steepest gradient descent reduces the
squared error. As the error function is convex and hence has a unique mini-
mum, following its gradient will lead to this minimum and hence, solves (5.5).

Stability Criteria

By definition, the step size γn can change at each iteration. When kept con-
stant, that is γn = γ for all n > 0, and the gradient is Lipschitz continuous1,
then the steepest gradient descent method is guaranteed to converge to the
minimum (5.5), if that minimum exists [18, Prop. 3.4]. In our case the gradi-
ent as a function of w is Lipschitz continuous and hence, convergence for a
constant step size is guaranteed.

Another condition for the stability of steepest gradient descent, which is
easier to evaluate, is for the step size γ to hold

0 < γ <
2

λmax
, (5.20)

where λmax is the largest eigenvalue of the input correlation matrix c−1XT MX
[108, Chap. 4]. Hence, the step size that keeps the algorithm stable depends
highly on the values of the input vectors.

Time Constant Bounds

Similar to the stability of the method, its rate of convergence is also dependent
on the eigenvalues of the input correlation matrix. Let T be the time constant2

of the weight vector update. This time constant is bounded by

1

− ln(1 − γλmax)
≤ T ≤ 1

− ln(1 − γλmin)
, (5.21)

1 A function f : A → A is Lipschitz continuous if there exists a finite constant
scalar K such that ‖f(a)− f(b)‖ ≤ K‖a− b‖ for any a, b ∈ A. The magnitude K
is a measure of the continuity of the function f .

2 The time constant is a measure of the responsivity of a dynamic system. A low
time constant means that the systems response quickly to a changing input.
Hence, it is inversely proportional to the rate of convergence.

80 5 Training the Classifiers

where λmax and λmin are the largest and the smallest eigenvalue of c−1XT MX
respectively [108, Chap. 4]. As a low T implies a higher rate of convergence,
we would prefer λmax and λmin to be close together for a tight bound, and
large such that T is kept small. However, if the eigenvalues are widely spread,
which is an indication of ill-conditioned inputs, then the settling time of the
gradient descent algorithm is limited by λmin [18, Chap. 3]. Therefore, the
convergence rate is – as the stability criterion – dependent on the values of
the input vectors.

Example 5.5 (Stability Criteria and Time Constant for Steepest Gradient
Descent). Consider an averaging classifier that matches all inputs, that is
X = (1, . . . , 1)T and M = I, the identity matrix. The only eigenvalue of
c−1XT MX is λ = 1, and therefore, according to (5.20), steepest gradient
descent is stable for 0 ≤ γ ≤ 2. Equation (5.21) results in the time constant
T = − ln(1 − γ)−1, and hence the method converges faster with a larger step
size, as is intuitively expected.

The same analysis can be applied to classifiers with straight line models,
with input vectors xn = (1, in)T with in ∈ R for all n. In that case, the input
vector correlation matrix is given by

c−1XT MX =
1

N

N
∑

n=1

(

1 in
in i2n

)

, (5.22)

with eigenvalues λ1 = 0, λ2 = 1 + N−1
∑

i2n. Hence, the step size has to obey

0 ≤ γ ≤ 2

1 + N−1
∑

i2n
, (5.23)

which demonstrates that the larger the values of in, the smaller the step size
has to be to still guarantee stability of the algorithm. The time constant is
bounded by

−1

ln(1 − γ(1 + N−1
∑

i2n))
≤ T ≤ ∞, (5.24)

showing that a large eigenvalue spread |λ2 − λ1| caused by on average high
magnitudes of in pushes the time constant towards infinity, which results in
very slow convergence. Therefore, the convergence rate of steepest gradient
descent depends frequently on the range of the inputs3. This dependency is
demonstrated empirically in Sect. 5.4.

5.3.3 Least Mean Squared

The Least Mean Squared (LMS) algorithm is an incremental approximation
to steepest gradient descent. Rather than performing gradient descent on the

3 A similar LCS-related analysis was done by Lanzi et al. [145, 146], but there the
stability criteria for steepest gradient descent were applied to the LMS algorithm.

5.3 Incremental Learning Approaches to Regression 81

error function given all observations, it follows the gradient of the error func-
tion given only the current observation. For this reason, it is also known as
Stochastic Incremental Steepest Gradient Descent, ADALINE, or, after their
developers Widrow and Hoff [241], the Widrow-Hoff Update.

By inspecting (5.5), the error function for the (N +1)th observation based
on the model after N observations is m(xN+1)(ŵ

T
NxN+1 − yN+1)

2, and its
gradient with respect to wN is therefore 2m(xN+1)xN+1(ŵ

T
NxN+1 − yN+1).

Using this local gradient estimate as a surrogate for the global gradient, the
LMS update is given by

ŵN+1 = ŵN + γN+1m(xN+1)xN+1(yN+1 − ŵT
NxN+1), (5.25)

starting with an arbitrary w0.
As the gradient estimate is only based on the current input, the method

suffers from gradient noise. Due to this noise, a constant step size γ will cause
random motion close to the optimal approximation [108, Chap. 5].

Misadjustment due to Local Gradient Estimate

Let hN (w) = c−1
N ‖XNw − yN‖2 be the mean squared error (MSE) after

N observations as a function of the weight vector. The excess mean square
estimation error is the difference between the MSE of the LMS algorithm
and the minimal MSE after (5.16). The ratio between the excess MSE and
the minimal MSE error is the misadjustment , which is a measure of how far
away the convergence area of LMS is from the optimal estimate. The estimate
error for some small constant step size can, according to [108, Chap. 5], be
estimated by

hN (w∗
N) +

γhN (w∗
N)

2

J
∑

j=1

λj , (5.26)

where w∗
N is the weight vector that satisfies (5.16) and thus, hN (w∗

N) is the
minimal MSE, and λj is the jth of the J eigenvalues of c−1XT

NMNXN . This
shows that the excess MSE estimate is i) always positive, and ii) is propor-
tional to the step size γ. Thus, reducing the step size also reduces the misad-
justment. Indeed, under the standard stochastic approximation assumptions
that

∑∞
n=1 γn = ∞ and

∑∞
n=1 γ2

t < ∞, the Lipschitz continuity of the gra-
dient, and some Pseudogradient property of the gradient, convergence to the
optimal estimate can be guaranteed [18, Prop. 4.1].

Stability Criteria and Average Time Constant

As the LMS filter is a traversal filter of length one, using only the current
observation for its gradient estimate, no concrete bounds for the step size
can be currently given [108, Chap. 6]. However, if the step size is small when

82 5 Training the Classifiers

compared to the inverse of the largest eigenvalue of the input vector correla-
tion matrix, then the stability criteria are the same as for steepest gradient
descent (5.20).

As the gradient changes with each step, we can only give an expression for
the local time constant that varies with time (for more details see [79]). On
average, however, the time constant can be bounded in the same way as for
steepest gradient descent (5.21), with the same consequences.

This leaves us in a dilemma: it was already established that the misadjust-
ment is proportional to the step size. On the other hand, the time constant is
inversely proportional to it. Hence, we have conflicting requirements and can
either aim for a low estimation error or a fast rate of convergence, but will not
be able to satisfy both requirements with anything other than a compromise.

Relation to Batch Learning

To get a better intuitive understanding of how the LMS algorithm estimates
the weight vector, let us reformulate it as a batch learning approach for the
simplified case of an averaging classifier that matches all inputs, that is xn =
1,m(xn) = 1 for all n > 0. In that case, (5.25) reduces to

ŵN+1 = ŵN + γN+1(yN+1 − ŵN), (5.27)

and by recursive substitution (as in Example 3.2) results in the batch learning
formulation

ŵN =

N
∑

n=1

ynγn

N
∏

m=n+1

(1 − γm) + w0

N
∏

n=1

(1 − γn). (5.28)

Hence, the nth observation yn is weighted by γn

∏N
m=n+1(1− γm), which, for

0 < γn̄ < 1 for all 0 < n̄ ≤ n, means that the lower n, the less yn contributes to
the weight estimate. Also, w0 introduces a bias that decays exponentially with
∏N

n=1(1 − γn). Comparing this insight to the results of Example 5.2, where
it was shown that the optimal weight in the least squares sense for averaging
classifiers is the average over all matched outputs, it becomes apparent that
the LMS algorithm does not achieve this optimum for arbitrary step sizes.
Nonetheless, it can be applied readily for recency-weighted applications, such
as to handle non-stationary processes, as is required in reinforcement learning
applications.

5.3.4 Normalised Least Mean Squared

As seen from (5.25), the magnitude of the weight update is directly propor-
tional to the new input vector xN+1, causing gradient noise amplification [108,
Chap. 6]. Thus, if some elements of the input vector are large, the correction

5.3 Incremental Learning Approaches to Regression 83

based on a local error will be amplified and causes additional noise. This prob-
lem can be overcome by weighting the correction by the squared Euclidean
norm of the input, resulting in the update

ŵN+1 = ŵN + γtm(xN+1)
xN+1

‖xN+1‖2
(yN+1 − ŵT

NxN+1). (5.29)

This update equation can also be derived by calculating the weight vector
update that minimises the norm of the weight change ‖ŵN+1−ŵN‖2, subject
to the constraint m(xN+1)ŵN+1xN+1 = yN+1. As such, the normalised LMS
filter can be seen as a solution to a constrained optimisation problem.

Regarding stability, the step size parameter γ is now weighted by the
inverted square norm of the input vector. Thus, stability in the MSE sense
is dependent on the current input. The lower bound is still 0, and the upper
bound will be generally larger than 2 if the input values are overestimated,
and smaller than 2 otherwise. The optimal step size, located at the largest
value of the mean squared deviation, is the centre of the two bounds [108,
Chap. 6].

As expected, the normalised LMS algorithm features a rate of conver-
gence that is higher than that of the standard LMS filter, as empirically
demonstrated by Douglas [77]. One drawback of the modification is that one
needs to check ‖xN+1‖2 for being zero, in which case no update needs to be
performed to avoid division by zero.

To summarise, both variants of the LMS algorithm have low computational
and space costs O(DX), but only rely on the local gradient estimate and
may hence feature slow convergence and misadjustment. The step size can
be adjusted to either improve convergence speed or misadjustment, but one
cannot improve both at the same time. Additionally, the speed of convergence
is by (5.21) influenced by the value of the inputs and might be severely reduced
by ill-conditioned inputs, as will be demonstrated in Sect. 5.4.

Let us recall that to quickly getting an idea of the goodness-of-fit of a clas-
sifier model, measured by the model variance (5.13), requires a good weight
vector estimate. Despite their low computational cost, gradient-based meth-
ods are known to suffer from low speed of convergence and are therefore not
necessarily the best choice for this task. The following sections describe incre-
mental methods that are computationally more costly, but are able to recur-
sively track the weight vector that satisfies (5.16) and are therefore optimal
in the least squares sense.

5.3.5 Recursive Least Squares

The Principle of Orthogonality (5.16) is satisfied if the normal equation
(

XT
NMNXN

)

ŵN = XT
NMNyN , (5.30)

holds. Using the DX × DX symmetric matrix ΛN = XT
NMNXN , ΛN and

ΛN+1 are related by

84 5 Training the Classifiers

ΛN+1 = ΛN + m(xN+1)xN+1x
T
N+1, (5.31)

with Λ0 = 0. Similarly, we have

XT
N+1MN+1yN+1 = XT

NMNyN + m(xN+1)xN+1yN+1, (5.32)

which, in combination with (5.30) and (5.31), allows us to derive the relation

ΛN+1ŵN+1 = ΛN+1wN + m(xN+1)xN+1(yN+1 − ŵT
NxN+1). (5.33)

Pre-multiplying the above by Λ−1
N+1, we get the weight vector update

ŵN+1 = ŵN + m(xN+1)Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1), (5.34)

which, together with (5.31) and starting with w0 = 0, defines the recursive
least squares (RLS) algorithm (for example, [108, Chap. 9] or [18, Chap. 3]).

Following this algorithm satisfies the Principle of Orthogonality with each
additional observation, and as such provides an incremental approach of track-
ing the optimal weight vector in the least squares sense. This comes at the
cost O(D3

X) of having to invert the matrix Λ with each additional observa-
tion that is to be included into the model. Alternatively, we can utilise the
properties of Λ to derive the following modified update:

Operating on Λ−1

The Sherman-Morrison formula (also known as the Matrix Inversion Lemma,
for example [108, Chap. 6]) provides a method of adding a dyadic product
to an invertible matrix by operating directly on the inverse of this matrix.
Hence, it is applicable to (5.31), and results in

Λ−1
N+1 = Λ−1

N − m(xN+1)
Λ−1

N xN+1x
T
N+1Λ

−1
N

1 + m(xN+1)xT
N+1Λ

−1
N xN+1

, (5.35)

which is of cost O(D2
X) rather than O(D3

X) for inverting Λ in (5.34) at each
update.

The drawback of this approach is that Λ cannot be initialised to Λ0 = 0,
as the Sherman-Morrison formula is only valid for invertible matrices, and
Λ0 = 0 is clearly not. This issue is usually handled by initialising Λ−1

0 = δI,
where δ is a large positive scalar (to keep Λ0 close to 0), and I is the identity
matrix. While this approach introduces an initial bias to the RLS algorithm,
this bias decays exponentially, as will be shown in the next section.

Relation to Ridge Regression

It is easy to show that the solution ŵN to minimising

‖XNw − yN‖2
MN

+ λ‖w‖2, (5.36)

5.3 Incremental Learning Approaches to Regression 85

(λ is the positive scalar ridge complexity) with respect to w requires

(XT
NMNXN + λI)ŵN = XT

NMNyn (5.37)

to hold. The above is similar to (5.30) with the additional term λI. Hence,
(5.31) still holds when initialised with Λ0 = λI, and consequently so does
(5.34). Therefore, initialising Λ−1

0 = δI to apply (5.35) to operate on Λ−1

rather than Λ is equivalent to minimising (5.36) with λ = δ−1.
In addition to the matching-weighted squared error, (5.36) penalises the

size of w. This approach is known as ridge regression and was initially intro-
duced to work around the problem of initially singular XT

NMNXN for small
N , that prohibited the solution of (5.30). However, minimising (5.36) rather
than (5.7) is also advantageous if the input vectors suffer from a high noise
variance, resulting in large w and a bad model for the real data-generating
process. Essentially, ridge regression assumes that the size of w is small and
hence computes better model parameters for noisy data, given that the inputs
are normalised [105, Chap. 3].

To summarise, using the RLS algorithm (5.34) and (5.35) with Λ−1
0 = δI,

a classifier performs ridge regression with ridge complexity λ = δ−1. As
by (5.36), the contribution of ‖w‖ is independent of the number of obser-
vations N , its influence decreases exponentially with N .

A Recency-Weighted Variant

While the RLS algorithm provides a recursive solution such that (5.16) holds,
it weights all observations equally. Nonetheless, we might sometimes require
recency-weighting, such as when using LCS in combination with reinforcement
learning. Hence, let us derive a variant of RLS that applies a scalar decay
factor 0 ≤ λ ≤ 1 to past observations.

More formally, after N observations, we aim at minimising

N
∑

n=1

m(xn)λ
PN

j=n+1
m(xj)(wT xn − yn)2 = ‖XNw − yN‖2

Mλ
N

(5.38)

with respect to w, where the λ-augmented diagonal matching matrix Mλ
N is

given by

Mλ
N =













m(x1)λ
PN

j=2
m(xj) 0

m(x2)λ
PN

j=3
m(xj)

. . .

0 m(xN)













. (5.39)

Note that λ
PN

j=n+1
m(xj) is used rather than simply λN−n to only decay past

observations if the current observation is matched. As before, the solution ŵN

that minimises (5.38) satisfies

86 5 Training the Classifiers

(XT
NMλ

NXN)ŵN = XT
NMλ

NyN . (5.40)

Using ΛN = XT
NMλ

NXN and the relations

ΛN+1 = λm(xN+1)ΛN + m(xN+1)xN+1x
T
N+1, (5.41)

ΛN+1ŵN+1 = λm(xN+1)ΛN ŵN + m(xN+1)xN+1yN+1, (5.42)

the recency-weighted RLS weight vector update is given by

ŵN+1 = λm(xN+1)ŵN + m(xN+1)Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1). (5.43)

The matrix Λ can be updated by either using (5.41) or by applying the
Sherman-Morrison formula to get

Λ−1
N+1 = λ−m(xN+1)Λ−1

N (5.44)

−m(xN+1)λ
−m(xN+1)

Λ−1
N xN+1x

T
N+1Λ

−1
N

λm(xN+1) + m(xN+1)xT
N+1Λ

−1
N xN+1

.

All equations from this section reduce to the non-recency-weighted equivalents
if λ = 1.

In summary, the RLS algorithm recursively tracks the solution according
to the Principle of Orthogonality. As this solution is always optimal in the
least squares sense, there is no need to discuss its convergence to the optimal
solution, as was required for gradient-based algorithms. While the RLS can
also be adjusted to perform recency-weighting, as developed in this section,
its only drawback when compared to the LMS or normalised LMS algorithm
is its higher computational cost. Nonetheless, if this additional cost is bear-
able, it should be always preferred to the gradient-based algorithm, as will be
demonstrated in Sect. 5.4.

Example 5.6 (RLS Algorithm for Averaging Classifiers). Consider averaging
classifiers, such that xn = 1 for all n > 0. Hence, (5.31) becomes

ΛN+1 = ΛN + m(xN+1), (5.45)

which, when starting with Λ0 = 0 is equivalent to the match count ΛN = cN .
The weight update after (5.34) reduces to

wN+1 = wN + m(xN+1)c
−1
N+1(yN+1 − wN). (5.46)

Note that this is equivalent to the LMS algorithm (5.25) for averaging classi-
fiers when using the step size γN = c−1

N . By recursive back-substitution of the
above, and using w0 = 0, we get

wN = c−1
N

N
∑

n=1

m(xN+1)yn, (5.47)

5.3 Incremental Learning Approaches to Regression 87

which is, as already derived for batch learning (5.14), the matching-weighted
average over all observed outputs.

Interestingly, XCS applies the MAM update that is equivalent to averaging
the input for the first γ−1 inputs, where γ is the step size, and then tracking
the input using the LMS algorithm [244]. In other words, it bootstraps its
weight estimate using the RLS algorithm, and then continues tracking of the
output using the LMS algorithm. Note that this is only the case for XCS with
averaging classifiers, and does not apply for XCS derivatives that use more
complex models, such as XCSF. Even though not explicitly stated by Wilson
[248] and others, it is assumed that the MAM update was not used for the
weight update in those XCS derivatives, but is still used when updating its
scalar parameters, such as the relative classifier accuracy and fitness.

5.3.6 The Kalman Filter

The RLS algorithm was introduced purely on the basis of the Principle of Or-
thogonality without consideration of the probabilistic structure of the random
variables. Even though the Kalman filter results in the same update equations,
it provides additional probabilistic information and hence supports better un-
derstanding of the method. Furthermore, its use is advantageous as “[. . .] the
Kalman filter is optimal with respect to virtually any criterion that makes
sense” [168, Chap. 1].

Firstly, the system model is introduced, from which the update equation
in covariance form and inverse covariance form are derived. This is followed
by considering how both the system state and the measurement noise can
be estimated simultaneously by making use of the Minimum Model Error
philosophy. The resulting algorithm is finally related to the RLS algorithm.

The System Model

The Kalman-Bucy system model [126, 127] describes how a noisy process
modifies the state of a system, and how this affects the noisy observation of
the system. Both the process and the relation between system state and obser-
vation is assumed to be linear, and all noise is zero-mean white (uncorrelated)
Gaussian noise.

In our case, the process that generates the observations is assumed to be
stationary, which is expressed by a constant system state. Additionally, the
observations are in linear relation to the system state and all deviations from
that linearity are covered by zero-mean white (uncorrelated) Gaussian noise.
The resulting model is

υn = ωT xn + ǫn, (5.48)

where υn is the random variable that represents the observed nth scalar output
of the system, ω is the system state random variable, xn is the known nth

88 5 Training the Classifiers

input vector to the system, and ǫn is the measurement noise associated with
observing yn.

The noise ǫn is modelled by a zero-mean Gaussian ǫn ∼ N (0, (m(xn)τn)−1)
with precision m(xn)τn. Here, we utilise the matching function to blur obser-
vations that are not matched. Given, for example, that xn is matched and
so m(xn) = 1, the resulting measurement noise has variance τ−1

n . However,
if that state is not matched, that is if m(xn) = 0, then the measurement
noise has infinite variance and the associated observation does not contain
any information.

The system state ω is modelled by the multivariate Gaussian model ω ∼
N (ŵ,Λ−1) centred on ŵ and with precision matrix Λ. Hence, the output
υn is also Gaussian υn ∼ N (yn, (m(xn)τn)−1), and jointly Gaussian with the
system state ω. More details on the random variables, their relations and
distributions can be found in [168, Chap. 5] and [2, Chap. 1].

Comparing the model (5.48) to the previously introduced linear model (5.1),
it can be seen that the system state corresponds to the weight vector, and that
the only difference is the assumption that the measurement noise variance can
change with each observation. Additionally, the Kalman-Bucy system model
explicitly assumes a multivariate Gaussian model for the system state ω, re-
sulting in the output υ also being modelled by a Gaussian.

The aim of the Kalman filter is to estimate the system state that can
subsequently be used to predict the output given a new input. This is achieved
by conditioning a prior ω0 ∼ N (ŵ0,Λ

−1
0) on the available observations. As

before, we proceed by assuming that the current model ωN ∼ N (ŵN ,Λ−1
N)

results from incorporating the information of N observations, and we want to
add the new observation (xN+1, yN+1, τN+1). Later it will be shown how to
estimate the noise precision τN+1, but for now we assume that it is part of
the observation.

Covariance Form

As the system state and the observation are jointly Gaussian, the Bayesian
update of the model parameters is given by [2, Chap. 3]

ŵN+1 = E
(

ωN |υN+1 ∼ N (yN+1, (m(xN+1)τN+1)
−1)

)

= E(ωN) + cov(ωN , υN+1)var(υN+1)
−1(yN+1 − E(υN+1)), (5.49)

Λ−1
N+1 = cov

(

ωN ,ωN |υN+1 ∼ N (yN+1, (m(xN+1)τN+1)
−1)

)

= cov(ωN ,ωN) − cov(ωN , υN+1)var(υN+1)
−1cov(υN+1,ωN).(5.50)

Evaluating the expectations, variances and covariances

E(ωN)=ŵN ,

E(υN+1)=ŵT
NxN+1,

cov(ωN , υN+1)=Λ−1
N xN+1,

cov(ωN ,ωN)=Λ−1
N ,

cov(υN+1,ωN)=xT
N+1Λ

−1
N ,

var(υN+1) = xT
N+1Λ

−1
N xN+1 + (m(xN+1)τN+1)

−1,

5.3 Incremental Learning Approaches to Regression 89

and substituting them into the Bayesian update results in

ζN+1 = m(xN+1)Λ
−1
N xN+1

(

m(xN+1)x
T
N+1Λ

−1
N xN+1 + τ−1

N+1

)−1
,(5.51)

ŵN+1 = ŵN + ζN+1

(

yN+1 − ŵT
NxN+1

)

, (5.52)

Λ−1
N+1 = Λ−1

N − ζN+1x
T
N+1Λ

−1
N . (5.53)

This form of the Kalman filter is known as the covariance form as it operates
on the covariance matrix Λ−1 rather than the precision matrix Λ.

The value ζN+1 is the Kalman gain and is a temporary measure that
depends on the current model ωN and the new observation. It mediates how
much ωN is corrected, that is, how much the current input xN+1 influences
Λ−1

N+1, and how the output residual yN+1−ŵT
NxN+1 contributes to computing

ŵN+1.
As the measurement noise variance τ−1

N+1 approaches zero, the gain ζN+1

weights the output residual more heavily. On the other hand, as the weight
covariance Λ−1

N approaches zero, the gain ζN+1 assigns less weight to the
output residual [240]. This is the behaviour that would be intuitively excepted,
as low-noise observations should influence the model parameters more strongly
than high-noise observations. Also, the gain is mediated by the matching
function and in the cases of non-matched inputs reduced to zero, which causes
the model parameters to remain unchanged.

Inverse Covariance Form

Using the Kalman filter to estimate the system state requires the definition of a
prior ω0. In many cases, the correct prior is unknown and setting it arbitrarily
might introduce an unnecessary bias. While complete lack of information can
be theoretically induced as the limiting case of certain eigenvalues of Λ−1

0

going to infinity [168, Chap. 5.7], it cannot be used in practice due to large
numerical errors when evaluating (5.51).

This problem can be dealt with by operating the Kalman filter in the in-
verse covariance form rather than the previously introduced covariance form.
To update Λ rather than Λ−1 we substitute ζN+1 from (5.51) into (5.53) and
apply the Matrix Inversion Lemma (for example, [108, Chap. 9.2]) to get

ΛN+1 = ΛN + m(xN+1)τN+1xN+1x
T
N+1. (5.54)

The weight update is derived by combining (5.51) and (5.53) to get

ζN+1 = m(xN+1)τN+1Λ
−1
N+1xN+1, (5.55)

which, when substituted into (5.52), gives

ŵN+1 = ŵN + m(xN+1)τN+1Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1). (5.56)

90 5 Training the Classifiers

Pre-multiplying the above by ΛN+1 and substituting (5.54) for the first ΛN+1

of the resulting equation gives the final update equation

ΛN+1ŵN+1 = ΛNŵN + m(xN+1)τN+1xN+1yN+1. (5.57)

Thus, ŵ is updated indirectly through the vector (Λŵ) ∈ R
DX from which

ŵ can be recovered by ŵ = Λ−1(Λŵ). Even though the initial Λ might
be singular and therefore cannot be inverted to calculate ŵ, it can still be
updated by (5.54) until it is non-singular and can be inverted. This allows for
using the non-informative prior Λ0 = 0 that cannot be used when applying
the covariance form of the Kalman filter.

Minimum Model Error Philosophy

For deriving the Kalman filter update equations we have assumed knowledge
of the measurement noise variances {τ−1

1 , τ−1
2 , . . . }. In our application of the

Kalman filter that is not the case, and so we have find a method that allows
us to estimate the variances at the same time as the system state.

Assuming a different measurement noise variance for each observation
makes estimating these prohibitive, as it would require estimating more pa-
rameters than there are observations. To reduce the degrees of freedom of
the model it will be assumed that τ is constant for all observations, that is
τ1 = τ2 = · · · = τ . In addition, we adopt the Minimum Model Error (MME)
philosophy [174] that aims at finding the model parameters that minimises the
model error, which is determined by the noise variance τ . The MME is based
on the Covariance Constraint condition, which states that the observation-
minus-estimate error variance must match the observation-minus-truth error
variance, that is

(yn − ŵT xn)2 ≈ (m(xn)τ)−1. (5.58)

Given that constraint and the assumption of not having any process noise, the
model error for the nth observation is given by weighting the left-hand side
of (5.58) by the inverted right-hand side, which, for N observations results in

τ
N

∑

n=1

m(xn)
(

ŵT xn − yn

)2

. (5.59)

Minimising the above is independent of τ and therefore equivalent to (5.5).
Thus, assuming a constant measurement noise variance has led us back to
minimising the error that we originally intended to minimise.

Relation to Recursive Least Squares

The Kalman filter update equations are very similar but not quite the same
as the RLS update equations. Maybe the most obvious match is the inverse

5.3 Incremental Learning Approaches to Regression 91

covariance update (5.54) of the Kalman filter, and (5.31) of the RLS algorithm,
only differing by the additional term τN+1 in (5.54). Similarly, (5.56) and
(5.34) differ by the same term.

In fact, if all Λ in the RLS update equations are substituted by τ−1Λ,
in addition to assuming τ1 = τ2 = · · · = τ for the Kalman filter, these
equations become equivalent. More specifically, the covariance form of the
Kalman filter corresponds to the RLS algorithm that uses (5.35), and the
inverse covariance form is equivalent to using (5.31). They also share the
same characteristics: while (5.35) is computationally cheaper, it cannot be
used with a non-informative prior, just like the covariance form. Conversely,
using (5.31) allows the use of non-informative priors, but requires a matrix
inversion with every additional update, as does the inverse covariance form to
recover ŵ by ŵ = Λ−1(Λŵ), making it computationally more expensive.

The information gain from this relation is manifold:

• The weight vector of the linear model corresponds to the system state of
the Kalman filter. Hence, it can be modelled by a multivariate Gaus-
sian, that, in the notation of the RLS algorithm, is given by ωN ∼
N (ŵN , (τΛN)−1). As τ is unknown, it needs to be substituted by its
estimate τ̂ .

• Acquiring this model for ω causes the output random variable υ to become
Gaussian as well. Hence, using the model for prediction, these predictions
will be Gaussian. More specifically, given a new input x′, the predictive
density is

y′ ∼ N
(

ŵT x′, τ̂−1(x′T Λ−1x′ + m(x′)−1)
)

, (5.60)

and is thus centred on ŵT x′. Its spread is determined on one hand by
the estimated noise variance (m(x′)τ̂)−1 and the uncertainty of the weight
vector estimate x′T (τ̂Λ)−1x. The Λ in the above equations refers to the
one estimated by the RLS algorithm.
Following Hastie et al. [105, Chap. 8.2.1], the two-sided 95% confidence of
the standard normal distribution is given by considering its 97.5% point
(as (100%−2×2.5%) = 95%), which is 1.96. Therefore, the 95% confidence
interval of the classifier predictions is centred on the mean of (5.60) with
1.96 times the square root of the prediction’s variance to either side of the
mean.

• In deriving the Kalman filter update equations, matching was embed-
ded as a modifier to the measurement noise variance, that is ǫn ∼
N (0, (m(xn)τ)−1), which gives us a new interpretation for matching: A
matching value between 0 and 1 for a certain input can be interpreted as
reducing the amount of information that the model acquires about the as-
sociated observation by increasing the noise of the observation and hence
reducing its certainty.

• A similar interpretation can be given for RLS with recency-weighting: the
decay factor λ acts as a multiplier to the noise precision of past observa-

92 5 Training the Classifiers

tions and hence reduces their certainty. This causes the model to put more
emphasis on more recent observations due to their lower noise variance.
Formally, modelling the noise for the nth observation after N observations
by

ǫn ∼ N
(

0,
(

m(xn)τλ
PN

j=n+1
m(xj)

)−1
)

(5.61)

causes the Kalman filter to perform the same recency weighting as the
recency-weighted RLS variant.

• The Gaussian prior on ω provides a different interpretation of the ridge
complexity λ in ridge regression: recalling that λ corresponds to initialising
RLS with Λ−1

0 = λ−1I, it is also equivalent to using the Kalman filter with
the prior ω0 ∼ N (0, (λτ)−1I). Hence, ridge regression assumes the weight
vector to be centred on 0 with an independent variance of (λτ)−1 of each
element of this vector. As the prior covariance is proportional to the real
noise variance τ−1, a smaller variance will cause stronger shrinkage due to
a more informative prior.

What if the noise distribution is not Gaussian? Would that invalidate
the approach taken by RLS and the Kalman filter? Fortunately, the Gauss-
Markov Theorem (for example, [98]) states that the least squares estimate
is optimal independent of the shape of the noise distribution, as long as its
variance is constant over all observations. Nonetheless, adding the assumption
of Gaussian noise and acquiring a Gaussian model for the weight vector allows
us to specify the predictive density. Without these assumptions, we would be
unable make any statements about this density, and are subsequently also
unable to provide a measure for the prediction confidence.

In summary, demonstrating the formal equivalence between the RLS al-
gorithm and the Kalman filter for a stationary system state has significantly
increased the understanding of the assumptions underlying the RLS method
and provides intuitive interpretations for matching and recency-weighting by
relating them to an increased uncertainty about the observations.

5.3.7 Incremental Noise Precision Estimation

So far, the discussion of the incremental methods has focused on estimating
the weight vector that solves (5.5). Let us now consider how we can estimate
the noise precision by incrementally solving (5.6).

For batch learning it was already demonstrated that (5.11) and (5.13)
provide a biased and unbiased noise precision estimate that solves (5.6). The
same solutions are valid when using an incremental approach, and thus, after
N observations,

τ̂−1
N = c−1

N ‖XN ŵN − yN‖2
MN

(5.62)

provides a biased estimate of the noise precision, and

τ̂−1
N = (cN − DX)−1‖XNŵN − yN‖2

MN
(5.63)

5.3 Incremental Learning Approaches to Regression 93

is the unbiased estimate. Ideally, ŵN is the weight vector that satisfies the
Principle of Orthogonality, but if gradient-based methods are utilised, we are
forced to rely on the current (possibly quite wrong) estimate.

Let us firstly derive a gradient-based method for estimating the noise pre-
cision, which is the one applied in XCS. Following that, a much more accurate
approach is introduced that can be used alongside the RLS algorithm to track
the exact noise precision estimate after (5.63) for each additional observation.

Estimation by Gradient Descent

The problem of computing (5.62) can be reformulated as finding the minimum
of

N
∑

n=1

m(xn)
(

τ−1 − (ŵT
Nxn − yn)2

)2

. (5.64)

That the minimum of the above with respect to τ is indeed (5.62) can be
easily shown by the solution of setting its gradient with respect to τ to zero.

This minimisation problem can now be solved with any gradient-based
method. Applying the LMS algorithm, the resulting update equation is given
by

τ̂−1
N+1 = τ̂−1

N + γm(xN+1)
(

(ŵT
N+1xN+1 − yN+1)

2 − τ̂−1
N

)

. (5.65)

While this method provides a computationally cheap approach to estimating
the noise precision, it is flawed in several ways: firstly, it suffers under some
circumstances from slow convergence speed, just as any other gradient-based
method. Secondly, at each step, the method relies on the updated weight
vector estimate, but does not take into account that changing the weight
vector also modifies past estimates and with it the squared estimation error.
Finally, by minimising (5.64) we are computing the biased estimate (5.62)
rather than the unbiased estimate (5.63). The following method address all of
these problems.

Estimation by Direct Tracking

Assume that the sequence of weight vector estimates {ŵ1, ŵ2, . . . } satisfies
the Principle of Orthogonality, which we can achieve by utilising the RLS
algorithm. In the following, a method for incrementally updating ‖XN ŵN −
yN‖2

MN
is derived, which then allows for accurate tracking of the unbiased

noise precision estimate (5.63).
At first, let us derive a simplified expression for ‖XNŵN − yN‖2

MN
:

based on the Corollary to the Principle of Orthogonality (5.17) and −yN =
−XN ŵN + (XN ŵN − yN) we get

94 5 Training the Classifiers

yT
NMNyN = ŵT

NXT
NMNXN ŵN − 2ŵT

NXT
NMN (XNŵN − yN)

+(XN ŵN − yN)T MN (XN ŵN − yN)

= ŵT
NXT

NMNXN ŵN + ‖XNŵN − yN‖2
MN

, (5.66)

which, for the sum of squared errors, results in

‖XN ŵN − yN‖2
MN

= yT
NMNyN − ŵT

NXT
NMNXNŵN . (5.67)

Expressing ‖XN+1ŵN+1−yN+1‖2
MN+1

in terms of ‖XN ŵN −yN‖2
MN

requires

combining (5.31), (5.32) and (5.67), and the use of ΛN ŵN = XT
NMNyN after

(5.30), which, after some algebra, results in the following:

Theorem 5.7 (Incremental Sum of Squared Error Update). Let the
sequence of weight vector estimates {ŵ1, ŵ2, . . . } satisfy the Principle of Or-
thogonality (5.16). Then

‖XN+1ŵN+1 − yN+1‖2
MN+1

(5.68)

= ‖XN ŵN − yN‖2
MN

+ m(xN+1)(ŵ
T
NxN+1 − yN+1)(ŵ

T
N+1xN+1 − yN+1)

holds.

An almost equal derivation reveals that the sum of squared errors for the
recency-weighted RLS variant is given by

‖XN+1ŵN+1 − yN+1‖2
MN+1

= λm(xN+1)‖XN ŵN − yN‖2
MN

+m(xN+1)(ŵ
T
NxN+1 − yN+1)(ŵ

T
N+1xN+1 − yN+1), (5.69)

where, when compared to (5.68), the current sum of squared errors is addi-
tionally discounted.

In summary, the unbiased noise precision estimate can be tracked by di-
rectly solving (5.63), where the match count is updated by

cN+1 = cN + m(xN+1), (5.70)

and the sum of squared errors is updated by (5.68). As Theorem 5.7 states,
(5.68) is only valid if the Principle of Orthogonality holds. However, using the
computationally cheaper RLS implementation that involves (5.35) introduces
an initial bias and hence violates the Principle of Orthogonality. Nonetheless,
if δ in Λ−1

0 = δI is set to a very large positive scalar, this bias is negligible,
and hence (5.68) is still applicable with only minor inaccuracy.

Example 5.8 (Noise Precision Estimation for Averaging Classifiers). Consider
averaging classifiers, such that xn = 1 for all n > 0. Given the use of gradient-
based methods to estimate the weight vector violates the Principle of Orthog-
onality, and hence (5.65) has to be used estimate the noise precision, resulting
in

5.3 Incremental Learning Approaches to Regression 95

τ̂−1
N+1 = τ̂−1

N + m(xN+1)
(

(ŵN+1 − yN+1)
2 − τ̂−1

N

)

. (5.71)

Alternatively, we can use the RLS algorithm (5.46) for averaging classifiers,
and use (5.68) to accurately track the noise precision by

τ̂−1
N+1 = τ̂−1

N + m(xN+1)(ŵN − yN+1)(ŵN+1 − yN+1). (5.72)

Note that while the computational cost of both approaches is equal (in its
application to averaging classifiers), the second approach is vastly superior in
its weight vector and noise precision estimation accuracy and should therefore
be always preferred.

Squared Error or Absolute Error?

XCSF (of which XCS is a special case) initially applied the NLMS method
(5.29) [244], and later the RLS algorithm by (5.34) and (5.35) [145, 146] to
estimate the weight vector. The classifier estimation error is tracked by the
LMS update

τ̂−1
N+1 = τ̂−1

N + m(xN+1)
(

|ŵT
N+1xN+1 − yN+1| − τ̂−1

N

)

, (5.73)

to – after N observations – perform stochastic incremental gradient descent
on the error function

N
∑

n=1

m(xn)
(

τ−1 − |ŵT
Nxn − yn|

)2

. (5.74)

Therefore, the error that is estimated is the mean absolute error

c−1
N

N
∑

n=1

m(xn)
∣

∣

∣ŵ
T
Nxn − yn

∣

∣

∣ , (5.75)

rather than the MSE (5.62). Thus, XCSF does not estimate the error that its
weight vector estimate aims at minimising, and does not justify this incon-
sistency – probably because the errors that are minimised have never before
been explicitly expressed. While there is no systematic study that compares
using (5.62) rather than (5.75) as the classifier error estimate in XCSF, we
have recommended in [158] to use the MSE for the reason of consistency and
easier tracking by (5.68), and – as shown here – to provide its probabilistic
interpretation as the noise precision estimate τ̂ of the linear model.

5.3.8 Summarising Incremental Learning Approaches

Various approaches to estimating the weight vector and noise precision es-
timate of the linear model (5.3) have been introduced. While the gradient-
based models, such as LMS or NLMS, are computationally cheap, they re-
quire problem-dependent tuning of the step size and might feature slow con-
vergence to the optimal estimates. RLS and Kalman filter approaches, on the

96 5 Training the Classifiers

Batch Learning

ŵ = (XT MX)−1XT My or ŵ = (
√

MX)+
√

My

τ̂−1 = (c − DX)−1‖Xŵ − y‖2
M with c = Tr(M)

Incremental Weight Vector Estimate Complexity

LMS

ŵN+1 = ŵN + γN+1m(xN+1)xN+1(yN+1 − ŵT
NxN+1) O(DX)

NLMS

ŵN+1 = ŵN + γN+1m(xN+1)
xN+1

‖xN+1‖
2 (yN+1 − ŵT

NxN+1) O(DX)

RLS (Inverse Covariance Form)

ŵN+1 = ŵN + m(xN+1)Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1), O(D3
X)

ΛN+1 = ΛN + m(xN+1)xN+1x
T
N+1

RLS (Covariance Form)

ŵN+1 = ŵN + m(xN+1)Λ
−1
N+1xN+1(yN+1 − ŵT

NxN+1), O(D2
X)

Λ−1
N+1 = Λ−1

N − m(xN+1)
Λ

−1

N
xN+1x

T
N+1Λ

−1

N

1+m(xN+1)xT
N+1

Λ
−1

N
xN+1

Kalman Filter (Covariance Form)

ζN+1 = m(xN+1)Λ
−1
N xN+1

`

m(xN+1)x
T
N+1Λ

−1
N xN+1 + τ−1

N+1

´−1
,

ŵN+1 = ŵN + ζN+1

`

yN+1 − ŵT
NxN+1

´

, O(D2
X)

Λ−1
N+1 = Λ−1

N − ζN+1x
T
N+1Λ

−1
N

Kalman Filter (Inverse Covariance Form)
ΛN+1ŵN+1 = ΛNŵN + m(xN+1)τN+1xN+1yN+1,
ΛN+1 = ΛN + m(xN+1)τN+1xN+1x

T
N+1, O(D3

X)
ŵN+1 = ΛN+1(ΛN+1ŵN+1)

−1

Incremental Noise Precision Estimate Complexity

LMS (for biased estimate (5.62))

τ̂−1
N+1 = τ̂−1

N + m(xN+1)
`

(ŵT
N+1xN+1 − yN+1)

2 − τ̂−1
N

´

O(DX)

Direct tracking (for unbiased estimate (5.63))
Only valid in combination with RLS/Kalman filter in Inverse Covariance Form
or in Covariance Form with insignificant prior

‖XN+1ŵN+1 − yN+1‖2
MN+1

= ‖XNŵN − yN‖2
MN

+m(xN+1)(ŵ
T
NxN+1 − yN+1)(ŵ

T
N+1xN+1 − yN+1), O(DX)

cN+1 = cN + m(xN+1),
τ̂−1

N+1 = (cN+1 − DX)−1‖XN+1ŵN+1 − yN+1‖2
MN+1

Table 5.1. A summary of batch and incremental methods presented in this chap-
ter for training the linear regression model of a single classifier. The notation and
initialisation values are explained throughout the chapter

other hand, scale at best with O(D2
X), but are able to accurately track both

the optimal weight vector estimate and its associated noise precision estimate
simultaneously.

Table 5.1 gives a summary of all the methods introduced in this chapter
(omitting the recency-weighted variants), together with their computational

5.4 Empirical Demonstration 97

complexity. As can be seen, this complexity is exclusively dependent on the
size of the input vectors for use by the classifier model (in contrast to their
use for matching). Given that we have averaging classifiers, we have DX = 1,
and thus, all methods have equal complexity. In this case, the RLS algorithm
with direct noise precision tracking should always be applied. For higher-
dimensional input spaces, the choice of the algorithm depends on the available
computational resources, but the RLS approach should always be given a
strong preference.

5.4 Empirical Demonstration

Having described the advantage of utilising the RLS algorithm to estimating
the weight vector and tracking the noise variance simultaneously, this section
gives a brief empirical demonstration of its superiority over gradient-based
methods. The two experiments show on one hand that the speed of conver-
gence of the LMS and NLMS algorithm is lower than for the RLS algorithm
and depends on the values of the input, and on the other hand that direct
tracking of the noise variance is more accurate than estimating it by the LMS
method.

5.4.1 Experimental Setup

The following classifier setups are used:

NLMS Classifier. This classifier uses the NLMS algorithm (5.29) to estimate
the weight vector, starting with ŵ0 = 0, and a constant step size of
γ = 0.2. For one-dimensional input spaces, DX = 1, with xn = 1 for all
n > 0, the NLMS algorithm is equivalent to the LMS algorithm (5.25), in
which variable step sizes according to the MAM update [227] are used,

γN =

{

1/cN if cN ≤ 1/γ,
γ otherwise,

(5.76)

which is equivalent to bootstrapping the estimate by RLS (see Exam-
ple 5.6).
The noise variance is estimated by the LMS algorithm (5.63), with an
initial τ−1

0 = 0, and a step size that follows the MAM update (5.76).
Thus, the NLMS classifier uses the same techniques for weight vector and
noise variance estimation as XCS(F), with the only difference that the
correct variance rather than the mean absolute error (5.75) is estimated
(see also Sect. 5.3.7). Hence, the performance of NLMS classifiers reflects
the performance of classifiers in XCS(F).

RLSLMS Classifier. The weight vector is estimated by the RLS algorithm,
using (5.34) and (5.35), with initialisation ŵ0 = 0 and Λ−1

0 = 1000I.
The noise variance is estimated by the LMS algorithm, just as for the

98 5 Training the Classifiers

NLMS Classifier. This setup conforms to XCSF classifiers with RLS as
first introduced by Lanzi et al. [145, 146].

RLS Classifier. As before, the weight vector is estimated by the RLS algo-
rithm (5.34) and (5.35), with initialisation ŵ0 = 0 and Λ−1

0 = 1000I. The
noise variance is estimated by tracking the sum of squared errors according
to (5.68) and evaluating (5.63) for the unbiased variance estimate.

In both experiments, all three classifiers are used for the same regression
task, with the assumption that they match all inputs, that is, m(xn) = 1
for all n > 0. Their performance of estimating the weight vector is measured
by the MSE of their model evaluated with respect to the target function f
over 1000 inputs that are evenly distributed over the function’s domain, using
(5.11). The quality of the estimate noise variance is evaluated by its squared
error when compared to the unbiased noise variance estimate (5.13) of a linear
model trained by (5.8) over 1000 observations that are evenly distributed over
the function’s domain.

For the first experiment, averaging classifiers with xn = 1 for all n > 0 are
used to estimate weight and noise variance of the noisy target function f1(x) =
5 + N (0, 1). Hence, the correct weight estimate is ŵ = 5, with noise variance
τ̂−1 = 1. As the function output is independent of its input, its domain does
not need to be defined. The target function of the second experiment is the
sinusoid f2(xn) = sin(in) with inputs xn = (1, in), hence, using classifiers
that model straight lines. The experiment is split into two parts, where in
the first part, the function is modelled over the domain in ∈ [0, π/2), and in
the second part over in ∈ [pi/2, π). The classifiers are trained incrementally,
by presenting them with observations that are uniformly sampled from the
target function’s domain.

Statistical significance of difference in the classifiers’ performances of es-
timating the weight vector and noise variance is evaluated by comparing the
sequence of model MSEs and squared noise variance estimation errors re-
spectively, after each additional observations, and over 20 experimental runs.
These sequences violate the standard analysis of variances (ANOVA) assump-
tion of homogeneity of covariances, and thus the randomised ANOVA proce-
dure [189], specifically designed for such cases, was used. It is based on esti-
mating the sampling distribution of the null hypothesis (“all methods feature
the same performance”) by sampling the standard two-way ANOVA F-values
from randomly reshuffled performance curves between the methods, where we
use a samples size of 5000. The two factors are the type of classifier that is
used, and the number of observations that the classifier has been trained on,
where performance is measured by the model or noise variance error. Signifi-
cant differences are only reported between classifier types, and Tukey’s HSD
post hoc test is employed to determine the direction of the effect.

Figures 5.1 and 5.2 show one run of training the classifiers on f1 and f2

respectively. Figure 5.1 illustrates how the weight and noise variance estimate
differs for different classifiers when trained on the same 50 observations. Fig-

5.4 Empirical Demonstration 99

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50
 0

 0.5

 1

 1.5

 2

 2.5

 3

W
ei

gh
t e

st
im

at
e

N
oi

se
 v

ar
ia

nc
e

es
tim

at
e

Observations

Weight and noise estimat error for sampling from N(5, 1)

LMS weight
RLS weight
LMS noise

RLSLMS noise
RLS noise

Fig. 5.1. The graph shows the weight estimate (on the left scale) and noise variance
estimate (on the right scale) of different averaging classifiers when being presented
with observations sampled from N (5, 1). The weight estimate of the RLSLMS clas-
sifier is not shown, as it is equivalent to the estimate of the RLS classifier

ure 5.2, on the other hand, does not display the estimates itself, but rather
shows the error of the weight vector and noise variance estimates. Let us firstly
focus on the ability of the different classifiers to estimate the weight vector.

5.4.2 Weight Vector Estimate

In the following, the RLSLMS classifier will be ignored due to its equivalence
to the RLS classifier when estimating the weight vector. Figure 5.1 shows
that while both the NLMS and the RLS algorithm estimate the weight to be
about ŵ = 5, the RLS algorithm is more stable in its estimate. In fact, com-
paring the model MSEs by the randomised ANOVA procedure reveals that
this error is significantly lower for the RLS method (randomised ANOVA:
Falg(2, 2850) = 38.0, F ∗

alg,.01 = 25.26, p < .01). Figure 5.1 also clearly il-
lustrates that utilising the MAM causes the weight estimates to be initially
equivalent to the RLS estimates, until 1/γ = 5 observations are reached. As
the input to the averaging classifier is always xn = 1, the speed of convergence
of the LMS classifier is independent of these inputs.

The second experiment, on the other hand, demonstrates how ill-conditioned
inputs cause the convergence speed of the NLMS algorithm to deteriorate. The

100 5 Training the Classifiers

upper graph of Figure 5.2 shows that while the weight estimate is close to op-
timal after 10 observations for the RLS classifier, the NLMS classifier requires
more than 50 observations to reach a similar performance, when modelling f2

over in ∈ [0, π/2). Even worse, changing the sampling range to in ∈ [π/2, π)
causes the NLMS performance to drop such that it still features an MSE of
around 0.1 after 300 observations, while the performance of the RLS classifier
remains unchanged, as shown by the lower graph of Figure 5.2. This drop can
be explained by the increasing eigenvalues of c−1

N XT
NMNXN that reduce the

speed of convergence (see Sect. 5.25). The minimal MSE of a linear model
is in both cases approximately 0.00394, and the difference in performance
between the NLMS and the RLS classifier is in both cases significant (ran-
domised ANOVA for in ∈ [0, π/2]: Falg(2, 2850) = 973.0, F ∗

alg,.001 = 93.18,
p < .001; randomised ANOVA for in ∈ [π/2, π]: Falg(2, 17100) = 88371.5,
F ∗

alg,.001 = 2190.0, p < .001).

5.4.3 Noise Variance Estimate

As the noise variance estimate depends by (5.63) on a good estimate of the
weight vector, classifiers that perform poorly on estimating the weight vector
can be expected to not perform any better when estimating the noise variance.
This suggestion is confirmed when considering the noise variance estimate of
the NLMS classifier in Fig. 5.1 that fluctuates heavily around the correct value
of 1. While the RLSLMS classifier has the equivalent weight estimate to the
RLS classifier, its noise variance estimate fluctuates almost as heavily as that
of the NLMS classifier, as it also uses LMS to perform this estimate. Thus,
while a good weight vector estimate is a basic requirement for estimating the
noise variance, the applied LMS method seems to perform even worse when
estimating the noise variance than when estimating the weight. As can be
seen in Fig. 5.1, direct tracking of the noise variance in combination with the
RLS algorithm for a stable weight estimate gives the least noise and accurate
estimate. Indeed, while there is no significant difference in the squared estima-
tion error between the NLMS and RLSLMS classifier (randomised ANOVA:
Falg(2, 2850) = 53.68, F ∗

alg,.001 = 29.26, p < .001; Tukey’s HSD: p > .05), the
RLS classifier features a significantly better estimate than both of the other
classifier types (Tukey’s HSD: for both NLMS and RLSLMS p < .01).

Conceptually, the same pattern is observed in the second experiment, as
shown in Fig. 5.2. However, in this case, the influence of a badly estimated
weight vector becomes clearer, and is particularly visible for the NLMS clas-
sifier. Recall that this figure shows the estimation errors rather than the
estimates itself, and hence, the upper graph shows that the NLMS classi-
fier only provides estimates that are comparable to the RLSLMS and RLS
classifier after 30 observations. The performance of NLMS in the case of ill-
conditioned inputs is even worse; its estimation performance never matches
that of the classifiers that utilise the RLS algorithm for their weight vector es-
timate. In contrast to the first experiment there is no significant difference be-

5.5 Classification Models 101

tween the noise variance estimation error of the RLSLMS and RLS classifiers,
but in both cases they are significantly better than the NLMS classifier (for
in ∈ [0, π/2]: randomised ANOVA: Falg(2, 2850) = 171.41, F ∗

alg,.001 = 32.81,
p < .001; Tukey’s HSD: NMLS vs. RLSLMS and RLS p < .01, RLSLMS vs.
RLS p > .05; for in ∈ [π/2, π]: randomised ANOVA: Falg(2, 17100) = 4268.7,
F ∗

alg,.001 = 577.89, p < .001; Tukey’s HSD: NLMS vs. RLS and RLSLMS
p < .01, RLSLMS vs. RLS p > .05).

In summary, both experiments in combination demonstrate that to provide
a good noise variance estimate, the method needs to estimate the weight vector
well, and that direct tracking of this estimate is better than its estimation by
the LMS algorithm.

5.5 Classification Models

After having extensively covered the training of linear regression classifier
models, let us turn our focus on classification models. In this case, we assume
that input space and output space to be X = R

DX and Y = {0, 1}DY , where
DY is the number of classes of the problem. An output vector y representing
class j is 0 in all its elements except for yj = 1.

Taking the generative point-of-view, a classifier is assumed to have gener-
ated an observation of some class with a certain probability, independent of
the associated input, resulting in the classifier model

p(y|x,w) =

DY
∏

j=1

w
yj

j , with

DY
∑

j=1

wj . (5.77)

Therefore, the probability of the classifier having generated class j is given by
wj , which is the jth element of its parameter vector w ∈ R

DY .

5.5.1 A Quality Measure for Classification

Good classifiers are certain about which classes they are associated with.
This implies that one aims at finding classifiers that have a high probability
associated with a single class, and low probability for all other classes.

For a two-class problem, the relation w2 = 1 − w1 is required to hold to
satisfy

∑

j wj = 1. In such a case, the model’s variance var(y|w) = w1(1−w1)
is a good measure of the model’s quality as it is var(y|w) = 0 for w1 = 0 or
w2 = 0, and has its maximum var(y|w) = 0.25 at w1 = 0.5, which is the point
of maximum uncertainty.

The same principle can be extended to multi-class problems, by taking the
product of the elements of w, denoted τ−1, and given by

τ−1 =

DY
∏

i=1

wj . (5.78)

102 5 Training the Classifiers

In the three-class case, for example, the worst performance occurs at w1 =
w2 = w3 = 1/3, at which point τ−1 is maximised. Note that τ−1 is, unlike for
linear regression, formally not the precision estimate.

As τ−1 is easily computed from w, its estimate does not need to be main-
tained separately. Thus, the description of batch and incremental learning
approaches deals exclusively with the estimation of w.

5.5.2 Batch Approach for Classification

Recall that the aim of a classifier is to solve (4.24), which, together with (5.77)
results in the constrained optimisation problem

max
w

N
∑

n=1

m(xn)

DY
∑

j=1

ynj lnwj , (5.79)

subject to

DY
∑

j=1

wj = 1.

Using the Lagrange multiplier λ to express the constraint 1−∑

j wj = 0, the
aim becomes to maximise

N
∑

n=1

m(xn)

DY
∑

j=1

ynj lnwj + λ



1 −
DY
∑

j=1

wj



 . (5.80)

Differentiating the above with respect to wj for some j, setting it to 0, and
solving for wj results in the estimate

ŵj = λ−1
N

∑

n=1

m(xn)ynj . (5.81)

Solving for λ and using
∑

j ŵj = 1 and
∑

j ynj = 1 for all N , we get λ =
∑

n m(xn) = c, which is the match count after N observations. As a result,
w is after N observations by the principle of maximum likelihood given by

ŵ = c−1
N

∑

n=1

m(xn)yn, (5.82)

Thus, the jth element of ŵ, representing the probability of the classifier having
generated an observation of class j, is the number of matched observations
of this class divided by the total number of observations – a straightforward
frequentist measure.

5.5 Classification Models 103

5.5.3 Incremental Learning for Classification

Let ŵN be the estimate of w after N observations. Given the new observation
(xN+1, yN+1), the aim of the incremental approach is to find a computation-
ally efficient approach to update ŵN to reflect this new knowledge. By (5.82),
cN+1ŵN+1 is given by

cN+1ŵN+1 =

N+1
∑

n=1

m(xn)yn

=

N
∑

n=1

m(xn)yn + m(xN+1)yN+1

= (cN+1 − m(xN+1))ŵN + m(xN+1)yN+1. (5.83)

Dividing the above by cN+1 results in the final incremental update

ŵN+1 = ŵN − c−1
N+1m(xN+1) (ŵN − yN+1) . (5.84)

This update tracks (5.82) accurately, is of complexity O(DY), and only re-
quires the parameter vector ŵ and the match count c to be stored. Thus, it
is accurate and efficient.

Classifier Class 1 Class 2 ŵT
k τ̂−1

k

c1 27 5 (0.84, 0.16) 0.134
c2 7 10 (0.41, 0.59) 0.242
c3 2 19 (0.09, 0.91) 0.082

Table 5.2. Estimates resulting from the classification task illustrated in Fig. 5.3.
The table gives the number of observations of each class matched per classifier. Ad-
ditionally, it shows the parameter estimate ŵ and the measure τ̂−1 of each classifier’s
prediction quality, evaluated by (5.82) and (5.78) respectively

Example 5.9 (Classifier Model for Classification). Figure 5.3 shows the data
of a classification task with two distinct classes. Observations of classes 1 and
2 are shown by circles and squares, respectively. The larger rectangles indicate
the matched areas of the input space of the three classifiers c1, c2, and c3.
Based on these data, the number of matched observations of each class as well
as ŵ and τ̂ are shown for each classifier in Table 5.2.

Recall that the elements of ŵ represent the estimated probabilities of hav-
ing generated an observation of a specific class. The estimates in Table 5.2
show that Classifier c3 is most certain about modelling class 2, while Classifier
c2 is most uncertain about which class it models. These values are also re-
flected in τ̂−1, which is highest for c2 and lowest for c3. Thus, c3 is the “best”
classifier, while c2 is the “worst” – an evaluation that reflects what can be
observed in Fig. 5.3.

104 5 Training the Classifiers

5.6 Discussion and Summary

The aim of a local model representing a classifier is to maximise its likeli-
hood, as follows from the probabilistic LCS model of the previous chapter. In
this chapter, several batch and incremental learning approaches for training
linear regression models and classification models have been described and
compared.

With respect to linear regression, the maximum likelihood estimate of the
weight vector was shown to be a weighted least squares problem (5.5), that
by itself is a well known problem with a multitude of approaches that goes far
beyond the ones described in this chapter. Nonetheless, it is usually not stated
as such in the LCS literature, and neither approached from first principles.
Additional novelties in the LCS context are a probabilistic interpretation of
the linear model and its noise structure, the resulting explicit formulation of
the predictive density, and rigorous batch and incremental estimates of the
noise variance.

The weight update of the original XCS conforms to (5.25) with xn = 1 for
n > 0 and hence aims at minimising the squared error (5.5). Later, XCS was
modified to act as regression model [247], and extended to XCSF to model
straight lines [248] by using the NLMS update (5.29), again without explicitly
stating a single classifier’s aim. In a similar manner, the classifier model was
extended to a full linear model [144]4.

Simultaneously, and similar to the discussion in Sect. 5.3.4, the conver-
gence of gradient-based methods was identified as a problem [145, 146], with a
discussion based on steepest gradient descent rather than the NLMS method.
As an alternative, the RLS algorithm was proposed to estimate the weight
vector, but the aim of a classifier was specified without considering matching,
and matching was implemented by only updating the classifier’s parameter
if that classifier matches the current input. While this is a valid procedure
from the algorithmic perspective, it does not make matching explicit in the
classifier’s aim, and cannot deal with matching to a degree. The aim formu-
lation (5.5), in contrast, provides both features and thereby leads to a better
understanding and greater flexibility of the classifier model.

While XCSF weight estimation research did not stop at linear models
[159, 179], the presented work was not extend beyond their realm to avoid the
introduction of multiple local optima that make estimating the globally opti-
mal weight vector significantly more complicated. In addition, there is always
the trade-off between the complexity of the local models and the global model
to consider: if more powerful local models are used, less of them are necessary
to provide the same level of complexity of the global model, but the increased
complexity and power makes their model usually harder to understand. For
these reasons, linear classifier models provide a good trade-off between ease of
training and power of the model, that are still relatively simple to interpret.

4 Despite the title “Extending XCSF Beyond Linear Approximation” of [144], the
underlying model is still linear.

5.6 Discussion and Summary 105

In contrast to the large amount of research activity seeking to improve
the weight vector estimation method in XCS, its method of estimating the
classifier model quality based on the absolute rather than the squared error
was left untouched since the initial introduction of XCS until we questioned
its validity in on the basis of the identified model aim [79], as also discussed
in Sect. 5.3.7. The modified error measure not only introduces consistency,
but also allows accurate tracking of the noise precision estimate with the
method developed in Sect. 5.3.7, as previously shown [79]. Used as a drop-
in replacement for the mean absolute error measure in XCSF, Loiacono et
al. have shown that it, indeed, improves the generalisation capabilities as it
provides a more accurate and stable estimate of the model quality of a classifier
and subsequently a fitness estimate with the same qualities [158].

Nonetheless, the linear regression training methods introduced in this
chapter are by no means to be interpreted as the ultimate methods to use to
train the classifier models. Alternatively, one can use the procedure deployed
in this chapter to adapt other parameter estimation techniques to their use
in LCS. Still, currently the RLS algorithm is the best known incremental
method to track the optimal weight estimate under the given assumptions,
while simultaneously accurately estimating the noise variance. Hence, given
that one aims at minimising the squared error (5.5), it should be the method
of choice.

As an alternative to the squared error that corresponds to the assumption
of Gaussian noise, one can consistently aim at estimating the weight vector
that minimises the mean absolute error (5.75) [160]. However, this requires
a modification of the assumptions about the distributions of the different
linear model variables. Additionally, there is currently no known method to
incrementally track the optimal weight estimate, as RLS does for the squared
error measure. This also means that (5.68) cannot be used to track the model
error, and slower gradient-based alternatives have to applied.

With respect to classification, the training of an appropriate LCS model
has been discussed for both batch and incremental training. The method
differs from current XCS-based LCS, such as UCS [164], in that it does
not require augmentation of the input space by a separate class label (see
Sect. 3.1.3), and evaluating classifiers based on how accurate its associated
class is represented within its matched area of the input space. Instead, no
assumptions are made about which class is modelled by a classifier, and the
probability of having generated the observations of either class is estimated.
This estimate can additionally be used to measure the quality of a classifier,
based on the idea that good classifiers predict a single class with high proba-
bility. This concept has been firstly applied in an XCS-like context by Dam,
Abbass, and Lokan in a Bayesian formulation for two-class classification prob-
lems with the result of improved performance and faster learning [68]. Further
evaluation and extensions to multi-class problems are still pending.

A later chapter reconsiders the probabilistic structure of both the linear
regression and classification models, and shows how the development of a

106 5 Training the Classifiers

probabilistic approach allows the model to be embedded in a fully Bayesian
framework that also lends itself to application to multi-dimensional output
spaces in the regression case. Before that, let us in the following chapter
consider another LCS component that, contrary to the weight vector estimate
of XCS, has received hardly any attention in LCS research: how the local
models provided by the classifiers are combined to form a global model.

5.6 Discussion and Summary 107

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 10 20 30 40 50

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

W
ei

gh
t e

st
im

at
e

M
S

E

N
oi

se
 v

ar
ia

nc
e

es
tim

at
e

sq
ua

re
d

er
ro

r

Observations

Weight and noise estimation error for sinusoid over [0, pi/2]

NLMS weight
RLS weight

NLMS noise
RLSLMS noise

RLS noise

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300

 0

 0.001

 0.002

 0.003

 0.004

 0.005

W
ei

gh
t e

st
im

at
e

M
S

E

N
oi

se
 v

ar
ia

nc
e

es
tim

at
e

sq
ua

re
d

er
ro

r

Observations

Weight and noise estimation error for sinusoid over [pi/2, pi]

NLMS weight
RLS weight

NLMS noise
RLSLMS noise

RLS noise

Fig. 5.2. The graphs show the MSE of the weight vector estimate (on the left
scale) and squared noise variance estimate error (on the right scale) of different
classifiers when approximating a sinusoid. The classifiers are presented with input
xn = (1, in)T and output yn = sin(in). In the upper graph, the sinusoid was sampled
from the range in ∈ [0, π/2], and in the lower graph the samples are taken from the
range in ∈ [π/2, π]. The MSE of the weight vector estimate for the RLSLMS classifier
is not show, as it is equivalent to the MSE of the RLS classifier

108 5 Training the Classifiers

Input Space

c1

c2

c3

Fig. 5.3. Classification data of two different classes and three classifiers. The circles
represent class 1, and the squares are samples of class 2. The larger rectangles within
the input space are the matched ares of the three classifiers c1, c2, and c3

6

Mixing Independently Trained Classifiers

An essential part of the introduced model and of LCS in general that hardly
any research has been devoted to is how to combine the local models provided
by the classifiers to produce a global model. More precisely, given an input and
the output prediction of all matched classifiers, the task is to combine these
predictions to form a global prediction. This task will be called the mixing
problem, and some model that provides an approach to this task a mixing
model .

Whilst some early LCS (for example, SCS [96]) aimed at choosing a single
“best” classifier to provide the global prediction, in modern Michigan-style
LCS, predictions of matching classifiers have been mixed to give the “system
prediction”, that is, what will be called the global prediction. In XCS, for
example, Wilson [244] defined the mixing model as follows:

“There are several reasonable ways to determine [the global predic-
tion] P (ai). We have experimented primarily with a fitness-weighted
average of the prediction of classifiers advocating ai. Presumably, one
wants a method that yields the system’s “best guess” as to the payoff
[. . .] to be received if ai is chosen”,

and maintains this model for all XCS derivatives without any further dis-
cussion. As will be discussed in Sect. 6.2.5, the fitness he is referring to is a
complex heuristic measure of the quality of a classifier. While the aim is not to
redefine the fitness of a classifier in XCS, it is questioned if it is really the best
measure to use when mixing the local classifier predictions. The mixing model
has been changed in YCS [34], a simplified version of XCS and accuracy-based
LCS in general, such that the classifier update equations can be formulated
by difference equations, and by Wada et al. [230] to linearise the underlying
model for the purpose of correcting XCS for use with reinforcement learning
(see Sects. 4.5 and 9.3.6). In either case the motivation for changing the mix-
ing model differs from the motivation in this chapter, which is to improve the
performance of the model itself, rather than to simplify it or to modify its
formulation for the use in reinforcement learning.

110 6 Mixing Independently Trained Classifiers

A formal treatment of the mixing problem requires a formal statement of
the aim that is to be reached. In a previous, related study [84] this aim was
defined by the minimisation of the mean squared error of the global prediction
with respect to the target function, given a fixed set of fully trained classifiers.
As will be discussed in Sect. 6.4, this aim does not completely conform to the
LCS model that was introduced in Chap. 4.

Rather than using the mean squared error as a measure of the quality
of a mixing model, this chapter follows pragmatically the approach that was
introduced with the probabilistic LCS model: each classifier k provides a
localised probabilistic input/output mapping p(y|x,θk), and the value of a
binary latent random variance znk determines if classifier k generated the
nth observation. Each observation is generated by one and only one matching
classifier, and so the vector zn = (zn1, . . . , znK)T has a single element with
value 1, with all other elements being 0. As the values of the latent variables
are unknown, they are modelled by the probabilistic model gk(x) ≡ p(znk =
1|xn,vk), which is the mixing model. The aim is to find a mixing model that
is sufficiently easy to train and maximises the data likelihood (4.9), given by

l(θ;D) =

N
∑

n=1

ln

K
∑

k=1

gk(xn)p(yn|xn,θk). (6.1)

One possibility for such a mixing model was already introduced in Chap. 4 as
a generalisation of the gating network used in the Mixtures-of-Experts model,
and is given by the matching-augmented softmax function (4.22). Further
alternatives will be introduced in this chapter.

The approach is called “pragmatic”, as by maximising the data likelihood,
the problem of overfitting is ignored, together with the identification of a
good model structure that is essential to LCS. Nonetheless, the methods
introduced here will reappear in only sightly modified form once these issues
are dealt with, and discussing them here provides a better understanding
in later chapters. Additionally, XCS implicitly uses an approach similar to
maximum likelihood to train its classifiers and mixing models, and deals with
overfitting only at the level of localising the classifiers in the input space (see
App. B). Therefore, the methods and approaches discussed here can be used
as a drop-in replacement for the XCS mixing model and for related LCS.

To summarise, we assume to have a set of K fully trained classifier, each of
which provides a localised probabilistic model p(y|x,θk). The aim is to find a
mixing model that provides the generative probability p(znk = 1|xn,vk), that
is, the probability that classifier k generated observation n, given input xn

and mixing model parameters vk, that maximises the data likelihood (6.1).
Additional requirements are a sufficiently easy training and a good scaling of
the method with the number of classifiers.

We will firstly concentrate on the model that was introduced in Chap. 4,
and provide two approaches to training this model. Due to the thereafter
discussed weaknesses of these training procedures, a set of formally inspired

6.1 Using the Generalised Softmax Function 111

and computationally cheap heuristics are introduced. Some empirical studies
show that these heuristics perform competitively when compared to the op-
timum. The chapter concludes by comparing the approach of maximising the
likelihood to a closely related previous study [84], to linear LCS models, and
to models that treat classifiers and mixing model as separate components by
design.

6.1 Using the Generalised Softmax Function

By relating the probabilistic structure of LCS to the Mixtures-of-Experts
model in Chap. 4, the probability of classifier k generating the nth obser-
vation is given by the generalised softmax function (4.22), that is,

gk(xn) =
mk(xn) exp(vT

k φ(xn))
∑K

j=1 mj(xn) exp(vT
j φ(xn))

, (6.2)

where V = {vk} is the set of mixing model parameters vk ∈ R
DV , and φ(x)

is a transfer function that maps the input space X into some DV -dimensional
real space R

DV . In LCS, this function is usually φ(x) = 1 for all x ∈ X , with
DV = 1, but to stay general, we do not make any assumptions about the form
of φ.

Assuming knowledge of the predictive densities of all classifiers p(y|x,θk),
the data likelihood (6.1) is maximised by the expectation-maximisation algo-
rithm by finding the values for V that maximise (4.13), given by

N
∑

n=1

K
∑

k=1

rnk ln gk(xn). (6.3)

In the above equation, rnk stands for the responsibility of classifier k for
observation n, given by (4.12), that is

rnk =
gk(xn)p(yn|xn,θk)

∑K
j=1 gj(xn)p(yn|xn,θj)

. (6.4)

Thus, we want to fit the mixing model to the data by minimising the cross-
entropy −∑

n

∑

k rnk ln gk(xn) between the responsibilities and the generative
mixing model.

6.1.1 Batch Learning by Iterative Reweighted Least Squares

The softmax function is a generalised linear model, and specialised tools have
been developed to fit such models [169]. Even though a generalisation of this
function is used, the same tools are applicable, as shown in this section. In

112 6 Mixing Independently Trained Classifiers

particular, the Iterative Reweighted Least Squares (IRLS) will be employed
to find the mixing model parameters.

The IRLS can be derived by applying the Newton-Raphson iterative opti-
misation scheme [20] that, for minimising an error function E(V), takes the
form

V̂
(new)

= V̂
(old) − H−1∇E(V), (6.5)

where H is the Hessian matrix whose elements comprise the second derivatives
of E(V), and ∇E(V) is the gradient vector of E(V) with respect to V. Even
though not immediately obvious, its name derives from a reformulation of the
update procedure that reveals that, at each update step, the algorithm solves
a weighted least squares problem where the weights change at each step [20].

As we want to maximise (6.3), our function to minimise is the cross-entropy

E(V) = −
N

∑

n=1

K
∑

k=1

rnk ln gk(xn). (6.6)

The gradient of gk with respect to vj is

∇vj
gk(x) = gk(x)(Ikj − gj(x))φ(x), (6.7)

and, thus, the gradient of E(V) evaluates to

∇V E(V) =







∇v1
E(V)
...

∇vK
E(V)






, ∇vj

E(V) =

N
∑

n=1

(gj(xn) − rnj)φ(xn), (6.8)

where we have used
∑

k gk(x) = 1. The Hessian matrix

H =







H11 · · · H1K

...
. . .

...
HK1 · · · HKK






, (6.9)

is constructed by evaluating its DV × DV blocks

Hkj = Hjk =
N

∑

n=1

gk(xn)(Ikj − gj(xn))φ(xn)φ(xn)T , (6.10)

that result from Hkj = ∇vk
∇vj

E(V).
To summarise the IRLS algorithm, given N observations D = {X,Y}, and

knowledge of the classifier parameters {θ1, . . . ,θK} to evaluate p(y|x,θk), we

can incrementally improve the estimate V̂ by repeatedly performing (6.5),

starting with arbitrary initial values for V̂. As the Hessian matrix H given
by (6.9) is positive definite [20], the error function E(V) is convex, and the

6.1 Using the Generalised Softmax Function 113

IRLS algorithm will approach is unique minimum, although, not monotoni-
cally [122]. Thus, E(V) after (6.6) will decrease, and can be used to monitor
convergence of the algorithm.

Note, however, that by (6.5), a single step of the algorithm requires com-
putation of the gradient ∇V E(V) of size KDV , the KDV × KDV Hessian
matrix H, and the inversion of the latter. Due to this inversion, a single iter-
ation of the IRLS algorithm is of complexity O(N(KDV)3), which prohibits
its application in LCS, where we require algorithms that preferably scale lin-
early with the number of classifiers. Nonetheless, it is of significant theoretical
value, as it provides the values for V that maximise (6.3) and can therefore
act as a benchmark for other mixing models and their associated methods.

6.1.2 Incremental Learning by Least Squares

Following a similar but slightly modified derivation to the one give by Jordan
and Jacobs [124], we can incrementally approximate the maximum of (6.3) by
a recursive least squares procedure that is of lower complexity than the IRLS
algorithm. Due to the convexity of E(V), its unique minimum is found when

its gradient is ∇V E(V) = 0, that is, when V̂ satisfies

N
∑

n=1

(gk(xn) − rnk)φ(xn) = 0, k = 1, . . . ,K. (6.11)

Substituting (6.2) for gk, we want to solve

N
∑

n=1

mk(xn)

(

exp(v̂T
k φ(xn))

∑K
j=1 mj(xn) exp(v̂T

j φ(xn))
− rnk

mk(xn)

)

φ(xn) = 0 (6.12)

Thus, the difference between the left-hand term and the right-hand term inside
the brackets is to be minimised, weighted by mk(xn), such that

mk(xn)
exp(v̂T

k φ(xn))
∑K

j=1 mj(xn) exp(v̂T
j φ(xn))

≈ mk(xn)
rnk

mk(xn)
, (6.13)

holds for all n. Solving the above for v̂T
k φ(xn), its desired target values is

ln
rnk

mk(xn)
− lnCn, (6.14)

where Cn =
∑

j mj(xn) exp(v̂T
j φ(xn)) is the normalising term that is common

to all v̂T
k φ(xn) and can therefore be omitted, as it disappears when v̂T

k φ(xn) is
converted to gk(xn). Therefore, the target for v̂T

k φ(xk) is ln rnk

mk(xn) , weighted

by mk(xn). This allows us to reformulate the problem of finding values for V̂
that maximise (6.3) as the K linear least squares problems of minimising

114 6 Mixing Independently Trained Classifiers

N
∑

n=1

mk(xn)

(

v̂T
k φ(xn) − ln

rnk

mk(xn)

)2

, k = 1, . . . ,K. (6.15)

Even though rnk = 0 if mk(xn) = 0, and therefore rnk

mk(xn) is undefined in

such a case, this does not cause any problems, as in such a case the weight
is equally zero which makes computing the target superfluous. Also note that
each of these problems operate on an input space of dimensionality DV , and
hence, using the least squares methods introduced in the previous chapter,
have either complexity O(NKD3

V) for the batch solution or O(KD2
V) for

each step of the incremental solution. Given that we usually have DV = 1 in
LCS, this is certainly an appealing property.

When minimising (6.15) it is essential to consider that the values for rnk by
(6.4) depend on the current v̂k of all classifiers. Consequently, when perform-
ing batch learning, it is not sufficient to solve all K least squares problems only
once, as the corresponding targets change with the updated values of V̂. Thus,
again one needs to repeatedly update the estimate V̂ until the cross-entropy
(6.6) converges.

On the other hand, using recursive least squares to provide an incremental
approximation of V̂ we need to honour the non-stationarity of the target val-
ues by using the recency-weighted RLS variant. Hence, according to Sect. 5.3.5
the update equations take the form

v̂kN+1 = λmk(xn)v̂kN (6.16)

+mk(xN+1)Λ
−1
kN+1φ(xN+1)

(

ln
rnk

mk(xn)
− v̂T

kNφ(xN+1)
T

)

,

Λ−1
kN+1 = λ−m(xN+1)Λ−1

kN (6.17)

−m(xN+1)λ
−m(xN+1)

Λ−1
kNφ(xN+1)φ(xN+1)

T Λ−1
kN

λmk(xn) + mk(xN+1)φ(xN+1)T Λ−1
kNφ(xN+1)

,

where the v̂k’s and Λ−1
k ’s are initialised to v̂k0 = 0 and Λ−1

k0 = δI for all k,
with δ being a large scalar. In [124], Jordan and Jacobs initially set λ = 0.99
and increased a fixed fraction (0.6) of the remaining distance to 1.0 every 1000
updates. This seems a sensible approach to start with, but further empirical
experience is required to make definite recommendations.

As pointed out by Jordan and Jacobs [124], approximating the values of

V̂ by least squares does not result in the same parameter estimates as when
using the IRLS algorithm, due to the use of least squares rather than maximum
likelihood. In fact, the least squares approach can be seen as an approximation
to the maximum likelihood solution under the assumption that the residual
in (6.15) in small, which is equivalent to assuming that the LCS model can
fit the underlying regression surface and that the noise is small. Nonetheless,
they demonstrate empirically that the least squares approach provides good
results even when the residual is large in the early stages of training [124]. In

6.2 Heuristic-based Mixing Models 115

any case, in terms of complexity it is a very appealing alternative to the IRLS
algorithm.

6.2 Heuristic-based Mixing Models

While the IRLS algorithm minimises (6.6), it does not scale well with the
number of classifiers. The least squares approximation, on the other hand,
scales well, but minimises (6.15) instead of (6.6), which does not always give
good results, as will be demonstrated in Sect. 6.3. As an alternative, this
section introduces some heuristic mixing models that scale linearly with the
number of classifiers, just like the least squares approximation, and feature
better performance.

Before discussing different heuristics, let us define the requirements on gk:
to preserve their probabilistic interpretation, we require gk(x) ≥ 0 for all k and
x, and

∑

k gk(x) = 1 for all x. In addition, we need to honour matching, which
means that if mk(x) = 0, we need to have gk(x) = 0. These requirements are
met if we define

gk(x) =
mk(x)γk(x)

∑K
j=1 mj(x)γj(x)

, (6.18)

where {γk : X → R
+} is a set of K functions returning positive scalars, that

implicitly rely on the mixing model parameters V. Thus, the mixing model
defines a weighted average, where the weights are specified on one hand by the
matching functions, and on the other hand by the functions γk. The heuristics
differ among each other only in how they define the γk’s.

Note that the generalised softmax function (6.2) also performs mixing
by weighted average, as it conforms to (6.18) with γk(x) = exp(vT

k x) and
mixing model parameters V = {vk}. The weights it assigns to each classifier
are determined by the log-linear model exp(vT

k x), which needs to be trained
separately, depending on the responsibilities that express the goodness-of-fit of
the classifier models for the different inputs. In contrast, all heuristic models
that are introduced here rely on measures that are part of the classifiers’
linear regression models and do not need to be fitted separately. As they do
not have any adjustable parameters, they all have V = ∅. The heuristics
assume classifiers to use regression rather than classification models. For the
classification case, similar heuristics are easily found by using the observations
of the following section, that are valid for any form of classifier model, to guide
the design of these heuristics.

6.2.1 Properties of Weighted Averaging Mixing

Let f̂k : X → R be given by f̂k(x) = E(y|x,θk), that is, the estimator of
classifier k defined by the mean of the conditional distribution of the output
given the input and the classifier parameters. Equally, let f̂ : X → R be

116 6 Mixing Independently Trained Classifiers

the global model estimator, given by f̂(x) = E(y|x, θ). As by (4.8) we have
p(y|x, θ) =

∑

k gk(x)p(y|x,θk), the global estimator is related to the local
estimators by

f̂(x) =

∫

Y

y
∑

k

gk(x)p(y|x,θk)dy =
∑

k

gk(x)f̂k(x), (6.19)

and, thus, is also a weighted average of the local estimators. From this follows
that f̂ is bounded from below and above by the lowest and highest estimate
of the local models, respectively, that is

min
k

f̂k(x) ≤ f̂(x) ≤ max
k

f̂k(x), ∀x ∈ X . (6.20)

In general, we aim at minimising the deviation of the global estimator f̂
from the target function f that describes the data-generating process. If we
measure this deviation by the difference measure h(f(x) − f̂(x)), where h is
some convex function h : R → R

+, mixing by a weighted average allows for
the derivation of an upper bound on this difference measure:

Theorem 6.1. Given the global estimator f̂ : X → R, that is formed
by a weighted averaging of K local estimators f̂k : X → R by f̂(x) =
∑

k gk(x)f̂k(x), such that gk(x) ≥ 0 for all x and k, and
∑

k gk(x) = 1 for
all x, the difference between the target function f : X → R and the global
estimator is bounded from above by

h
(

f̂(x) − f(x)
)

≤
∑

gk(x)h
(

f̂k(x) − f(x)
)

, ∀x ∈ X , (6.21)

where h : R → R
+ is a convex function. More specifically, we have

(

f̂(x) − f(x)
)2

≤
∑

gk(x)
(

f̂k(x) − f(x)
)2

, ∀x ∈ X , (6.22)

and
∣

∣

∣f̂(x) − f(x)
∣

∣

∣ ≤
∑

gk(x)
∣

∣

∣f̂k(x) − f(x)
∣

∣

∣ , ∀x ∈ X . (6.23)

Proof. For any x ∈ X , we have

h
(

f̂(x) − f(x)
)

= h

(

∑

k

gk(x)f̂k(x) − f(x)

)

= h

(

∑

k

gk(x)
(

f̂k(x) − f(x)
)

)

≤
∑

k

gk(x)h
(

f̂k(x) − f(x)
)

,

where we have used
∑

k gk(x) = 1, and the inequality is Jensen’s Inequality
(for example, [238]), based on the convexity of h and the weighted average
property of gk. Having proven (6.21), (6.22) and (6.23) follow from the con-
vexity of h(a) = a2 and h(a) = |a|, respectively.

6.2 Heuristic-based Mixing Models 117

Therefore, the error of the global estimator can be minimised by assigning
high weights, that is, high values of gk(x), to classifiers whose error of the
local estimator is small. Observing in (6.18) that the value of gk(x) is directly
proportional to the value of γk(x), a good heuristic will assign high values
to γk(x) if the error of the local estimator can be expected to be small. The
design of all heuristics is based on this intuition.

The probabilistic formulation of the LCS model results in a further bound,
this time on the variance of the output prediction:

Theorem 6.2. Given the density p(y|x,θ) for output y given input x and pa-
rameters θ, formed by the K classifier model densities p(y|x,θk) by p(y|x,θk) =
∑

k gk(x)p(y|x,θk), such that gk(x) ≥ 0 for all x and k, and
∑

k gk(x) = 1
for all x, the variance of y is bounded from above by the weighted average of
the variance of the local models for y, that is

var(y|x,θ) =
∑

k

gk(x)2var(y|x,θk) ≤
∑

k

gk(x)var(y|x,θk), ∀x ∈ X .

(6.24)

Proof. To show the above, we again take the view that each observation was
generated by one and only one classifier, and introduce the indicator variable
I as a conceptual tool that takes the value k if classifier k generated the
observation, giving gk(x) ≡ p(I = k|x), where we are omitting the parameters
of the mixing models implicit in gk. We also use p(y|x,θk) ≡ p(y|x, I = k) to
denote the model provided by classifier k. Thus, we have p(y|x,θ) =

∑

k p(I =
k|x)p(y|x, I = k), and, analogously, E(y|x,θ) =

∑

k p(I = k|x)E(y|x, I = k).
However, similarly to the basic relation var(aX+bY) = a2var(X)+b2var(Y)+
2abcov(X,Y), we have for the variance

var(y|x,θ) =
∑

k

p(I = k)2var(y|x, I = k) + 0, (6.25)

where the covariance terms are zero as the classifier models are conditionally
independent given I. This confirms the equality in (6.24). The inequality is
justified by observing that the variance is non-negative, and 0 ≤ gk(x) ≤ 1
and so gk(x)2 ≤ gk(x).

Here, not only a bound but also an exact expression for the variance of the
combined prediction is provided. This results in a different view on the design
criteria for possible heuristics: we want to assign weights that are in some way
inversely proportional to the classifier prediction variance. As the prediction
variance indicates the expected prediction error, this design criterion conforms
to the one that is based on Theorem 6.1.

Neither Theorem 6.1 nor Theorem 6.2 assume that the local models are
linear. In fact, they apply to any case where a global model results from a
weighted average of a set of local models. Thus, they can also be used in LCS

when the classifier models are classification model, or non-linear model (for
example, [159, 179]).

118 6 Mixing Independently Trained Classifiers

Example 6.3 (Mean and Variance of a Mixture of Gaussians). Consider 3 clas-
sifiers that, for some input x provide the predictions p(y|x,θ1) = N (y|0.2, 0.12),
p(y|x,θ2) = N (y|0.5, 0.052), and p(y|x,θ3) = N (y|0.7, 0.22). Using the mix-
ing weights inversely proportional to their variance, that is g1(x) = 0.20,

g2(x) = 0.76, and g3(x) = 0.04, our global estimator f̂(x), determined

by (6.19), results in f̂(x) = 0.448. Let us assume that the target func-
tion value is given by f(x) = 0.5, resulting in the squared prediction er-

ror (f(x) − f̂(x))2 ≈ 0.002704. This error is correctly upper-bounded by

(6.22), that results in (f(x) − f̂(x))2 ≤ 0.0196. The correctness of (6.24)
is demonstrated by taking 106 samples from the predictive distributions of
the different classifiers, resulting in the sample vectors s1, s2, and s3, each of
size 106. Thus, we can produce a sample vector of the global prediction by
s =

∑

k gk(x)sk, which has the sample variance 0.00190. This conforms to
– and thus empirically validates – the variance after (6.24), which results in
var(y|x,θ) = 0.00191 ≤ 0.0055.

6.2.2 Inverse Variance

The unbiased noise variance estimate of a linear regression classifier k is, after
(5.13), given by

τ̂−1
k = (ck − DX)−1

N
∑

n=1

mk(xn)
(

ŵT
k xn − yn

)2

, (6.26)

and is therefore approximately the mean sum of squared prediction errors.
If this estimate is small, the squared prediction error is, on average, known
to be small and we can expect the predictions to have a low error. Hence,
inverse variance mixing is defined by using mixing weights that are inversely
proportional to the noise variance estimates of the according classifiers. More
formally, γk(x) = τ̂k in (6.18) for all x. The previous chapter has shown how
to estimate the noise variance of a classifier by batch or incremental learning.

6.2.3 Prediction Confidence

If the classifier model is probabilistic, its prediction can be given by a proba-
bilistic density. Knowing this density allows for the specification of an interval
on the output into which 95% of the observations are likely to fall, known as
the 95% confidence interval. The width of this interval therefore gives a mea-
sure of how certain we are about the prediction made by this classifier. This
is the underlying idea of mixing by prediction confidence.

More formally, the predictive density of the linear classifier model is given
for classifier k by marginalising p(y,θk|x) = p(y|x,θk)p(θk) over the param-
eters θk, and results in

p(y|x) = N
(

y|ŵT
k x, τ̂−1

k (xT Λ−1
k x + 1)

)

, (6.27)

6.2 Heuristic-based Mixing Models 119

as already introduced in Sect. 5.3.6. The 95% confidence interval – indeed
that of any percentage – is directly proportional to the standard deviation of
this density, which is the square root of its variance. Thus, to assign higher
weights to classifiers with a higher confidence prediction, that is, a prediction
with a smaller confidence interval, γk(x) is set to

γk(x) =
(

τ̂−1
k (xT Λ−1

k x + 1)
)−1/2

. (6.28)

Compared to mixing by inverse variance, this measure additionally takes the
uncertainty of the weight vector estimate into account and is consequently
dependent on the input. Additionally, it relies on the assumption of Gaussian
noise and a Gaussian weight vector model, which might not hold – in particular
when the number of observations that the classifier is trained on is small.
Therefore, despite using more information than mixing by inverse variance, it
cannot be guaranteed to perform better.

6.2.4 Maximum Prediction Confidence

The global model density is by (4.8) given by a mixture of the densities of
the local models. As for the local models, the spread of the global prediction
determines a confidence interval on the global model. Minimising the spread
of the global prediction maximises its confidence. Due to mixing by weighted
average, the spread of the global density if bounded from below and above
by the smallest and the largest spread of the contributing classifiers. Thus, in
order to minimise the spread of the global prediction, we only consider the
predictive density of the classifier with the smallest predictive spread.

Using this concept, mixing to maximise the prediction confidence is for-
malised by setting γk(x) to 1 only for the classifier with the lowest prediction
spread, that is,

γk(x) =

{

1 if k = argmaxk mk(x)
(

τ̂−1
k (xT Λ−1

k x + 1)
)−1/2

,
0 otherwise.

(6.29)

Note the addition of mk(x) to ensure that the matching highest confidence
classifier is picked.

As for mixing by confidence, using only the classifier with the highest
prediction confidence relies on several assumptions that might by violated.
Thus, maximum confidence mixing can be expected to perform worse than
mixing by inverse variance in cases where these assumptions are violated. In
such cases it might even fare worse than mixing by confidence, as it relies on
these assumptions more heavily.

6.2.5 XCS

While none of the approaches discussed before are currently used in any LCS,
the mixing model used XCS(F) is here – for the sake of comparison – described

120 6 Mixing Independently Trained Classifiers

in the same formal framework. Mixing in XCS(F) has not changed since it was
firstly specified in [244], despite its multiple other changes and improvements.
Additionally, the mixing model in XCS(F) is closely linked to the fitness of a
classifier as used by the genetic algorithm, and is thus overly complex. Due to
the algorithmic description of an incremental method, the aims of XCS(F) are
usually not explicitly specified. Nonetheless, all mixing parameters in XCS(F)
are updated by the LMS method, for which the formally equivalent, but more
intuitive, batch approaches have already been discussed in the previous chap-
ter.

Recall, that the LMS algorithm for single-dimensional constant inputs is
specified by (5.25) to update some scalar estimate ŵ of an output y after
observing the (N + 1)th output by

ŵN+1 = ŵN + γN+1(yN+1 − ŵN), (6.30)

where γN+1 is some scalar step size. As shown in Example 5.2, this update
equation aims at minimising a sum of squared errors (5.5), whose minimum
is achieved by

ŵ = c−1
k

N
∑

n=1

m(xn)yn, (6.31)

given all N observations. Hence, (6.31) is the batch formulation for the solu-
tion that the incremental (6.30) approximates.

Applying this relation to the XCS update equations for the mixing pa-
rameters, the mixing model employed by XCS(F) can be described as follows:
The error ǫk of classifier k in XCS(F) is the mean absolute prediction error
of its local models, and is given by

ǫk = c−1
k

N
∑

n=1

m(xn)
∣

∣yn − ŵT
k xn

∣

∣ . (6.32)

The classifier’s accuracy is some inverse function κ(ǫk) of the classifier error.
This function was initially given by an exponential [244], but was later [246, 58]
redefined to

κ(ǫ) =

{

1 if ǫ < ǫ0,

α
(

ǫ
ǫ0

)−ν

otherwise,
(6.33)

where the constant scalar ǫ0 is known as the minimum error, the constant
α is a scaling factor, and the constant ν is a mixing power factor [58]. The
accuracy is constantly 1 up to the error ǫ0 and then drops off steeply, with
the shape of the drop determined by α and ν. The relative accuracy is a
classifier’s accuracy for a single input normalised by the sum of the accuracies
of all classifiers matching that input. The fitness is the relative accuracy of a
classifier averaged over all inputs that it matches, that is

Fk = c−1
k

N
∑

n=1

mk(xn)κ(ǫk)
∑K

j=1 mj(xn)κ(ǫj)
(6.34)

6.3 Empirical Comparison 121

This fitness is the measure of a classifier’s prediction quality, and hence γk is
input-independently given by γk(x) = Fk.

Note that the magnitude of a relative accuracy depends on both the error
of a classifier, and on the error of the classifiers that match the same input.
This makes the fitness of classifier k dependent on inputs that are matched by
classifiers that share inputs with classifier k, but are not necessarily matched
by this classifier. This might be a good measure for the fitness of a classifier
(where prediction quality is not all that counts), but it does not perform too
well as a measure of the prediction quality of a classifier

6.3 Empirical Comparison

In order to compare how well the different heuristics perform with respect
to the aim of maximising (6.1), their performance is evaluated on a set of
four regression tasks. The results show that i) mixing by inverse variance
outperforms the other heuristic methods, ii) also performs better than the
least squares approximation, and iii) mixing as done in XCS(F) performs
worse than all other methods.

In all experiments a set of K linear regression classifiers is created such that
the number of classifiers matching each input is about the same for all inputs.
These classifiers are trained on all available observations by batch learning,
before the mixing models are applied and their performance measured by the
likelihood (6.1). This setup was chosen for several reasons: firstly, mixing is
only required if several classifiers match the same input, which is provided by
the generated set of classifiers. Secondly, the classifiers are trained before the
mixing models are applied, as we want to only compare the mixing models
based on the same set of classifiers, and not how training of classifiers and
mixing them interacts. Finally, the likelihood measure is used to compare the
performance of the mixing models, rather than some form of squared error or
similar, as the aim in this chapter is to discuss methods that maximise this
likelihood, rather than any other measure.

6.3.1 Experimental Design

Regression Tasks. The mixing models are evaluated on four regression tasks
f : R → R, given in Table 6.1. The input range is [0, 1], and the output is
shifted and scaled such that −0.5 ≤ f(x) ≤ 0.5. 1000 observations (in, f(in))
are taken from the target function f at regular intervals, from 0 to 1, to give
the output vector y = (f(i1), . . . , f(i1000))

T . The input matrix for averaging
classifiers is given by X = (1, . . . , 1)T , and for classifiers that model straight
lines by a 1000 × 2 matrix X with the nth row given by (1, in).

Classifier Generation and Training. For each experimental run K
classifiers are created, where K depends on the experiment. Each classifier
matches an interval [lk, uk] of the input space, that is mk(in) = 1 if lk ≤

122 6 Mixing Independently Trained Classifiers

Function Definition

Blocks f(x) =
P

hjK(x − xj), K(x) = (1 + sgn(x))/2,
(xj) = (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65,

0.76, 0.78, 0.81),
(hj) = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 5.1,−4.2).

Bumps f(x) =
P

hjK((x − xj)/wj), K(x) = (1 + |x|4)−1,
(xj) = xBlocks,
(hj) = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2),
(wj) = (0.005, 0.005, 0.006, 0.01, 0.01,

0.03, 0.01, 0.01, 0.005, 0.008, 0.005).

Doppler f(x) = (x(1 − x))1/2 sin(2π(1 + 0.05)/(x + 0.05))

Heavisine f(x) = 4 sin 4πx − sgn(x − 0.3) − sgn(0.72 − x)

Table 6.1. The set of functions used for evaluating the performance of the different
mixing models. The functions are taken from Donoho and Johnstone [74], and have
been previously used in Booker [24] in an LCS-related study. The functions are
samples over the range [0, 1] and their outputs are normalised to −0.5 ≤ f(x) ≤ 0.5

in ≤ uk, and mk(in) = 0 otherwise. Even coverage such that about an equal
number of classifiers matches each input is achieved by splitting the input
space into 1000 bins, and localising the classifiers one by one in a “Tetris”-
style way: the average width in bins of the matched interval of a classifier
needs to be 1000c/K such that on average c classifiers match each bin. The
interval width of a new classifier is sampled from B(1000, (1000c/K)/1000),
where B(n, p) is a binomial distribution for n trials and a success probability
of p. The minimal width is limited from below by 3, such that each classifier is
at least trained on 3 observations. The new classifier is then localised such that
the number of classifiers that match the same bins is minimal. If several such
locations are possible, one is chosen uniformly at random. Having positioned
all K classifier, they are trained by batch learning using (5.9) and (5.13). The
number of classifiers that match each input is in all experiments set to c = 3.

Mixing Models. The performance of the following mixing models is com-
pared: the IRLS algorithm (IRLS) and its least-squares approximation (LS)
on the generalised softmax function with φ(x) = 1 for all x, the inverse vari-
ance (InvVar) heuristics, the mixing by confidence (Conf) and mixing by
maximum confidence (MaxConf) heuristics, and mixing by XCS(F) (XCS).
When classifiers model straight lines, the IRLS algorithm (IRLSf) and its
least-squares approximation (LSf) with a transfer function φ(x) = (1, in)T

are used additionally, to allow for an additional soft-linear partitioning be-
yond the realm of matching (see the discussion in Sect. 4.3.5 for more infor-
mation). Training by the IRLS algorithm is performed incrementally according
to Sect. 6.1.1, until the change in cross-entropy (6.6) between two iterations
is smaller than 0.1%. The least-squares approximation is performed repeat-

6.3 Empirical Comparison 123

edly in batches rather than as described in Sect. 6.1.2, by using (5.9) to find
the vk’s that minimise (6.15). Convergence is assumed when the change in
(6.6) between two batch updates is smaller than 0.05% (this value is smaller
than for the IRLS algorithm, as the least squares approximation takes smaller
steps). The heuristic mixing models do not require any separate training and
are applied such as described in Sect. 6.2. For XCS, the standard setting
ǫ0 = 0.01, α = 0.1, and ν = 5, as recommended by Butz and Wilson [58], are
used.

Evaluating the Performance. Having generated and trained a set of
classifiers, each mixing model is trained with the same set to make their
performance directly comparable. It is measured by evaluating (6.1), where
p(yn|xn,θk) is computed by (5.3), using the same observations that the clas-
sifiers where trained on, and the gk’s are provided by the different mixing
models. As the IRLS algorithm maximises the data likelihood (6.1) when us-
ing the generalised softmax function as the mixing model, its performance is
used as a benchmark that the other models are compared to. Their perfor-
mance is reported as a fraction of the likelihood of the IRLS algorithm with
φ(x) = 1.

Statistical Analysis. A two-way analysis of variance (ANOVA) is used to
determine if the performance of the different mixing models differ significantly,
with the first factor being the type of mixing model (IRLS, IRLSf, LS, LSf,
InvVar, Conf, MaxConf, XCS) and the second factor being the combination
of regression task and type of classifier (Blocks, Bumps, Doppler, Heavisine,
either with averaging classifiers, or classifiers that model straight lines). The
direction of the difference is determined by Tukey’s HSD post-hoc test. As the
optimal likelihood as measured by IRLS varies strongly with different sets of
classifiers, the performance is measured as a fraction of the optimal likelihood
for a particular classifier set rather than the likelihood itself.

6.3.2 Results

The first experiment compares the performance of all mixing models when
using K = 50 classifiers. For all functions and both averaging classifiers and
classifiers that model straight lines, 50 experimental runs were performed
per function1. To show the different test functions, and to give the reader an
intuitive idea how mixing is performed, Figures 6.1 to 6.4 show the predictions
of the different methods of a single run when using classifiers that model
straight lines. The mean likelihoods over these 50 runs as a fraction of the
mean likelihood of the IRLS method are shown in Table 6.2. An ANOVA
reveals that there is a significant performance difference between the different
methods (F (7, 2744) = 43.0688, p = 0.0). Comparing the means shows that
the method that performs best is IRLS, followed by IRLSf, InvVar, MaxConf,

1 In our experience, performing the experiments with fewer runs provided insuffi-
cient data to permit significance tests to reliably detect the differences.

124 6 Mixing Independently Trained Classifiers

Function Likelihood of Mixing Model as Fraction of IRLS

IRLS IRLSf LS LSf InvVar Conf MaxConf XCS

Blocks 1.00000 0.99473 0.99991 0.99988 0.99973 0.99877

Bumps 1.00000 0.94930 0.98442 0.97740 0.96367 0.94678

Doppler 1.00000 0.94930 0.98442 0.97740 0.96367 0.94678

Heavisine 1.00000 0.96289 0.96697 0.95123 0.95864 0.95807

Blocks lin 1.00000 1.00014 0.99141 0.99559 0.99955 0.99929 0.99956 0.99722

Bumps lin 1.00000 0.99720 0.94596 0.94870 0.98425 0.97494 0.97797 0.94107

Doppler lin 1.00000 0.99856 0.94827 0.98628 0.98723 0.97818 0.98172 0.94395

Heavisine lin 1.00000 0.99523 0.98480 0.96854 0.98448 0.97347 0.99005 0.95739

Table 6.2. The mean likelihoods of the different mixing models, as a fraction of
the mean likelihood of IRLS, averaged over 50 experimental runs per function. A lin
added to the function name indicates the use of classifiers that model straight lines
rather than averaging classifiers. For averaging classifiers, IRLS and IRLSf, and LS
and LSf are equivalent, and so their results are combined. The results written in bold
indicate that there is no significant difference to the best-performing mixing model
for this function. Those results that are significantly worse than the best mixing
model but not significantly worse than the best model in their group are written in
italics. Statistical significance was determined by Tukey’s HSD post-hoc test at the
0.01 level

Conf, LSf, LS, and last, XCS. The p-values of Tukey’s HSD post-hoc test are
given in Table 6.3. They show that the performance difference between all
methods is significant at the 0.01 level, except for the ones that are written
in italics.

IRLS IRLSf InvVar MaxConf Conf LSf LS XCS

XCS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0283 0.5131 -
LS 0.0000 0.0000 0.0000 0.0000 0.0000 0.8574 -
LSf 0.0000 0.0000 0.0000 0.0095 0.0150 -
Conf 0.0000 0.0000 0.1044 0.9999 -
MaxConf 0.0000 0.0000 0.1445 -
InvVar 0.0001 0.0002 -
IRLSf 0.8657 -
IRLS -

Table 6.3. p-values for Tukey’s HSD post-hoc comparison of the different mixing
methods. The performance values were gathered in 50 experimental runs per func-
tion, using both averaging classifiers and classifiers that model straight lines. The
p-values reported are for a post-doc comparison only considering the factor that
determines the mixing method. The methods are ordered by performance, with the
leftmost and bottom method being the best-performing one. The p-values in italics
indicate that no significant difference between the methods at the 0.01 level was
detected

6.3 Empirical Comparison 125

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Blocks function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Fig. 6.1. Resulting predictions of a single run, using different mixing models for
the Blocks function. See the text for an explanation of the experimental setup

The same experiment where preformed with K ∈ {20, 100, 400}, classifiers,
yielding qualitatively similar results. This shows that the presented perfor-
mance differences are not sensitive to the number of classifiers used.

6.3.3 Discussion

As can be seen from the results, IRLS is in almost all cases significantly better,
and in no case significantly worse than any other methods that were applied.
IRLSf uses more information than IRLS to mix the classifier predictions, and
thus can be expected to perform better. As can be seen from Table 6.2, how-
ever, it frequently features worse performance, though not significantly. This
worse performance can be attributed to the used stopping criterion that is
based on the relative change of the likelihood between two successive itera-
tions. This likelihood increases more slowly when using IRLSf, which leads
the stopping criterion to abort learning earlier for IRLSf than IRLS, causing
it to perform worse.

InvVar is the best method of the introduced heuristics and constantly
outperforms LS and LSf. Even though it does not perform significantly better
than Conf and MaxConf, its mean is higher and the method relies on less
assumptions. Thus, it should be the preferred method amongst the heuristics
that were introduced.

126 6 Mixing Independently Trained Classifiers

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Bumps function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Fig. 6.2. Resulting predictions of a single run, using different mixing models for
the Bumps function. See the text for an explanation of the experimental setup

As expected, XCS features a worse performance than all other methods,
which can be attribute to the fact that the performance measure of the lo-
cal model is influenced by the performance of the local models that match
the same inputs. This might introduce some smoothing, but it remains ques-
tionable if such smoothing is ever advantageous. This doubt is justified by
observing that XCS performs worst even on the smoothest function in the
test set, which is the Heavisine function.

Overall, these experiments confirm empirically that IRLS performs best.
However, due to its high complexity and bad scaling properties, it is not recom-
mendable for applications that require the use of a large number of classifiers.
While the least squares approximation could be used as an alternative in such
cases, the results suggest that InvVar provides better results. Additionally, it
is easier to implement than LS and LSf, and requires no incremental update.
Thus, it should be the preferred method to use.

6.4 Relation to Previous Work and Alternatives

A closely related previous study has investigated mixing models for LCS with
the aim of minimising the mean squared error of the global prediction rather
than maximising its likelihood [84]. Formally, the aim was to find a mixing

6.4 Relation to Previous Work and Alternatives 127

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Doppler function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Fig. 6.3. Resulting predictions of a single run, using different mixing models for
the Doppler function. See the text for an explanation of the experimental setup

model that minimises
N

∑

n=1

(

f̂(xn) − f(xn)
)2

, (6.35)

where f is the target function, and f̂(xn) is the global output prediction for
input xn. This problem statement can be derived from a model that assumes
the relation between f and f̂ to be f̂(x) = f(x) + ǫ, where ǫ ∼ N (0, σ2) is a
zero-mean constant variance Gaussian that represents the random noise. The
maximum likelihood estimate for the parameters of f̂ is found by maximising
∑

n lnN (f(xn)|f̂(xn), σ2), which is equivalent to minimising (6.35).
In the LCS model with linear regression classifiers, introduced in Chap. 4,

on the other hand, zero-mean constant variance Gaussian noise is assumed on
each local model p(y|x,θk) rather than the global model p(y|x,θ). These mod-
els are related by p(y|x,θ) =

∑

k gk(x)p(y|x,θk), and as gk(x) might change
with x, the noise variance of the global model is very likely not constant. As a
result, the maximum likelihood estimate for the LCS model as introduced in
Chap. 4 does not conform to minimising (6.35). Nonetheless, the results based
on minimising (6.35) are qualitatively the same as they show that amongst
the heuristics InvVar features competitive performance, is usually better than
Conf and MaxConf, and always outperforms XCS.

128 6 Mixing Independently Trained Classifiers

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Prediction of Heavisine function using different mixing models

InvVar
Conf

MaxConf
LS

IRLS
XCS

f(x)

Fig. 6.4. Resulting predictions of a single run, using different mixing models for
the Heavisine function. See the text for an explanation of the experimental setup

Modelling the noise on the local model level rather than the global model
level is required to train the classifiers independently. It also makes explicit
the need for a mixing model. In contrast, one could – as in Sect. 4.5 – assume
a linear LCS model that features noise at the global level, such that an output
y given some input x is modelled by

p(y|x,θ) = N
(

y
∣

∣

K
∑

k=1

gk(x)wT
k x, τ−1

)

, (6.36)

where gk(x) is some function of the matching functions mk(x), independent
of θ. In such a case, one could interpret the values of gk(x) to form the mixing
model but it is less clear how to separate the global model into local classifier
models. Maximising the likelihood for such a model results in the least-squares
problem (6.35) with f̂(x;θ) =

∑

k gk(x)wT
k x, the solution to which has been

discussed in the previous chapter.
To the other extreme, one could from the start assume that the classifiers

are trained independently, such that each of them provides the model ck with
predictive density p(y|x, ck). The global model is formed by marginalising
over the local models,

p(y|x) =

K
∑

k=1

p(y|x, ck)p(ck|x), (6.37)

6.5 Summary and Outlook 129

where p(ck|x) is the probability of the model of classifier k being the “true”
model, given a certain input x. This term can be used to introduce matching,
by setting p(ck|x) = 0 if mk(x) = 0. Averaging over models by their proba-
bility is known as Bayesian Model Averaging [110], which might initially look
like resulting in the same formulation as the model derived from the gen-
eralised MoE model. The essential difference, however, is that p(y|x, ck) is
independent of the model parameters θk as it marginalises over them,

p(y|x, ck) =

∫

p(y|x,θk, ck)p(θk|ck)dθk. (6.38)

Therefore, it cannot be directly compared to the mixing models introduced in
this chapter, and should be treated as a different LCS model, closely related
to ensemble learning. Further research is required to see if such an approach
leads to viable LCS formulations.

6.5 Summary and Outlook

This chapter dealt with an essential LCS component that directly emerges
from the introduced LCS model and is largely ignored by LCS research: how
to combine a set of localised models, provided by the classifiers, to provide a
global prediction. The aim of this “mixing problem” was defined by maximis-
ing the data likelihood (6.1) of the previously introduced LCS model.

As was shown, the IRLS algorithm is a possible approach to finding the
globally optimal mixing parameters V to the generalised softmax mixing
model, but it suffers from high complexity, and can therefore act as nothing
more than a benchmark to compare other approaches to. The least squares ap-
proximation, on the other hand, scales well but lacks the desired performance,
as shown in experiments.

As an alternative, heuristics that are inspired by formal properties of mix-
ing by weighted average have been introduced. Not only do they scale well
with the number of classifiers as they do not have any adjustable parame-
ters other than the classifier parameters, but they also perform better than
mixing by the least squares approximation. In particular, mixing by inverse
variance makes the least assumptions of the introduced heuristics, and is also
the best-performing one (though not significantly) and therefore our recom-
mended choice. The heuristics were designed for linear regression classifier
models, but the same concepts apply to designing heuristics for classification
models.

The mixing model in XCS was never designed to maximise the data likeli-
hood, and therefore the comparison to other heuristics might not seem com-
pletely fair. However, it was shown previously [84] that it also performs worst
with respect to the mean squared error measure, and thus is not a good choice
for a mixing model. Rather, mixing by inverse variance should be used as a
drop-in replacement in XCS, but this recommendation is more strongly based

130 6 Mixing Independently Trained Classifiers

on previous experiments [84] (see Sect. 6.4) rather than the empirical results
presented here.

This chapter completes the discussion of how to find the LCS model pa-
rameters θ by the principle of maximum likelihood for a fixed model structure
M. The next step is to provide a framework that lets us in addition find a
good model structure, that is, a good set of classifiers. The taken approach is
unable to identify good model structures at the model structure level M alone,
but requires the reformulation of the probabilistic model itself to avoid over-
fitting even when finding the model parameters for a fixed model structure.
This requires a deviation from the principle of maximum likelihood, which,
however, does not completely invalidate the work that was presented in the
last two chapters. Rather, the new update equations for parameter learning
are up to small modifications similar to the ones that provide maximum like-
lihood estimates. Investigating these differences provides valuable insight into
how exactly model selection infiltrates the parameter learning process.

7

The Optimal Set of Classifiers

This chapter deals with the question of what it means for a set of classifiers
to be optimal in the light of the available data, and how to provide a formal
solution to this problem. As such, it tackles the core task of LCS, whose
ultimate aim is it to find such a set.

Up until now there is no general definition of what LCS ought to learn.
Rather, there is an intuitive understanding of what a desirable set of clas-
sifiers should look like, and LCS algorithms are designed around such an
understanding. However, having LCS that perform according to intuition in
simple problems where the desired solution is known does not mean that they
will do so in more complex tasks. Furthermore, how do we know that our
intuition does not betray us?

While there are a small number of studies on what LCS want to learn
and how that can be measured [133, 136, 138], they concentrate exclusively
on the case where the input is encoded as a binary string, and even then
they list several possible approaches rather than providing a single conclu-
sive answer. However, considering the complexity of the problem at hand, it
is understandable that approaching it is anything but trivial. The solution
structure is strongly dependent on the chosen representation, but what is the
best representation? Do we want the classifiers to partition the input space
such that each of them independently provides a part of the solution, or do we
expect them to cooperate? Should we prefer default hierarchies, where predic-
tions of more general classifiers, that is, classifiers that match larger areas of
the input space, are overridden by more specific ones, in a tree-like structure?
Are the predictions of the classifiers supposed to be completely accurate, or
do we allow for some error? And these are just a few questions to consider.

Rather than listing all possible questions and going through them one by
one, the problem is here approached from another side, based on how LCS

were characterised in Chapter 3: a fixed set of classifiers, that is, a fixed model
structure M, provides a certain hypothesis about the data-generating process
that generated the observed data D. With this in mind, “What do LCS want
to learn?” becomes “Which model structure M explains the available data

132 7 The Optimal Set of Classifiers

D best?”. But, what exactly does “best” mean? Fortunately, evaluating the
suitability of a model with respect to the available data is a common task in
machine learning, known as model selection. Hence, the complex problem of
defining the optimal set of classifiers can be reduced to identifying a suitable
model, and to applying it. This is what will be done for the rest of this chapter.

Firstly, let us consider the question of optimality, and, in general, which
model properties are desirable. Using Bayesian model selection to identify
good sets of classifiers, the LCS model is reformulated as a fully Bayesian
model for regression. Classification is handled in a later section. Subsequently,
a longer, more technical section demonstrates how variational Bayesian infer-
ence is applied to find closed-form approximations to posterior distributions.
This also results in a closed-form expression for the quality of a particular
model structure that allows us to compare the suitability of different LCS

model structures to explain the available data. As such, this chapter provides
the first general (that is, representation-independent) definition of optimality
for a set of classifiers, and with it an answer to the question what LCS want
to learn.

7.1 What is Optimal?

Let us consider two extremes: N classifiers, such that each observation is
matched by exactly one classifier, or a single classifier that matches all inputs.
In the first case, each classifier replicates its associated observation completely
accurately, and so the whole set of classifiers is a completely accurate represen-
tation of the data; it has an optimal goodness-of-fit. Methods that minimise
the empirical risk, such as maximum likelihood or squared error minimisation,
would evaluate such a set as being optimal. Nonetheless, it does not provide
any generalisation in noisy data, as it does not differentiate between noise and
the pattern in the data. In other words, having one classifier per observation
does not provide us with any additional information than the data itself, and
thus is not a desired solution.

Using a single classifier that matches all inputs, on the other hand, is the
simplest LCS model structure, but has a very low expressive power. That is, it
can only express very simple pattern in the data, and will very likely have a bad
goodness-of-fit. Thus, finding a good set of classifiers involves balancing the
goodness-of-fit of this set and its complexity, which determines its expressive
power. This trade-off must be somehow expressed in each method that avoids
overfitting.

7.1.1 Current LCS Approaches

XCS has the ability to find a set of classifiers that generalises over the available
data [244, 245], and so has YCS [34] and CCS [156, 157]. This means that

7.1 What is Optimal? 133

they do not simply minimise the overall model error but have some built-in
model selection capability, however crude it might be.

Let us first consider XCS: its ability to generalise is brought about by a
combination of the accuracy-definition of a classifier and the operation of its
genetic algorithm. A classifier is considered as being accurate if its mean ab-
solute prediction error over all matched observations is below the minimum
error1 threshold ǫ0. The genetic algorithm provides accurate classifiers that
match larger areas of the input space with more reproductive opportunity.
However, overly general classifiers, that is, classifiers that match overly large
areas of the input space, will feature a mean absolute error that is larger
than ǫ0, and are not accurate anymore. Thus, the genetic algorithm “pushes”
towards more general classifiers, but only until they reach ǫ0 [54]. In combi-
nation with the competition between classifiers that match the same input,
XCS can be said to aim at finding the smallest non-overlapping set of accurate
classifiers. From this perspective we could define an optimal set of classifiers
that is dependent on ǫ0. However, such a definition is not very appealing, as i)
it is based on an algorithm, rather than having an algorithm that is based on
the definition; ii) it is based solely on intuition; iii) the best set of classifiers is
fully determined by the setting of ǫ0 that might depend on the task at hand;
and iv) ǫ0 is the same for the whole input space, and so XCS cannot cope
with tasks where the noise varies for different areas of the input space.

YCS [34] was developed by Bull as a simplified version of XCS such that
its classifier dynamics can be modelled by difference equations. While it still
measures the mean absolute prediction error of each classifier, it defines the
fitness as being inversely proportional to this error, rather than using any
accuracy concept based on some error threshold. Additionally, its genetic al-
gorithm differs from the one used in XCS in that it selects classifiers from the
whole set rather than only from the set that matches the current input. Hav-
ing a fitness that is inverse to the error will make the genetic algorithm assign
a higher reproductive opportunity to low-error classifiers that match many
inputs. How low this error has to be depends on the error of other competing
classifiers in the set, and on the maximum number of classifiers allowed, as
that number determines the number of classifiers that the genetic algorithm
aims at assigning to each input. Due to these dependencies it is difficult to
define which set of classifiers YCS aims at finding, particularly as it depends
on the dynamics of the genetic algorithm and the interplay of several system
parameters. Its pressure towards more general classifiers comes from those
classifiers matching more inputs and thus updating their error estimates more
quickly, which gives them an initial higher fitness than more specific classifiers.
However, this pressure is implicit and weaker than in XCS, which is easily seen
in Fig. 1(a) of [34], where general and specific, but equally accurate, classifiers

1 The term minimum error for ǫ0 is a misnomer, as it specifies the maximum error
that classifier can have to still be accurate. Thus, ǫ0 should be called the maximum
admissible error or similar.

134 7 The Optimal Set of Classifiers

peacefully and stably co-exist in the population. It can only be stated that
YCS supports classifiers that match larger areas of the input space, but only
up until their errors get too large when compared to other classifiers in the
set.

CCS [156, 157], in contrast, has a very clear definition of what types of
classifiers win the competition in a classification task: it aims at maximally
general and maximally accurate classifiers by combining a generality mea-
sures, given by the proportion of overall examples correctly classified, and an
error measures that is inversely proportional to the number of correct positive
classifications over all classification attempts of a rule2. The trade-off between
generality and error is handled by a constant γ that needs to be tuned. Thus,
as in XCS, it is dependent on a system parameter that is to be set by the
user. Additionally, in its current form, CCS aims at evolving rules that are
completely accurate, and is thus unable to cope with noisy data [156, 157].
The set of classifiers it aims for can be described as the smallest set of clas-
sifiers that has the best trade-off between error and generality, as controlled
by the parameter γ.

7.1.2 Model Selection

Due to the shortcomings of the previously discussed LCS, these will not be
consider when defining the optimal set of classifiers. Rather, existing concepts
from current model selection methods will be used. Even though most of
these methods have different philosophical background, they all result in the
principle of minimising a combination of the model error and a measure of the
model complexity. To provide good model selection it is essential to use a good
model complexity measure, and it has been shown that, generally, methods
that consider the distribution of the data when judging the model complexity
outperform methods that do not [128]. Furthermore, it is also of advantage to
use the full training data rather than an independent test set [14].

Bayesian model selection meets these requirements and has additionally
already been applied to the Mixtures-of-Expert model [234, 21, 223]. This
makes it an obvious choice as a model selection criterion for LCS. A short
discussion of alternative model selection criteria that might be applicable to
LCS is provided in Sect. 7.6, later in this chapter.

7.1.3 Bayesian Model Selection

Given a model structure M and the data D, Bayesian model selection is based
on finding the probability density of the model structure given the data by
Bayes’ rule

2 In [156, 157], the generality measure is called the accuracy, and the ratio of
positive correct classifications over the total number of classification attempts is
the error, despite it being some inverse measure of the error.

7.1 What is Optimal? 135

p(M|D) ∝ p(D|M)p(M), (7.1)

where p(M) is the prior over the set of possible model structures. The “best”
model structure given the data is the one with the highest probability density
p(M|D).

The data-dependent term p(D|M) is a likelihood known as the evidence
for model structure M, and is for a parametric model with parameters θ

evaluated by

p(D|M) =

∫

θ

p(D|θ,M)p(θ|M)dθ, (7.2)

where p(D|θ,M) is the data likelihood for a given model structure M, and
p(θ|M) are the parameter priors given the same model structure. Thus, in
order to perform Bayesian model selection, one needs to have a prior over
the model structure space {M}, a prior over the parameters given a model
structure, and an efficient way of computing the model evidence (7.2).

As expected from a good model selection method, an implicit property
of Bayesian model selection is that it penalises overly complex models [162].
This can be intuitively explained as follows: probability distributions that are
more widely spread generally have lower peaks as the area underneath their
density function is always 1. While simple model structures only have a limited
capability of expressing data sets, more complex model structures are able to
express a wider range of different data sets. Thus, their prior distribution
will be more widely spread. As a consequence, conditioning a simple model
structure on some data that it can express will cause its distribution to have a
larger peak than a more complex model structure than is also able to express
this data. This shows that, in cases where a simple model structure is able to
explain the same data as a more complex model structure, Bayesian model
selection will prefer the simpler model structure.

Example 7.1 (Bayesian Model Selection Applied to Polynomials). As in Ex-
ample 3.1, consider a set of 100 observation from the 2nd degree polynomial
f(x) = 1/3−x/2+x2 with additive Gaussian noise N (0, 0.12) over the range
x ∈ [0, 1]. Assuming ignorance of the data-generating process, the acquired
model is a polynomial of unknown degree d. As was shown in Example 3.1,
minimising the empirical risk leads to overfitting, as increasing the degree of
the polynomial and with it the model complexity reduces this risk. Minimis-
ing the expected risk, on the other hands leads to correctly identifying the
“true” model, but this risk is usually not directly accessible. The graph from
Fig. 3.1(b) that shows how both risk measures change with d is reproduced
in Fig. 7.1(a) for convenience.

Using a Bayesian model of the data-generating process, one can assess the
probability of the data supporting the polynomial having a particular degree
by Bayesian model selection. The model acquired for this task is the same that
is later introduced for linear regression classifiers and thus will not be discussed
in detail. Variational Bayesian inference, as described Sect. 7.3.1, is used to

136 7 The Optimal Set of Classifiers

 0

 0.005

 0.01

 0.015

 0.02

 0 1 2 3 4 5 6 7 8 9 10

R
is

k

Degree of Polynomial

Empirical Risk
Expected Risk

 50

 55

 60

 65

 70

 75

 0 1 2 3 4 5 6 7 8 9 10

V
ar

ia
tio

na
l B

ou
nd

Degree of Polynomial

L(q)

(a) (b)

Fig. 7.1. Expected and empirical risk, and the variational bound of the fit of poly-
nomials of various degree to 100 noisy observations of a 2nd-order polynomial. (a)
shows how the expected and empirical risk change with the degree of the polyno-
mial. (b) shows the same for the variational bound. More information is given in
Example 7.1

evaluate a lower “variational” bound L(q) on the model log-probability, that
is L(q) ≤ ln p(D|M) + const. = ln p(M|D) + const. under the assumption
of a uniform model prior p(M). As shown in Fig. 7.1(b), L(q) is highest for
d = 2, which demonstrates that Bayesian model selection correctly identifies
the data-generating model.

7.1.4 Applying Bayesian Model Selection to
Finding the Best Set of Classifiers

Applied to LCS, the model structure is, as previously described, defined by the
number of classifiers K and their matching functions M = {mk : X → [0, 1]},
giving M = {K,M}. In order to find the best set of classifiers, we need
to maximise its probability density with respect to the data (7.1), which is
equivalent to maximising its logarithm

ln p(M|D) = ln p(D|M) + ln p(M) + const., (7.3)

where the constant term captures the normalising constant and can be ignored
when comparing the different model structures, as it is shared between them.

Evaluating the log-evidence ln p(D|M) in (7.3) requires us to firstly specify
a parameter prior p(θ|M), and then to evaluate (7.2) to get the evidence of M.
Unfortunately, the LCS model described in Chap. 4 is not fully Bayesian and
needs to be reformulated before the evidence can be evaluated. Additionally,
the resulting probabilistic model structure does not provide a closed-form
solution to (7.2). Thus, the rest of this chapter is devoted to i) introducing a
fully Bayesian LCS model, and ii) applying an approximation method called
Variational Bayesian inference that gives us a closed-form expression for the

7.1 What is Optimal? 137

evidence. Before we do so, let us discuss the prior p(M) on the model structure
itself, and why the requirement of specifying parameter and model structure
priors is not an inherit weakness of the method.

7.1.5 The Model Structure Prior p(M)

Specifying the prior for p(M) lets us express our belief about which model
structures are best at representing the data, prior to knowledge of the data.
Recall that M = {M,K} and thus p(M) can be decomposed into p(M) =
p(M|K)p(K). Our belief about the number of classifiers K is that this number
is certainly always finite, which requires p(K) → 0 with K → ∞. The beliefs
about the set of matching functions of M given some K is less clear. Let
us only observe that M contains K matching functions such that the set of
possible M grows exponentially with K.

The question of how to best specify p(M), and if there even is a “best”
prior on M, is not completely clear and requires further investigation. For
now, p(M) ∝ 1/K, or

ln p(M) = − ln K! + const. (7.4)

is used for illustrative purposes. This prior can be interpreted as the prior
p(K) = (e − 1)−11/K! on the number of classifiers, where e ≡ exp(1), and a
uniform p(M|K) that is absorbed by the constant term. Such a prior satisfies
p(K) → 0 for K → ∞ and expresses that we expect the number of classifiers
in the model to be small3.

7.1.6 The Myth of No Prior Assumptions

A prior in the Bayesian sense is specified by a prior probability distribution
and expresses what is known about a random variable in the absence of some
evidence. For parametric models, the prior usually expresses what the model
parameters are expected to be, in the absence of any observations. As such, it
is part of the assumptions that are made about the data-generating process.
Combining the information of the prior and the data gives the posterior.

Having the need to specify prior distributions could be considered as a
weakness of Bayesian model selection, or even Bayesian statistics. Similarly,
it could also be seen as a weakness of the presented approach to define the
best set of classifiers. This view is justified by the idea that there exist other
methods that do not make any prior assumptions. But is this really the case?

3 As pointed out by Dr. Dan Richardson, University of Bath, the prior p(K) ∝ 1/K!
has E(K) < 2 and thus expresses the belief that the number of classifiers is
expected to be on average less than 2. He proposed the alternative prior p(K) =
exp(−V)V K/K!, where V is a constant related to volume, and E(K) increases
with V .

138 7 The Optimal Set of Classifiers

Let us investigate the class of linear models as described in Chap. 5. Due to
linking the recursive least squares algorithm to ridge regression in Sect. 5.3.5
and the Kalman filter in Sect. 5.3.6, it was shown that the ridge regression
problem

min
w

(

‖Xw − y‖2 + λ‖w‖2
)

(7.5)

is equivalent to conditioning a multivariate Gaussian prior ω0 ∼ N (0, (λτ)−1I)
on the available data {X,y}, where τ is the noise precision of the linear model
with respect to the data. Such a prior means that we assume each element of
the weight vector to be independent — due to the zero off-diagonal elements
of the diagonal covariance matrix — and zero-mean Gaussian with variance
(λτ)−1. That is, we assume the elements most likely to be zero, but they can
also have other values with a likelihood that decreases with their deviation
from zero.

Setting λ = 0 reduces (7.5) to a standard linear least squares problem
without any prior assumptions — as it seems — besides the linear relation
between the input and the output and the constant noise variance. Let us
have a closer look at how λ = 0 influences ω0: As λ → 0 causes (λτ)−1 → ∞,
one can interpret the prior ω0 to be the multivariate Gaussian N (0,∞I)
(ignoring the problems that come with the use of ∞). As a Gaussian with
increasing variance approaches the uniform distribution, the elements of the
weight vectors are now equally likely to take any possible value of the real line.
Even though such a prior seems unbiased at first, let us not forget that the
uniform density puts most of its weight on large values due to its uniform tails
[71]. Thus, as linear least squares is equivalent to ridge regression with λ = 0,
its prior assumptions on the values of the weight vector elements is that they
are uncorrelated but most likely take very large values. Large weight vector
values, however, are usually a sign of non-smooth functions. Thus, linear least
squares implicitly assumes that the function it models is not smooth.

As discussed in Sect. 3.1.1, a smooth function is a prerequisite for generali-
sation. Thus, we do actually assume smoothness of the function, and therefore
ridge regression with λ > 0 is more appropriate than plain linear least squares.
The prior that is associated with ridge regression is known as a shrinkage prior
[105], as it causes the weight vector elements to be smaller than without using
this prior. Ridge regression itself is part of a family of regularisation methods
that add the assumption of function smoothness to guide parameter learning
in otherwise ill-defined circumstances [220].

In summary, even methods that seemingly make no assumptions about the
parameter values are biased by implicit priors, as was shown by comparing
ridge regression to linear least squares. In any case, it is important to be
aware of these priors, as they are part of the assumptions that a model makes
about the data-generating process. Thus, when introducing the Bayesian LCS

model, special emphasis is put on how the introduced parameter priors express
our assumptions.

7.2 A Fully Bayesian LCS for Regression 139

7.2 A Fully Bayesian LCS for Regression

The Bayesian LCS model for regression is equivalent to the one introduced
as a generalisation of the Mixtures-of-Experts model in Chap. 4, with the
differences that here, classifiers are allowed to perform multivariate rather
than univariate regression, and that priors and associated hyperpriors are
assigned to all model parameters. As such, it is a generalisation of the previous
model as it completely subsumes it. A similar model for classification will
be briefly discussed in Sect. 7.5. For now the classifiers are not assumed to
be trained independently. This independence will be re-introduced at a later
stage, analogous to Sect. 4.4.

Data, Model Structure, and Likelihood

N observations {(xn,yn)}, xn ∈ X = R
DX , yn ∈ Y = R

DY

Model structure M = {K,M}, k = 1, . . . , K
K classifiers
Matching functions M = {mk : X → [0, 1]}

Likelihood p(Y|X,W, τ ,Z) =
QN

n=1

QK
k=1 p(yn|xn,Wk, τk)znk

Classifiers

Variables Weight matrices W = {Wk},Wk ∈ R
DY × R

DX

Noise precisions τ = {τk}
Weight shrinkage priors α = {αk}
Noise precision prior parameters aτ , bτ

α-hyperprior parameters aα, bα

Model p(y|x,Wk, τk) = N (y|Wkx, τ−1
k I) =

QDY

j=1 N (yj |wT
kjx, τ−1

k)

Priors p(Wk, τk|αk) =
QDY

j=1

`

N (wkj |0, (αkτk)−1I)Gam(τk|aτ , bτ)
´

p(αk) = Gam(αk|aα, bα)

Mixing

Variables Latent variables Z = {zn}, zn = (zn1, . . . , znK)T ∈ {0, 1}K , 1-of-K
Mixing weight vectors V = {vk}, vk ∈ R

DV

Mixing weight shrinkage priors β = {βk}
β-hyperprior parameters aβ , bβ

Model p(Z|X,V,M) =
QN

n=1

QK
k=1 gk(xn)znk

gk(x) ≡ p(zk = 1|x,vk, mk) =
mk(x) exp(vT

k φ(x))
P

K
j=1

mj(x) exp(vT
j

φ(x))

Priors p(vk|βk) = N (vk|0, β−1
k I)

p(βk) = Gam(βk|aβ , bβ)

Table 7.1. Bayesian LCS model, with all its components. For more details on the
model see Sect. 7.2

Table 7.2 gives a summary of the Bayesian LCS model, and Fig. 7.2 shows
its variable dependency structure as a directed graph. The model is besides

140 7 The Optimal Set of Classifiers

the additional matching similar to the Bayesian MoE model by Waterhouse
et al. [234, 233], to the Bayesian mixture model of Ueda and Ghahramani
[223], and to the Bayesian MoE model of Bishop and Svensén [21]. Each of its
components will now be described in more detail.

yn

xn

znk

mnk

vk

Wk

τk

βk

αk

aβ

bβ

aα

bα

aτ

bτ

K

M

classifiers

N

data

Fig. 7.2. Directed graphical model of the Bayesian LCS model. See the caption of
Fig. 4.1 for instructions on how to read this graph. Note that to train the model,
both the data D and the model structure M are assumed to be given. Hence, the
yn’s and M are observed random variables, and the xn’s are constants

7.2.1 Data, Model Structure, and Likelihood

To evaluate the evidence of a certain model structure M, the data D and the
model structure M need to be known. The data D consists of N observations,
each given by an input/output pair (xn,yn). The input vector xn is an element
of the DX -dimensional real input space X = R

DX , and the output vector yn

is an element of the DY -dimensional real output space Y = R
DY . Hence, xn

has DX , and yn has DY elements. The input matrix X and output matrix Y
are defined according to (3.4).

7.2 A Fully Bayesian LCS for Regression 141

The data is assumed to be standardised by a linear transformation such
that all x and y have mean 0 and a range of 1. The purpose of this standard-
isation is the same as the one given by Chipman, George and McCulloch [63],
which is to make it easier to intuitively gauge parameter values. For example,
with the data being standardised, a weight value of 2 can be considered large
as a half range increase in x would result in a full range increase in y.

The model structure M = {K,M} specifies on one hand that K classifiers
are used, and on the other hand, where these classifiers are localised. Each
classifier k has an associated matching function mk : X → [0, 1], that returns
for each input the probability of classifier k matching this input, as described
in Sect. 4.3.1. Each input is assumed to be matched by at least one classifier,
such that for each input xn we have

∑

k mk(xn) > 0. This needs to be the
case in order to be able to model all of the inputs. As the model structure is
known, all probability distributions are implicitly conditional on M.

The data likelihood is specified from the generative point-of-view by as-
suming that each observation was generated by one and only one classifier.
Let Z = {zn} be the N latent binary vectors zn = (zn1, . . . , znK)T of size K.
We have znk = 1 if classifier k generated observation n, and znk = 0 otherwise.
As each observation is generated by a single classifier, only a single element
of each zn is 1, and all other elements are 0. Under the standard assumption
of independent and identically distributed data, that gives the likelihood

p(Y|X,W, τ ,Z) =
N
∏

n=1

K
∏

k=1

p(yn|xn,Wk, τk)znk , (7.6)

where p(yn|xn,Wk, τ) is the model for the input/output relation of classifier
k, parametrised by W = {Wk} and τ = {τk}. Let us continue with the
classifier model, and then the model for the latent variables Z.

7.2.2 Multivariate Regression Classifiers

The classifier model for classifier k is given by

p(y|x,Wk, τk) = N (y|Wkx, τ−1
k I)

=

DY
∏

j=1

N (yj |wT
jkx, τ−1

k)

=

DY
∏

j=1

(τk

2π

)1/2

exp
(

−τk

2
(yj − wT

kjx)2
)

, (7.7)

where yj is the jth element of y, Wk is the DY × DX weight matrix, and τk

is the scalar noise precision. wT
kj is the jth row vector of the weight matrix

Wk.
This model assumes that each element of the output y is linearly related

to x with coefficients wkj , that is, yj ≈ wT
kjx. Additionally, it assumes the

142 7 The Optimal Set of Classifiers

elements of the output vector to be independent and feature zero-mean Gaus-
sian noise with constant variance τ−1

k . Note that the noise variance is assumed
to be the same for each element of this output. It would be possible to assign
each output element its own noise variance estimate, but this model variation
was omitted for the sake of simplicity. If we have DY = 1, we return to the
univariate regression model (5.3) that is described at length in Chap. 5.

7.2.3 Priors on the Classifier Model Parameters

Each element of the output is assumed to be related to the input by a smooth
function. As a consequence, the elements of the weight matrix Wk are assumed
to be small which is expressed by assigning shrinkage priors to each row vector
wkj of the weight matrix Wk. Additionally, the noise precision is assumed to
be larger, but not much larger than 0, and in no case infinite, which is given
by the prior Gam(τk|aτ , bτ) on the noise precision. Thus, the prior on Wk

and τk is given by

p(Wk, τk|αk) =

DY
∏

j=1

p(wkj , τk|αk)

=

DY
∏

j=1

(

N (wkj |0, (αkτk)−1I)Gam(τk|aτ , bτ)
)

(7.8)

=

DY
∏

j=1

(

(αkτk

2π

)DX /2 baτ
τ τ

(aτ−1)
k

Γ(aτ)
exp

(

−αkτk

2
wT

kjwkj − aττk

)

)

,

where Γ(·) is the gamma function, αk parametrises the variance of the Gaus-
sian, and aτ and bτ are the parameters of the Gamma distribution. This prior
distribution is known as normal inverse-gamma, as the inverse variance pa-
rameter of the Gaussian is distributed according to a Gamma distribution. Its
use is advantageous, as conditioning it on a Gaussian results again in a normal
inverse-gamma distribution, that is, it is a conjugate prior of the Gaussian
distribution.

The prior assumes that elements of the weight vectors wjk are independent
and most likely zero, which is justified by the standardised data and the lack
of further information. Its likelihood of deviating from zero is parametrised
by αk. τk is added to the variance term of the normal distribution for math-
ematical convenience, as it simplifies the computation of the posterior and
predictive density.

The noise precision is distributed according to a Gamma distribution,
which we will parametrise similar to Bishop and Svensén [21] by aτ = 10−2

and bτ = 10−4 to keep the prior sufficiently broad and uninformative, as
shown in Fig. 7.3(a). An alternative approach would be to set the prior on
τk to express the belief that the variance of the localised models will be most

7.2 A Fully Bayesian LCS for Regression 143

likely smaller than the variance of a single global model of the same form.
We will not follow this approach, but more information on how to set the
distribution parameters in such a case can be found in work on Bayesian
Treed Models by Chipman, George and McCulloch [63].

We could specify a value for αk by again considering the relation between
the local models and global model, as done by Chipman, George and McCul-
loch [63]. However, we rather follow the approach of Bishop and Svensén [21],
and treat αk as a random variable that is modelled in addition to Wk and
τk. It is assigned a conjugate Gamma distribution

p(αk) = Gam(αk|aα, bα) =
baα
α α

(aα−1)
k

Γ(aα)
exp(−aααk), (7.9)

which is kept sufficiently broad and uninformative by setting aα = 10−2 and
bα = 10−4. The combined effect of τk and αk on the weight vector prior
variance is shown in Fig. 7.3(b).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200

D
en

si
ty

Variance

Prior density for classifier noise variance

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 5000 10000 15000 20000

D
en

si
ty

Variance

Prior density for classifier weight variance

(a) (b)

Fig. 7.3. Histogram plot of the density of the (a) noise variance, and (b) variance
of the weight vector prior. The plot in (a) was generated by sampling from τ−1

k and
shows that the prior on the variance is very flat, with the highest peak at a density of
around 0.04 and a variance of about 100. The plot in (b) was generated by sampling
from (αkτk)−1 and shows an even broader density for the variance of the zero mean
weight vector prior, with its peak at around 0.00028 at a variance of about 10000

7.2.4 Mixing by the Generalised Softmax Function

As in Chap. 4, the latent variables are modelled by the generalised softmax
function (4.22), given by

gk(x) ≡ p(zk = 1|x,vk) =
mk(x) exp(vT

k φ(x))
∑K

j=1 mj(x) exp(vT
j φ(x))

. (7.10)

144 7 The Optimal Set of Classifiers

It assumes that, given that classifier k matched input x, the probability of
classifier k generating observation n is related to φ(x) by a log-linear function
exp(vT

k φ(x)), parametrised by vk. The transfer function φ : X → R
DV maps

the input into a DV -dimensional real space, and therefore the vector vk is of
size DV and also an element of that space. In LCS, we usually have DV = 1
and φ(x) = 1 for all x ∈ X , but to stay general, no assumptions about φ and
DV will be made.

Making use of the 1-of-K structure of z, its joint probability is given by

p(z|x,V) =

K
∏

k=1

gk(x)zk . (7.11)

Thus, the joint probability of all zn becomes

p(Z|X,V) =
N
∏

n=1

K
∏

k=1

gk(xn)znk , (7.12)

which fully specifies the model for Z.

7.2.5 Priors on the Mixing Model

Due to the normalisation, the mixing function gk is over-parametrised, as it
would be sufficient to specify K − 1 vectors vk and leave vK constant [169].
This would make the values for all vk’s to be specified in relation to the
constant vK , and causes problems if classifier K is removed from the current
set. Thus, gk is rather left over-parametrised, and it is assumed that all vk’s
are small, which is expressed by the shrinkage prior

p(vk|βk) = N (vk|0, β−1
k I)

=

(

βk

2π

)DV /2

exp

(

−βk

2
vT

k vk

)

. (7.13)

Thus, the elements of vk are assumed to be independent and zero-mean Gaus-
sian with precision βk.

Rather than specifying a value for βk, it is again modelled by the Gamma
hyperprior

p(βk) = Gam(βk|aβ , bβ) =
b
aβ

β β
(aβ−1)
k

Γ(aβ)
exp(−aββk), (7.14)

with hyper-parameters set to aβ = 10−2 and bβ = 10−4 to get a broad and
uninformative prior for the variance of the mixing weight vectors. The shape
of the prior is the same as for τ−1

k , which is shown in Fig. 7.3(a).

7.3 Evaluating the Model Evidence 145

7.2.6 Joint Distribution over Random Variables

Assuming knowledge of X and M, the joint distribution over all random
variables decomposes into

p(Y,U|X) = p(Y|X,W, τ ,Z)p(W, τ |α)p(α)

×p(Z|X,V)p(V|β)p(β), (7.15)

where U collectively denotes the hidden variables U = {W, τ ,α,Z,V,β}.
This decomposition is also clearly visible in Fig. 7.2, where the dependency
structure between the different variables and parameters is graphically illus-
trated. All priors are independent for different k’s, and so we have

p(W, τ |α) =
K
∏

k=1

p(Wk, τk|αk), (7.16)

p(α) =
K
∏

k=1

p(αk), (7.17)

p(V|β) =

K
∏

k=1

p(vk|βk), (7.18)

p(β) =

K
∏

k=1

p(βk). (7.19)

By inspecting (7.6) and (7.12) it can be seen that, similar to the priors, both
p(Y|X,W, τ ,Z) and p(Z|X,V) factorise over k, and therefore the joint dis-
tribution (7.15) factorises over k as well. This property will be used when
deriving the required expressions to compute the evidence p(D|M).

7.3 Evaluating the Model Evidence

This rather technical section is devoted to deriving an expression for the model
evidence p(D|M) for use in (7.3). Evaluating (7.2) does not yield a closed-form
expression. Hence, we will make use of an approximation technique known as
variational Bayesian inference [122, 20] that provides us with such a closed-
form expression.

Alternatively, sampling techniques, such as Markov Chain Monte Carlo
(MCMC) methods, could be utilised to get an accurate posterior and model
evidence. However, the model structure search is expensive and requires a
quick evaluation of the model evidence for a given model structure, and there-
fore the computational burden of sampling techniques makes approximating
the model evidence by variational methods a better choice.

For the remainder of this chapter, all distributions are treated as being
implicitly conditional on X and M, to keep the notation simple. Additionally,

146 7 The Optimal Set of Classifiers

the range for sums and products will not always be specified explicitly, as they
are usually obvious from their context.

7.3.1 Variational Bayesian Inference

The aim of Bayesian inference and model selection is, on one hand, to find
a variational distribution q(U) that approximates the true posterior p(U|Y)
and, on the other hand, to get the model evidence p(Y). Variational Bayesian
inference is based on the decomposition [20, 121]

ln p(Y) = L(q) + KL(q‖p), (7.20)

L(q) =

∫

q(U) ln
p(U,Y)

q(U)
dU, (7.21)

KL(q‖p) = −
∫

q(U) ln
p(U|Y)

q(U)
dU, (7.22)

which holds for any choice of q. As the Kullback-Leibler divergence KL(q‖p)
is always non-negative, and zero if and only if p(U|Y) = q(U) [239], the
variational bound L(q) is a lower bound on ln p(Y) and only equivalent to
the latter if q(U) is the true posterior p(U|Y). Hence, the posterior can be
approximated by maximising the lower bound L(q), which brings the varia-
tional distribution closer to the true posterior and at the same time yields an
approximation of the model evidence by L(q) ≤ ln p(Y).

Factorial Distributions

To make this approach tractable, we need to choose a family of distributions
q(U) that gives an analytical solution. A frequently used approach (for exam-
ple, [21, 234]) that is sufficiently flexible to give a good approximation to the
true posterior is to use the set of distributions that factorises with respect to
disjoint groups Ui of variables

q(U) =
∏

i

qi(Ui), (7.23)

which allows maximising L(q) with respect to each group of hidden variables
separately while keeping the other ones fixed. This results in

ln q∗i (Ui) = Ei6=j (ln p(U,Y)) + const., (7.24)

when maximising with respect to Ui, where the expectation is taken with
respect to all hidden variables except for Ui, and the constant term is the
logarithm of the normalisation constant of q∗i [20, 121]. In our case, we group
the variables according to their priors by {W, τ}, {α}, {V}, {β}, {Z}.

7.3 Evaluating the Model Evidence 147

Handling the Softmax Function

If the model has a conjugate-exponential structure, (7.24) gives an analyti-
cal solution with a distribution form equal to the prior of the corresponding
hidden variable. However, in our case the generalised softmax function (7.10)
does not conform to this conjugate-exponential structure, and needs to be
dealt with separately. A possible approach is to replace the softmax function
by an exponential lower bound on it, which consequently introduces additional
variational variables with respect to which L(q) also needs to be maximised.
This approach was followed By Bishop and Svensén [21] and Jaakkola and
Jordan [122] for the logistic sigmoid function, but currently there is no known
exponential lower bound function on the softmax besides a conjectured one by
Gibbs [94]4. Alternatively, we can follow the approach taken by Waterhouse
et al. [234, 233], where q∗V (V) is approximated by a Laplace approximation.
Due to the lack of better alternatives, this approach is chosen, despite such
an approximation invalidating the lower bound nature of L(q).

Update Equations and Model Posterior

To get the update equations for the parameters of the variational distribution,
we need to evaluate (7.24) for each group of hidden variables in U separately,
similar to the derivations by Waterhouse et al. [233] and Ueda and Ghahra-
mani [223]. This provides us with an approximation for the posterior p(U|Y)
and will be shown in the following sections.

Approximating the model evidence p(Y) requires a closed-form expression
for L(q) by evaluating (7.21), where many terms of the variational update
equations can be reused, as will be shown after having derived the update
equations.

7.3.2 Classifier Model q∗

W,τ (W, τ)

The maximum of L(q) with respect to W and τ is given by evaluating (7.24)
for qW,τ , which, by using (7.15), (7.16) and (7.6), results in

ln q∗W,τ (W, τ) = EZ(ln p(Y|W, τ ,Z)) + Eα(ln 0p(W, τ |α)) + const.

=
∑

k

∑

n

EZ(znk ln p(yn|Wk, τk))

+
∑

k

Eα(ln p(Wk, τk|αk)) + const., (7.25)

where the constant represents all terms in (7.15) that are independent of W
and τ , and EZ and Eα are the expectations evaluated with respect to Z and

4 A more general bound was recently developed by Wainwright, Jaakkola and Will-
sky [232], but its applicability still needs to be evaluated.

148 7 The Optimal Set of Classifiers

α respectively. This expression shows that q∗W,τ factorises with respect to k,
which allows us to handle the qW,τ (Wk, τk)’s separately, by solving

ln q∗W,τ (Wk, τk) =
∑

n

EZ(znk ln p(yn|Wk, τk))+Eα(ln p(Wk, τk|αk))+const.

(7.26)
Using the classifier model (7.7), we get

∑

n

EZ(znk ln p(yn|Wk, τk))

=
∑

n

EZ(znk) ln
∏

j

N (ynj |wT
kjxn, τ−1

k)

=
∑

n

rnk

∑

j

(

1

2
ln τk − τk

2
(ynj − wT

kjxn)2
)

+ const.

=
DY

2

(

∑

n

rnk

)

ln τk + const. (7.27)

−τk

2

∑

j

(

∑

n

rnky2
nj − 2wT

kj

∑

n

rnkxnynj + wT
kj

(

∑

n

rnkxnxT
n

)

wkj

)

,

where rnk ≡ EZ(znk) is the responsibility of classifier k for observation n,
and ynj is the jth element of yn. The constant represents the terms that are
independent of Wk and τk.

Eα(ln p(Wk, τk|αk)) is expanded by the use of (7.8) and results in

Eα(ln p(Wk, τk|αk))

=
∑

j

Eα

(

lnN (wkj |0, (αkτk)−1I) + ln Gam(τk|aτ , bτ)
)

=
∑

j

(

DX

2
ln τk − τk

2
Eα(αk)wT

kjwkj + (aτ − 1) ln τk − bττk

)

+ const.

=

(

DYaτ − DY +
DXDY

2

)

ln τk

−τk

2



2DYbτ + Eα(αk)
∑

j

wT
kjwkj



 + const. (7.28)

Thus, evaluating (7.26) gives

7.3 Evaluating the Model Evidence 149

ln q∗W,α(Wk, τk) =

(

DYaτ − DY +
DXDY

2
+

DY

2

∑

n

rnk

)

ln τk

−τk

2

(

2DYbτ +
∑

j

(

∑

n

rnky2
nj − 2wT

kj

∑

n

rnkxnynj

+wT
kj

(

Eα(αk)I +
∑

n

rnkxnxT
n

)

wkj

))

+ const.

= ln
∏

j

(

N (wkj |w∗
kj , (τkΛ

∗
k)−1)Gam(τk|a∗

τk
, b∗τk

)
)

, (7.29)

with the distribution parameters

Λ∗
k = Eα(αk)I +

∑

n

rnkxnxT
n , (7.30)

w∗
kj = Λ∗

k
−1

∑

n

rnkxnynj , (7.31)

a∗
τk

= aτ +
1

2

∑

n

rnk, (7.32)

b∗τk
= bτ +

1

2DY





∑

j

(

∑

n

rnky2
nj − w∗

kj
T Λ∗

kw
∗
kj

)



 . (7.33)

The second equality in (7.29) can be derived by expanding the final result
and replacing all terms that are independent of Wk and τk by a constant.
The distribution parameter update equations are that of a standard Bayesian
weighted linear regression (for example, [20, 16, 73]).

Note that due to the use of conjugate priors, the variational posterior
q∗W,α(Wk, τk) (7.29) has the same distribution form as the prior p(Wk, τk|αk)
(7.8). The resulting weight vector wkj , that models the relation between the
inputs and the jth component of the outputs, is given by a Gaussian with
mean w∗

kj and precision τkΛ
∗
k. The same posterior weight mean can be found

by minimising
‖Xwkj − yj‖2

Rk
+ Eα(αk)‖wkj‖2, (7.34)

with respect to wkj , where Rk is the diagonal matrix Rk = diag(r1k, . . . , rNk),
and yj is the vector of jth output elements, yj = (y1j , . . . , yNj)

T , that is,
the jth column of Y. This shows that we are performing a responsibility-
weighted ridge regression with ridge complexity Eα(αk). Thus, the shrinkage
is determined by the prior on αk, as can be expected from the specification of
the weight vector prior (7.8).

The noise precision posterior is the Gamma distribution Gam(τk|a∗
τk

, b∗τk
).

Using the relation νλ
χ2

ν
∼ Gam(ν/2, νλ/2) , where νλ

χ2
ν

is the scaled inverse

χ2 distribution with ν degrees of freedom, (7.32) can be interpreted as incre-
menting the degrees of freedom from an initial 2aτ by

∑

n rnk. Thus, while the

150 7 The Optimal Set of Classifiers

prior has the weight of 2aτ observations, each added observation is weighted
according to the responsibility that classifier k has for it. By using (7.30) and
the relation

∑

n

rnk(ynj − w∗
kj

T xn)2

=
∑

n

rnky2
nj − 2w∗

kj
T

∑

n

rnkxnynj + w∗
kj

T

(

∑

n

rnkxnxT
n

)

w∗
kj ,

Equation (7.33) can be reformulated to give

b∗τk
= bτ +

1

2DY





∑

n

rnk‖yn − W∗
kxn‖2 + Eα(αk)

∑

j

‖w∗
kj‖2



 . (7.35)

This shows that bτ is updated by the responsibility-weighted sum of squared
prediction errors, averaged over the different elements of the output vector,
and the average size of the wkj ’s, weighted by the expectation of the weight
precision prior. Considering that E(Gam(a, b)) = a/b [20], the mean of the
noise variance posterior is therefore strongly influenced by the responsibility-
weighted averaged squared prediction error, given a sufficiently uninformative
prior.

7.3.3 Classifier Weight Priors q∗

α(α)

As by (7.17), p(α) factorises with respect to k, we can treat the variational
posterior q∗α for each classifier separately. For classifier k, this posterior is
according to (7.15), (7.16), (7.17) and (7.24) given by

ln q∗α(αk) = EW,τ (ln p(Wk, τk|αk)) + ln p(αk) + const. (7.36)

Using (7.8), the expectation of weights and noise precision evaluates to

EW,τ (ln p(Wk, τk|αk))

=
∑

j

EW,τ

(

lnN (wkj |0, (αkτk)−1I) + ln Gam(τk|aτ , bτ)
)

=
∑

j

(

DX

2
lnαk − αk

2
EW,τ (τkw

T
kjwkj)

)

+ const. (7.37)

Also, by (7.9),

ln p(αk) = (aα − 1) ln αk − bααk + const. (7.38)

Together, that gives the variational posterior

7.3 Evaluating the Model Evidence 151

ln q∗α(αk) =

(

DXDY

2
+ aα − 1

)

lnαk

−



bα +
1

2

∑

j

EW,τ (τkw
T
kjwkj)



 αk + const.

= ln Gam(αk|a∗
αk

, b∗αk
), (7.39)

with

a∗
αk

= aα +
DXDY

2
, (7.40)

b∗αk
= bα +

1

2

∑

j

EW,τ (τkw
T
kjwkj). (7.41)

Utilising again the relation between the gamma distribution and the scaled
inverse χ2 distribution, (7.40) increments the initial 2aα degrees of freedom
by DXDY , which is the number of elements in Wk.

The posterior mean of αk is E(αk) = a∗
αk

/b∗αk
and thus is inversely pro-

portional to the size of the weight vectors ‖wkj‖2 = wT
kjwkj and the noise

precision τk. As the element-wise variance in the weight vector prior (7.8)
is given by (αkτk)−1, the effect of τk on that prior is diminished. Thus, the
weight vector prior variance is proportional to the expected size of the weight
vectors, which has the effect of spreading the weight vector prior if the weight
vector is expected to be large, effectively reducing the shrinkage. Intuitively,
this is a sensible thing to do, as one should refrain from using an overly strong
shrinkage prior if the weight vector is expected to have large elements.

7.3.4 Mixing Model q∗

V (V)

We get the variational posterior q∗V (V) on the mixing model parameters by
solving (7.24) with (7.15), that is

ln q∗V (V) = EZ(ln p(Z|V)) + Eβ(ln p(V|β)) + const.. (7.42)

Even though q∗V factorises with respect to k, we will solve it for all classifiers
simultaneously due to the Laplace approximation that is applied thereafter.

Evaluating the expectations by using (7.12), (7.13) and (7.19) we get

EZ(ln p(Z|V)) =
∑

n

∑

k

rnkgk(xn), (7.43)

Eβ(ln p(V|β)) =
∑

k

Eβ(lnN (vk|0, β−1
k I))

=
∑

k

(

−Eβ(βk)

2
vT

k vk

)

+ const., (7.44)

152 7 The Optimal Set of Classifiers

where rnk ≡ EZ(znk) was used. Thus, the variational log-posterior evaluates
to

ln q∗V (V) =
∑

k

(

−Eβ(βk)

2
vT

k vk +
∑

n

rnkgk(xn)

)

+ const. (7.45)

Note that the distribution form of this posterior differs from its prior (7.13),
which would cause problems in further derivations. Thus, we proceed the same
way as Waterhouse et al. [234, 233] by performing a Laplace approximation
of the posterior.

The Laplace approximation aims at finding a Gaussian approximation to
the posterior density, by centring the Gaussian on the mode of the density
and deriving its covariance by a second-order Taylor expansion of the posterior
[20]. The mode of the posterior is found by solving

∂ ln q∗V (V)

∂V
= 0, (7.46)

which, by using the posterior (7.45) and the definition of gk (7.10), results in

∑

n

(rnk − gk(xn))φ(x) − Eβ(βk)vk = 0, k = 1, . . . ,K. (7.47)

Note that, besides the addition of the Eβ(βk)vk term due to the shrinkage
prior on vk, the minimum we seek is equivalent to the one of the prior-less
generalised softmax function, given by (6.11). Therefore, we can find this
minimum by applying the IRLS algorithm (6.5) with error function E(V) =
− ln q∗V (V), where the required gradient vector and the DV ×DV blocks Hkj

of the Hessian matrix (6.9) are given by

∇V E(V) =







∇v1
E(V)
...

∇vK
E(V)






, ∇vj

E(V) =
∑

n

(gj(xn)−rnj)φ(xn)+Eβ(βj)vj ,

(7.48)
and

Hkj = Hjk =
∑

n

gk(xn)(Ikj − gj(xn))φ(xn)φ(xn)T + IkjEβ(βk)I. (7.49)

Ikj is the kjth element of the identity matrix, and the second I in the above
expression is an identity matrix of size DV × DV . As the resulting Hessian
is positive definite [177], the posterior density is concave and has a unique
maximum. More details on how to implement the IRLS algorithm are given
in the next chapter.

Let V∗ with components v∗
k denote the parameters that maximise (7.45).

V∗ gives the mode of the posterior density, and thus the mean vector of its
Gaussian approximation. As the logarithm of a Gaussian distribution is a

7.3 Evaluating the Model Evidence 153

quadratic function of the variables, this quadratic form can be recovered by a
second-order Taylor expansion of ln q∗V (V) [20], which results in the precision
matrix

Λ∗
V = −∇∇ ln q∗V (V∗) = ∇∇E(V∗) = H|V =V ∗ , (7.50)

where H is the Hessian matrix of E(V) as used in the IRLS algorithm. Overall,
the Laplace approximation to the posterior q∗V (V) is given by the multivariate
Gaussian

q∗V (V) ≈ N (V|V∗,Λ∗
V
−1), (7.51)

where V∗ is the solution to (7.47), and Λ∗
V is the Hessian matrix evaluated

at V∗.

7.3.5 Mixing Weight Priors q∗

β(β)

By (7.19), p(β) factorises with respect to k, and thus allows us to find q∗β(β)
for each classifier separately, which, by (7.15), (7.18) and (7.24), requires the
evaluation of

ln q∗β(βk) = EV (ln p(vk|βk)) + ln p(βk). (7.52)

Using (7.13) and (7.14), the expectation and log-density are given by

EV (ln p(vk|βk)) =
DV

2
lnβk − βk

2
EV (vT

k vk) + const., (7.53)

ln p(βk) = (aβ − 1) ln βk − βkbβ + const. (7.54)

Combining the above, we get the variational posterior

ln q∗β(βk) =

(

aβ − 1 +
DV

2

)

lnβk −
(

bβ +
1

2
EV (vT

k vk)

)

bβ + const.

= ln Gam(βk|a∗
βk

, b∗βk
), (7.55)

with the distribution parameters

a∗
βk

= aβ +
DV

2
, (7.56)

b∗βk
= bβ +

1

2
EV (vT

k vk). (7.57)

As the priors on vk are similar to the ones on wk, they cause the same
effect: as b∗βk

increases proportionally to the expected size ‖vk‖2, the expec-
tation of the posterior Eβ(βk) = a∗

βk
/b∗βk

decreases in proportion to it. This
expectation determines the shrinkage on vk (see (7.47)), and thus, the strength
of the shrinkage prior is reduced if vk is expected to have large elements, which
is an intuitively sensible procedure.

154 7 The Optimal Set of Classifiers

7.3.6 Latent Variables q∗

Z(Z)

To get the variational posterior over the latent variables Z we need to evaluate
(7.24) by the use of (7.15), that is,

ln q∗Z(Z) = EW,τ (ln p(Y|W, τ ,Z)) + EV (ln p(Z|V)) + const. (7.58)

The first expression can be evaluated by combining (7.6) and (7.7) to get

EW,τ (ln p(Y|W, τ ,Z))

=
∑

n

∑

k

znk

∑

j

EW,τ (lnN (ynj |wT
kjxn, τ−1

k))

=
∑

n

∑

k

znk

∑

j

(

−1

2
ln 2π

)

+
∑

n

∑

k

znk

∑

j

1

2
Eτ (ln τk)

−1

2

∑

n

∑

k

znk

∑

j

EW,τ

(

τk(ynj − wT
kjxn)2

)

=
DY

2

∑

n

∑

k

znkEτ (ln τk)

−1

2

∑

n

∑

k

znk

∑

j

EW,τ

(

τk(ynj − wT
kjxn)2

)

+ const., (7.59)

where
∑

k znk = 1 was used. Using (7.12) and (7.11), the second expectation
results in

EV (ln p(Z|V)) =
∑

n

∑

k

znkEV (ln gk(xn))

≈
∑

n

∑

k

znk ln gk(x)|vk=v∗
k
, (7.60)

where the expectation of ln gk(xn) was approximated by the logarithm of
its maximum a-posteriori estimate, that is, ln gk(xn) evaluated at vk = v∗

k.
This approximation was applied as a direct evaluation of the expectation
does not yield a closed-form solution. The same approximation was applied
by Waterhouse et al. [234, 233] for the MoE model.

Combining the above expectations results in the posterior

ln q∗Z(Z) =
∑

n

∑

k

znk ln ρnk + const., (7.61)

with

ln ρnk = ln gk(xn)|vk=v∗
k

+
DY

2
Eτ (ln τk) − 1

2

∑

j

EW,τ

(

τk(ynj − wT
kjxn)2

)

.

(7.62)

7.3 Evaluating the Model Evidence 155

Without the logarithm, the posterior becomes q∗Z(Z) ∝ ∏

n

∏

k ρznk

nk , and thus,
under the constraint

∑

k znk = 1, we get

q∗Z(Z) =
∏

n

∏

k

rznk

nk , with rnk =
ρnk

∑

j ρnj
= EZ(znk). (7.63)

As for all posteriors, the variational posterior for the latent variables has the
same distribution form as its prior (7.12).

Note that rnk gives the responsibility that is assigned to classifier k for
modelling observation n, and is proportional to ρnk (7.62). Thus, the respon-
sibilities are on one hand proportional to the current mixing weights gk(x),
and on the other hand are higher for low-variance classifiers (note that τk

is the inverse variance of classifier k) that feature a low expected squared
prediction error (ynj − wT

kjxn)2 for the associated observation. Overall, the
responsibilities are distributed such that the observations are modelled by the
classifiers that are best at modelling them.

7.3.7 Required Moments of the Variational Posterior

Some of the variational distribution parameters require evaluation of the mo-
ments of one or the other random variable in our probabilistic model. In this
section, these moments and the ones required at a later stage are evaluated.
Throughout this section we use Ex(x) = x∗ and covx(x,x) = Λ−1, where
x ∼ N (x∗,Λ−1) is a random vector that is distributed according to a multi-
variate Gaussian with mean x∗ and covariance matrix Λ−1.

Given that we have a random variable X ∼ Gam(a, b), then its expectation
is EX(X) = a/b, and the expectation of its logarithm is EX(lnX) = ψ(a)−ln b,
where ψ(x) = x

dx ln Γ(x) is the digamma function [20]. Thus the following are
the posterior moments for q∗α(αk), q∗β(βk), and q∗τ (τk):

Eα(αk) =
a∗

αk

b∗αk

, (7.64)

Eα(ln αk) = ψ(a∗
αk

) − ln bαk
, (7.65)

Eβ(βk) =
a∗

βk

b∗βk

, (7.66)

Eβ(ln βk) = ψ(a∗
βk

) − ln b∗βk
, (7.67)

Eτ (τk) =
a∗

τk

b∗τk

, (7.68)

Eτ (ln τk) = ψ(a∗
τk

) − ln b∗τk
. (7.69)

To get the moments of q∗W,τ (Wk, τk) and q∗V (vk), we can use var(X) =

E(X2) − E(X)2, and thus, E(X2) = var(X) + E(X)2, to get

156 7 The Optimal Set of Classifiers

E(xT x) =
∑

i

E(x2
i)

=
∑

i

var(xi) +
∑

i

E(xi)
2

= Tr(cov(x,x)) + E(x)T
E(x),

and similarly,
E(xxT) = cov(x,x) + E(x)E(x)T ,

where X is a random variable, and x = (xi)
T is a random vector. Hence, as

by (7.51), q∗V (V) is a multivariate Gaussian with covariance matrix Λ∗
V
−1, we

get

EV (vT
k vk) = Tr

(

(Λ∗
V
−1)kk

)

+ v∗
k

T v∗
k, (7.70)

where (Λ∗
V
−1)kk denotes the kth DV × DV block element along the diagonal

of Λ∗
V
−1.

Getting the moments of q∗W,τ (Wk, τk) requires a bit more work. Let us first
consider EW,τ (τkwkj), which by (7.29) and the previously evaluated moments
gives

EW,τ (τkwkj)

=

∫

τkGam(τk|a∗
τk

, b∗τk
)

(∫

wkjN (wkj |w∗
kj , (τkΛ

∗
k)−1)dwkj

)

dτk

= w∗
kj

∫

τkGam(τk|a∗
τk

, b∗τk
)dτk

=
a∗

τk

b∗τk

w∗
kj . (7.71)

For EW,τ (τkw
T
kjwkj) we get

EW,τ (τkw
T
kjwkj)

=

∫

τkGam(τk|a∗
τk

, b∗τk
)

(∫

wT
kjwkjN (wkj |w∗

kj , (τkΛ
∗
k)−1)dwkj

)

dτk

=

∫

τkGam(τk|a∗
τk

, b∗τk
)EW (wT

kjwkj)dτk

= w∗
kj

T w∗
kjEτ (τk) + Tr(Λ∗

k
−1)

=
a∗

τk

b∗τk

w∗
kj

T w∗
kj + Tr(Λ∗

k
−1). (7.72)

EW,τ (τkwkjw
T
kj) can be derived in a similar way, and results in

EW,τ (τkwkjw
T
kj) =

a∗
τk

b∗τk

w∗
kjw

∗
kj

T + Λ∗
k
−1. (7.73)

7.3 Evaluating the Model Evidence 157

The last required moment is EW,τ (τk(ynj−wT
kjxn)2), which we get by binomial

expansion and substituting the previously evaluated moments, to get

EW,τ (τk(ynj − wT
kjxn)2)

= Eτ (τk)y2
nj − 2EW,τ (τkwkj)

T xnynj + xT
n EW,τ (τkwkjw

T
kj)xn

=
a∗

τk

b∗τk

(ynj − w∗
kj

T xn)2 + xT
nΛ∗

k
−1xn. (7.74)

Now we have all the required expressions to compute the parameters of
the variational posterior density.

7.3.8 The Variational Bound L(q)

We are most interested in finding the value for L(q) by (7.21), as it provides
us with an approximated lower bound on the logarithm of the model evidence
ln p(Y), and is the actual expression that is to be maximised. Evaluating (7.21)
by using the distribution decomposition according to (7.15), the variational
bound is given by

L(q) =

∫

q(U) ln
p(Y,U)

q(U)
dU

= EW,τ,α,Z,V,β(ln p(Y,W, τ ,Z,V,β))

−EW,τ,α,Z,V,β(ln q(W, τ ,α,Z,V,β))

= EW,τ,Z(ln p(Y|W, τ ,Z)) + EW,τ,α(ln p(W, τ |α)) + Eα(ln p(α))

+EZ,V (ln p(Z|V)) + EV,β(ln p(V|β)) + Eβ(ln p(β))

−EW,τ (ln q(W, τ)) − Eα(ln q(α)) − EZ(ln q(Z))

−EV (ln q(V)) − Eβ(ln q(β)), (7.75)

where all expectations are taken with respect to the variational distribution
q. These are evaluated one by one, using the previously derived moments of
the variational posteriors.

To derive EW,τ,Z(ln p(Y|W, τ ,Z)), we use (7.6) and (7.7) to get

158 7 The Optimal Set of Classifiers

EW,τ,Z(ln p(Y|W, τ))

=
∑

n

∑

k

EZ(znk)
∑

j

EW,τ (lnN (ynj |wT
kjxn, τ−1

k))

=
∑

n

∑

k

rnk

∑

j

(

1

2
Eτ (ln τk) − 1

2
ln 2π − 1

2
EW,τ (τk(ynj − wT

kjxn)2)

)

=
∑

k

(

DY

2

(

ψ(a∗
τk

) − ln b∗τk
− ln 2π

)

∑

n

rnk

−1

2

∑

n

rnk

∑

j

(

a∗
τk

b∗τk

(ynj − w∗
kj

T xn)2 + xT
nΛ∗

k
−1xn

)

)

=
∑

k

(

DY

2

(

ψ(a∗
τk

) − ln b∗τk
− ln 2π

)

∑

n

rnk

−1

2

∑

n

rnk

(

a∗
τk

b∗τk

‖yn − W∗
kxn‖2 + DYxT

nΛ∗
k
−1xn

)

)

. (7.76)

The classifier model parameters expectation EW,τ,α(ln p(W, τ |α)) can be
derived by using (7.7) and (7.16), and is given by

EW,τ,α(ln p(W, τ |α)) (7.77)

=
∑

k

∑

j

(

EW,τ,α(lnN (wkj |0, (αkτk)−1I)) + Eτ (ln Gam(τk|aτ , bτ))
)

.

Expanding for the densities and substituting the variational moments results
in

EW,τ,α(ln p(W, τ |α))

=
∑

k

(

DXDY

2

(

ψ(a∗
αk

) − ln b∗αk
+ ψ(a∗

τk
) − ln b∗τk

− ln 2π
)

−1

2

a∗
αk

b∗αk





a∗
τk

b∗τk

∑

j

w∗
kj

T w∗
kj + DYTr(Λ∗

k
−1)



 (7.78)

+DY

(

− ln Γ(aτ) + aτ ln bτ + (aτ − 1)(ψ(a∗
τk

) − ln b∗τk
) − bτ

a∗
τk

b∗τk

)

)

.

The negative entropy EW,τ (ln q(W, τ)) of {W, τ} is based on (7.29) and
results in

7.3 Evaluating the Model Evidence 159

EW,τ (ln q(W, τ))

= EW,τ





∑

k

∑

j

lnN (wkj |w∗
kj , (τkΛ

∗
k)−1)Gam(τk|a∗

τk
, b∗τk

)





=
∑

k

∑

j

(

DX

2
Eτ (ln τk) − DX

2
ln 2π +

1

2
ln |Λ∗

k|

+EW,τ

(

−τ

2
(wkj − wkj)

2Λ∗
k(wkj − wkj)

)

− ln Γ(a∗
τk

)

+a∗
τk

ln b∗τk
+ (a∗

τk
− 1)Eτ (ln τk) − b∗τk

Eτ (τk)

)

= DY

∑

k

(

(

a∗
τk

− 1 +
DX

2

)

(ψ(a∗
τk

) − ln b∗τk
) − DX

2
(ln 2π + 1)

+
1

2
ln |Λ∗

k| − ln Γ(a∗
τk

) + a∗
τk

ln b∗τk
− a∗

τk

)

, (7.79)

where the previously evaluated variational moments and

EW,τ

(

−τ

2
(wkj − wkj)

2Λ∗
k(wkj − wkj)

)

= −1

2
DX (7.80)

was used.
We derive the expression Eα(ln p(α)) − Eα(ln q(α)) in combination, as

that allows for some simplification. Starting with Eα(ln p(α)), we get from
(7.17) and (7.9), by expanding the densities and substituting the variational
moments,

Eα(ln p(α)) (7.81)

=
∑

k

(

− ln Γ(aα) + aα ln bα + (aα − 1)(ψ(a∗
αk

) − ln b∗αk
) − bα

a∗
αk

b∗αk

)

.

The expression for Eα(ln q(α)) can be derived by observing that −Eα(ln q(αk))
is the entropy of q∗α(αk). Thus, using q∗α(α) =

∏

k q∗α(αk), substituting (7.39)
for q∗α(αk), and applying the entropy of the Gamma distribution [20], we get

Eα(ln q(α)) = −
∑

k

(

ln Γ(a∗
αk

) − (a∗
αk

− 1)ψ(a∗
αk

) − ln b∗αk
+ a∗

αk

)

(7.82)

Combining the above expressions and removing the terms that cancel out
results in

Eα(ln p(α)) − Eα(ln q(α)) =
∑

k

(

− ln Γ(aα) + aα ln bα + (aα − a∗
αk

)ψ(a∗
αk

)

−aα ln b∗αk
− bα

a∗
αk

b∗αk

+ ln Γ(a∗
αk

) + a∗
αk

)

.(7.83)

160 7 The Optimal Set of Classifiers

The expression EZ,V (ln p(Z|V))− EZ(ln q(Z)) is also derived in combina-
tion by using (7.12), (7.11) and (7.63), from which we get

EZ,V (ln p(Z|V)) − EZ(ln q(Z)) =
∑

n

∑

k

rnk ln
gk(x)|vk=v∗

k

rnk
, (7.84)

where we have, as previously, approximated EV (ln gk(xn)) by ln gk(xn)|vk=v∗
k
.

The derivation to get EV,β(ln p(V|β)) is again based on simple expansion
of the distribution given by (7.18) and (7.13), and substituting the variational
moments, which results in

EV,β(ln p(V|β)) (7.85)

=
∑

k

(

DV

2

(

ψ(a∗
βk

) − ln b∗βk
− ln 2π

)

− 1

2

a∗
βk

b∗βk

(

v∗
k

T v∗
k + Tr((Λ∗

V
−1)kk)

)

)

.

We get EV (ln q(V)) by observing that it is the negative entropy of the
Gaussian (7.51), and thus evaluates to [20]

EV (ln q(V)) = −
(

1

2
ln |Λ∗

V
−1| + KDV

2
(1 + ln 2π)

)

. (7.86)

As the priors on βk are of the same distribution form as the ones on αk,
the expectations of their log-density results in a similar expression as (7.65)
and is given by

Eβ(ln p(β)) − Eβ(ln q(β)) =
∑

k

(

− ln Γ(aβ) + aβ ln bβ + (aβ − a∗
βk

)ψ(a∗
βk

)

−aβ ln b∗βk
− bβ

a∗
βk

b∗βk

+ ln Γ(a∗
βk

) + a∗
βk

)

.(7.87)

This completes the evaluation of the expectations required to compute the
variational bound (7.75).

To simplify the computation of the variational bound, we define

Lk(q) = EW,τ,Z(ln p(Y|Wk, τk, zk)) + EW,τ,α(ln p(Wk, τk|αk))

+Eα(ln p(αk)) − EW,τ (ln q(Wk, τk)) − Eα(ln q(αk)), (7.88)

which can be evaluated separately for each classifier by observing that all
expectations except for EV (ln q(V)) are sums whose components can be eval-
uated independently for each classifier. Furthermore, Lk(q) can be simplified
by using the relations

DXDY

2
= a∗

αk
− aα, (7.89)

1

2





a∗
τk

b∗τk

∑

j

w∗
kj

T w∗
kj + DYTr(Λ∗

k
−1)



 = b∗αk
− bα, (7.90)

7.3 Evaluating the Model Evidence 161

which results from (7.40) and (7.41). Thus, the final, simplified expression for
Lk(q) becomes

Lk(q) =
DY

2

(

ψ(a∗
τk

) − ln b∗τk
− ln 2π

)

∑

n

rnk +
DXDY

2

−1

2

∑

n

rnk

(

a∗
τk

b∗τk

‖yn − W∗
kxn‖2 + DYxT

nΛ∗
k
−1xn

)

− ln Γ(aα) + aα ln bα + ln Γ(a∗
αk

) − a∗
αk

ln b∗αk
+

DY

2
ln |Λ∗

k
−1|

+DY

(

− ln Γ(aτ) + aτ ln bτ + (aτ − a∗
τk

)ψ(a∗
τk

) − aτ ln b∗τk
− bτ

a∗
τk

b∗τk

+ ln Γ(a∗
τk

) + a∗
τk

)

. (7.91)

All leftover terms from (7.75) are assigned to the mixing model, which
results in

LM (q) = EZ,V (ln p(Z|V)) + EV,β(ln p(V|β)) + Eβ(ln p(β))

−EZ(ln q(Z)) − EV (ln q(V)) − Eβ(ln q(β)). (7.92)

We can again derive a simplified expression for LM (q) by using the relations

DV

2
= a∗

βk
− aβ , (7.93)

1

2

(

Tr
(

(Λ∗
V
−1)kk

)

+ v∗
k

T v∗
k

)

= b∗βk
− bβ , (7.94)

which result from (7.56) and (7.57). Overall, this leads to the final simplified
expression

LM (q) =
∑

k

(

− ln Γ(aβ) + aβ ln bβ + ln Γ(a∗
βk

) − a∗
βk

ln b∗βk

)

(7.95)

+
∑

n

∑

k

rnk

(

ln gk(xn)|vk=v∗
k
− ln rnk

)

+
1

2
ln |Λ∗

V
−1| + KDV

2
.

The get the variational bound of the whole model structure, and with it
the lower bound on the logarithm of the model evidence ln p(Y), we need to
compute

L(q) = LM (q) +
∑

k

Lk(q), (7.96)

where Lk(q) and LM (q) are given by (7.91) and (7.95) respectively.
Training the model means maximising L(q) (7.96) with respect to its pa-

rameters {W∗
k,Λ∗

k, a∗
τk

, b∗τk
, a∗

αk
, b∗αk

,V∗,Λ∗
V , a∗

βk
, b∗βk

}. In fact, deriving the
maximum of L(q) with respect to each of these parameters separately while
keeping the others constant results in the variational update equations that
were derived in the previous sections [20].

162 7 The Optimal Set of Classifiers

7.3.9 Independent Classifier Training

As we can see from (7.91), we need to know the responsibilities {rnk} to
train each of the classifiers. The mixing model, on the other hand, relies on
the goodness-of-fit of the classifiers, as embedded in gk in (7.95). Therefore,
classifiers and mixing model need to be trained in combination to maximise
(7.96). Taking this approach, however, introduces local optima in the training
process, as already discussed for the non-Bayesian MoE model in Sect. 4.1.5.
Such local optima make evaluating the model evidence for a single model
structure too costly to perform efficient model structure search, and so the
training process needs to be modified to remove these local optima. Following
the same approach as in Sect. 4.4, we train the classifiers independently of the
mixing model.

More specifically, the classifiers are fully trained on all observations that
they match, independently of other classifiers, and then combined by the
mixing model. Formally, this is achieved by replacing the responsibilities rnk

by the matching functions mk(xn).
The only required modification to the variational update equations is to

change the classifier model updates from (7.30) – (7.33) to

Λ∗
k = Eα(αk)I +

∑

n

mk(xn)xnxT
n , (7.97)

w∗
kj = Λ∗

k
−1

∑

n

mk(xn)xnynj , (7.98)

a∗
τk

= aτ +
1

2

∑

n

mk(xn), (7.99)

b∗τk
= bτ +

1

2DY





∑

j

(

∑

n

mk(xn)y2
nj − w∗

kj
T Λ∗

kw
∗
kj

)



 . (7.100)

Thus, we are now effectively finding a wkj that minimises

‖Xwkj − yj‖2
Mk

+ Eα(αk)‖wkj‖2, (7.101)

as we have already discussed extensively in Sect. 5.3.5. The weight prior up-
date (7.40) and (7.41), as well as all mixing model update equations remain
unchanged.

Even though all rnk’s in the classifier update equations are replaced with
mk(xn)’s, the classifier-specific component Lk(q) (7.91) remains unchanged.
This is because the responsibilities enter Lk(q) through the expectation
EW,τ,Z(ln p(Y|W, τ ,Z)), which is based on (7.6) and (7.7). Note that (7.6)
combines the classifier models to form a global model, and is thus conceptu-
ally part of the mixing model rather than the classifier model. Thus, the rnk’s
in Lk(q) specify how classifier k contributes to the global model and remain
unchanged.

7.3 Evaluating the Model Evidence 163

Consequently, the variational posteriors for the classifiers only maximise
the variational bound L(q) if we have rnk = mk(xn) for all n, k. In all other
cases, the variational bound remains below the one that we could achieve by
training the classifiers according to their responsibilities. This effect is analo-
gous to the reduced likelihood as discussed in Sect. 4.4.5. In cases where we
only have one classifier per observation, we automatically have rnk = mk(xn),
and thus making classifier training independent only affects areas where sev-
eral classifiers match the same input. Nonetheless, the model structure selec-
tion criterion is proportional to the value of the variational bound and there-
fore most likely prefers model structures that do not assign multiple classifiers
to a single observation.

7.3.10 How to Get p(M|D) for Some M

Recall that rather than finding the model parameters θ for a fixed model
structure, the aim is to find the model structure M that maximises p(M|D).
This, however, cannot be done without also training the model.

Variational Bayesian inference yields a lower bound on ln p(D|M) that
is given by maximising the variational bound L(q). As p(M|D) results from
p(D|M) by (7.3), p(M|D) can be approximated for a given model structure
M by maximising L(q). Using the assumptions of factorial distributions, L(q)
is maximised with respect to a group of hidden variables while keeping the
other ones fixed by computing (7.24). Therefore, by iteratively updating the
distribution parameters of q∗W,τ (W, τ), q∗α(α), q∗V (V), q∗β(β), and q∗Z(Z) in
a sequential fashion, the variational bound increases monotonically until it
reaches a maximum [27]. Independent classifier training simplifies this pro-
cedure by making the update of q∗W,τ (W, τ) and q∗α(α) independent of the
update of the other variational densities. Firstly, the classifier are trained in-
dependently of each other and the mixing model, and secondly, the mixing
model parameters are updated accordingly.

To summarise, finding p(M|D) for a given model structure can be done
with the following steps:

1. Train the classifiers by iteratively updating the distribution parameters of
q∗W,τ (W, τ) and q∗α(α) until convergence, for each classifier separately.

2. Train the mixing model by iteratively updating the distribution parame-
ters of q∗V (V), q∗β(β), and q∗Z(Z) until convergence.

3. Compute the variational bound L(q) by (7.96).
4. p(M|D) is then given by (7.3), where ln p(D|M) is replaced by its ap-

proximation L(q).

Appropriate convergence criteria are introduced in the next chapter.

164 7 The Optimal Set of Classifiers

7.4 Predictive Distribution

An additional bonus of a probabilistic basis for LCS is that it provides pre-
dictive distributions rather than simple point estimates. This gives additional
information about the certainty of the prediction and the specification of con-
fidence interval. Here, the predictive density for the Bayesian LCS model for
regression is derived.

The question we are answering is: in the light of all available data, how
likely are certain output values for a new input? This question is approached
formally by providing the predictive density p(y′|x′,D) ≡ p(y′|x′,X,Y),
where x′ is the new known input vector, and y′ its associated unknown output
vector, and all densities are, as before, implicitly conditional on the current
model structure M.

7.4.1 Deriving p(y′|x′, D)

We get an expression for p(y′|x′,D) by using the relation

p(y′|x′,X,Y) (7.102)

=
∑

z′

∫∫∫

p(y′, z′,W, τ ,V|x′,X,Y)dWdτdV

=
∑

z′

∫∫∫

p(y′|x′, z′,W, τ)p(z′|x′,V)p(W, τ ,V|X,Y)dWdτdV

=
∑

z′

∫∫∫

(

∏

k

N (y′|Wkx
′, τ−1

k I)z′
kgk(x′)z′

k

)

×p(W, τ ,V|X,Y)dWdτdV,

where z′ is the latent variable associated with the observation (x′,y′), and
p(y′|x′, z′,W, τ) is replaced by (7.6), and p(z′|x′,V) by (7.11). As the real
posterior p(W, τ ,V|X,Y) is not known, it is approximated by the variational
posterior, that is, p(W, τ ,V|X,Y) ≈ q∗W,τ (W, τ)q∗V (V). Together with sum-
ming over all z′, this results in

p(y′|x′,X,Y) (7.103)

=
∑

k

(∫

gk(x′)q∗V (vk)dvk

)∫∫

q∗W,τ (Wk, τk)N (y′|Wkx
′, τ−1

k I)dWkdτk,

where the factorisation of q∗V (V) and q∗W,τ (W, τ) with respect to k and the
independence of the two variational densities was utilised.

The first integral
∫

gk(x′)q∗V (vk)dvk is the expectation EV (gk(x′)) which
does not have an analytical solution. Thus, following Ueda and Ghahramani
[223], it is approximated by its maximum a-posteriori estimate

7.4 Predictive Distribution 165

∫

gk(x′)q∗V (vk)dvk ≈ gk(x′)|vk=v∗
k
. (7.104)

The second integral
∫∫

q∗W,τ (Wk, τk)N (y′|Wkx
′, τ−1

k I)dWkdτk is the ex-

pectation EW,τ (N (y′|Wkx
′, τ−1

k I)), that, by using (7.7) and (7.29), evaluates
to

EW,τ (N (y′|Wkx
′, τ−1

k I)dWkdτk

=

∫∫

N (y′|Wkx
′, τ−1

k I)q∗W |τ (Wk|τk)q∗τ (τk)dWkdτk

=

∫





∏

j

∫

N (y′
j |wT

kjx
′, τ−1

k)N (wkj |w∗
kj , (τkΛ

∗
k)−1)dwkj



 q∗τ (τk)dτk

=
∏

j

∫

N (y′
j |w∗

kj
T x′, τ−1

k (1 + x′T Λ∗
k
−1x′))Gam(τk|a∗

τk
, b∗τk

)dτk

=
∏

j

St

(

y′
j |w∗

kj
T x′, (1 + x′T Λ∗

k
−1x′)−1 a∗

τk

b∗τk

, 2a∗
τk

)

, (7.105)

where St(y′
j |w∗

kj
T x′, (1 + x′T Λ∗

k
−1x′)−1a∗

τk
/b∗τk

, 2a∗
τk

) is the Student’s t dis-

tribution with mean w∗
kj

T x′, precision (1 + x′T Λ∗
k
−1x′)−1a∗

τk
/b∗τk

, and 2a∗
τk

degrees of freedom. To derive the above we have used the convolution of two
Gaussians [20], given by

∫

N (y′
j |wT

kjx
′, τ−1

k)N (wkj |w∗
kj , (τkΛ

∗
k)−1)dwkj

= N (y′
j |w∗

kj
T x′, τ−1

k (1 + x′T Λ∗
k
−1x′)), (7.106)

and the convolution of a Gaussian with a Gamma distribution [20],

∫

N (y′
j |w∗

kj
T x′, τ−1

k (1 + x′T Λ∗
k
−1x′))Gam(τk|a∗

τk
, b∗τk

)dτk

= St

(

y′
j |w∗

kj
T x′, (1 + x′T Λ∗

k
−1x′)−1 a∗

τk

b∗τk

, 2a∗
τk

)

.(7.107)

Combining (7.103), (7.104), and (7.105) gives the final predictive density

p(y′|x′,X,Y) (7.108)

=
∑

k

gk(x′)|vk=v∗
k

∏

j

St

(

y′
j |w∗

kj
T x′, (1 + x′T Λ∗

k
−1x′)−1 a∗

τk

b∗τk

, 2a∗
τk

)

,

which is a mixture of Student’s t distributions.

166 7 The Optimal Set of Classifiers

7.4.2 Mean and Variance

Given the predictive density, point estimates and information about the pre-
diction confidence are given by its mean and variance, respectively. As the
mixture of Student’s t distributions might be multi-modal, there exists no
clear definition for the 95% confidence intervals, but a mixture density-related
study that deals with this problem was performed by Hyndman [120]. Here,
the variance is taken as a sufficient indicator of the prediction’s confidence.

Let us first consider the mean and variance for arbitrary mixture densities,
and subsequently apply it to (7.108). Let {Xk} be a set of random variables
that are mixed with mixing coefficients {gk} to give X =

∑

k gkXk. As shown
by Waterhouse [234], the mean and variance of X are given by

E(X) =
∑

k

gkE(Xk), var(X) =
∑

k

gk(var(Xk)+E(Xk)2)−E(X)2. (7.109)

The Student’s t distributions in (7.108) have mean w∗
kj

T x′ and variance

(1 + x′T Λ∗
k
−1x′)2b∗τk

/(a∗
τk

− 1). Therefore, the mean vector of the predictive
density is

E(y′|x′,X,Y) =

(

∑

k

gk(x′)|vk=v∗
k
W∗

k

)

x′, (7.110)

and each element y′
j of y′ has variance

var(y′
j |x′,X,Y) (7.111)

=
∑

k

gk(x′)|vk=v∗
k

(

2
b∗τk

a∗
τk

− 1
(1 + x′T Λ∗

k
−1x′) + (w∗

kj
T x′)2

)

−E(y′|x′,X,Y)2j ,

where E(y′|x′,X,Y)j denotes the jth element of E(y′|x′,X,Y).
These expressions are used in the following chapter to plot the mean pre-

dictions of the LCS model, and to derive confidence intervals on these pre-
dictions.

7.5 Model Modifications to Perform Classification

In order to adjust the Bayesian LCS model to perform classification rather
than regression, the input space will, as before, be assumed to be given by
X = R

DX . The output space, on the other hand, is Y = {0, 1}DY , where DY

is the number of classes of the problem. For any observation (x,y), the output
vector y defines the class j associated with input x by yj = 1 and all other
elements being 0. The task of the LCS model for a fixed model structure M
is to model the probability p(y|x,M) of any class being associated with a
given input. A good model structure is one that assigns high probabilities to
a single class, dependent on the input, without modelling the noise.

7.5 Model Modifications to Perform Classification 167

7.5.1 Local Classification Models and Their Priors

Taking the generative point-of-view, it is assumed that a single classifier k
generates each of the classes with a fixed probability, independent of the input.
Thus, its model is, as already introduced in Sect. 4.2.2, given by

p(y|wk) =
∏

w
yj

kj , with
∑

j

wj = 1. (7.112)

wk ∈ R
DY is the parameter vector of that classifier, with each of its ele-

ments wkj modelling the generative probability for its associated class j. As
a consequence, its elements have to be non-negative and sum up to 1.

The conjugate prior p(wk) on a classifier’s parameters is given by the
Dirichlet distribution

p(wk) = Dir(wk|α) = C(α)
∏

j

w
αj−1
kj , (7.113)

parametrised by the vector α ∈ R
DY , that is equivalent for all classifiers, due

to the lack of better knowledge. Its normalising constant C(α) is given by

C(α) =
Γ(α̃)

∏

j Γ(αj))
, (7.114)

where α̃ denotes the sum of all elements of α, that is

α̃ =
∑

j

αj . (7.115)

Given this prior, we have E(wk) = α/α̃, and thus the elements of α allow
us to specify a prior bias towards one or the other class. Usually, nothing is
known about the class distribution for different areas of the input space, and
so all elements of α should be set to the same value.

In contrast to the relation of the different elements of α to each other, their
absolute magnitude specifies the strength of the prior, that is, how strongly the
prior affects the posterior in the light of further evidence. Intuitively speaking,
a change of 1 to an element of α represents one observation of the associated
class. Thus, to keep the prior non-informative it should be set to small positive
values, such as, for example, α = (10−2, . . . , 10−2)T .

Besides a different classifier model, no further modifications are required
to the Bayesian LCS model. Its hidden variables are now U = {W,Z,V,β},
where W = {wk} is the set of the classifier’s parameters, whose distribution
factorises with respect to k, that is

p(W) =
∏

k

p(wk). (7.116)

168 7 The Optimal Set of Classifiers

Assuming knowledge of X and M, the joint distribution of data and hidden
variables is given by

p(Y,U|X) = p(Y|X,W,Z)p(W)p(Z|X,V)p(V|β)p(β). (7.117)

The data likelihood is, similarly to (7.6), given by

p(Y|X,W,Z) =
∏

n

∏

k

p(yn|wk)znk . (7.118)

The mixing model is equivalent to that of the Bayesian LCS model for re-
gression (see Table 7.2).

7.5.2 Variational Posteriors and Moments

The posteriors are again evaluated by variational Bayesian inference. Starting
with the individual classifiers, their variational posterior is found by applying
(7.24) to (7.112), (7.113), (7.117) and (7.118), and for classifier k results in

q∗w(wk) = Dir(wk|α∗
k), (7.119)

with
α∗

k = α +
∑

n

rnkyn. (7.120)

Assuming α = 0, E(wk|α∗
k) =

∑

n rnkyn/
∑

n rnk results in the same frequen-
tist probability estimate as the maximum likelihood procedure described in
Sect. 5.5.2. The prior α acts like additional observations of particular classes.

The variational posterior of Z is the other posterior that is influenced by
the classifier model. Solving (7.24) by combining (7.12), (7.112), (7.117) and
(7.118) gives

q∗Z(Z) =
∏

n

∏

k

rznk

nk , with rnk =
ρnk

∑

j ρnj
= EZ(znk), (7.121)

where ρnk satisfies

ln ρnk = ln gk(xn)|vk=v∗
k

+
∑

j

ynjEW (ln wkj)

= ln gk(xn)|vk=v∗
k

+
∑

j

ynjψ(α∗
kj) − ψ(α̃∗

k). (7.122)

α̃∗
k, is, as before, the sum of the elements of α∗

k.
The variational posteriors of V and β remain unchanged, and are thus

given by (7.51) and (7.55).

7.5 Model Modifications to Perform Classification 169

7.5.3 Variational Bound

For the classification model, the variational bound L(q) is given by

L(q) = EW,Z(ln p(Y|X,W,Z)) + EW (ln p(W)) (7.123)

+EV (ln p(Z|X,V)) + EV,β(ln p(V|β)) + Eβ(ln p(β))

−EW (ln q(W)) − EV (ln q(V)) − Eβ(ln q(β)) − EZ(ln q(Z)).

The only terms that differ from the ones evaluated in Sect. 7.3.8 are the ones
that contain W and are for the classification model given by

EW,Z(ln p(Y|X,W,Z)) =
∑

n

∑

k

rnk





∑

j

ynj(ψ(α∗
kj) − ψ(α̃∗

k))



 , (7.124)

EW (ln p(W)) =
∑

k



lnC(α) +
∑

j

(αj − 1)(ψ(α∗
kj) − ψ(α̃∗

k))



 ,(7.125)

EW (ln q(W)) =
∑

k



lnC(α∗
k) +

∑

j

(α∗
kj − 1)(ψ(α∗

kj) − ψ(α̃∗
k))



 .(7.126)

Splitting the variational bound again into Lk’s and LM , Lk(q) for classifier k
is defined as

Lk(q) = EW,Z(ln p(Y|X,W,Z)) + EW (ln p(W)) − EW (ln q(W)), (7.127)

and evaluates to
Lk(q) = lnC(α) − lnC(α∗

k), (7.128)

where (7.120) was used to simplify the expression. LM (q) remains unchanged
and is thus given by (7.95). As before, L(q) is given by (7.96).

7.5.4 Independent Classifier Training

As before, the classifiers can be trained independently by replacing rnk by
mk(xn). This only influences the classifier weight vector update (7.120) that
becomes

α∗
k = α +

∑

n

mk(xn)yn. (7.129)

This change invalidates the simplifications performed to get Lk(q) by (7.128).
Instead,

Lk(q) = lnC(α) − lnC(α∗
k)

+
∑

j

(

∑

n

rnkynj + αj − α∗
kj

)

(

ψ(α∗
kj) − ψ(α̃∗

k)
)

(7.130)

170 7 The Optimal Set of Classifiers

has to be used.
If classifiers are trained independently, then they can be trained in a single

pass by (7.129), as no hyperpriors are used. How the mixing model is trained
and the variational bound is evaluated remains unchanged and is described
in Sect. 7.3.10.

7.5.5 Predictive Density

Given a new observation (y′,x′), its predictive density is given by p(y′|x′,D).
The density’s mixing-model component is essentially the same as in Sect. 7.4.
What remains to evaluate is the marginalised classifier prediction

∫

q∗W (wk)
∏

j

w
y′

j

kjdwk =
C(α∗

k)

C(α′
k)

, (7.131)

where α′
k = α∗

k + y′. Thus, the predictive density is given by

p(y′|x′,X,Y) =
∑

k

gk(x′)|vk=v∗
k

C(α∗
k)

C(α′
k)

. (7.132)

Due to the 1-of-DY structure of y′, only a single element y′
j , associated with

class j, is 1. Thus, using the definition of C(·) by (7.114) and Γ(x+1) = xΓ(x)
allows us to simplify the above expression to

p(y′
j = 1|x′,X,Y) =

∑

k

gk(x′)|vk=v∗
k

α∗
kj

∑

j̄ α∗
kj̄

. (7.133)

The predicted class j is the one that is considered as being the most likely
to have generated the observation, and is the one that maximises the above
expression. This completes the Bayesian LCS model for classification.

7.6 Alternative Model Selection Methods

Bayesian model selection is not the only model selection criterion that might
be applicable to LCS. In this section a set of alternatives and their relation
to LCS are reviewed.

As described in Sect. 7.1.2, model selection criteria might differ in their
philosophical background, but they all result in the principle of minimising
a combination of model error and model complexity. Their main difference
lies in how they define the model complexity. Very crude approaches, like the
two-part MDL, only consider the coarse model structure, whereas more refined
criteria, like the refined MDL, SRM, and BYY, are based on the functional
form of the model. However, they usually do not take the distribution of the
training data into consideration when evaluating the model complexity. Re-
cent research has shown that consider this distribution, like cross-validation,
Bayesian model selection, or Rademacher complexity, are usually better in
approximating the target function [128].

7.6 Alternative Model Selection Methods 171

7.6.1 Minimum Description Length

The principle of Minimum Description Length (MDL) [193, 194, 195] is based
on the idea of Occam’s Razor, that amongst models that explain the data
equally well, the simplest one is the one to prefer. MDL uses Kolmogorov
complexity as a baseline to describe the complexity of the model, but as that
is uncomputable, coding theory is used as an approximation to find minimum
coding lengths that then represent the model complexity [102].

In its crudest form, the two-part MDL requires a binary representation of
both the model error and the model itself, where the combined representation
is to be minimised [193, 194]. Using such an approach for LCS makes its
performance highly dependent on the representation used for the matching
functions and the model parameters, and is therefore rather arbitrary. Its
dependence on the chosen representation and the lack of guidelines on how to
decide upon a particular representation are generally considered the biggest
weakness of the two-part MDL [102].

A more refined approach is to use the Bayesian MDL [102] that — despite a
different philosophical background — is mathematically identical to Bayesian
model selection as applied here. In that sense, the approach presented in this
chapter can be said to be using the Bayesian MDL model selection criterion.

The latest MDL approach is theoretically optimal in the sense that it
minimises the worst-case coding length of the model. Mathematically, it is
expressed as the maximum likelihood normalised by the model complexity,
where the model complexity is its coding length summed over all possible
model parameter values [196]. Therefore, given continuous model parameters,
as used here, the complexity is infinite, which makes model comparison impos-
sible. In addition, the LCS structure makes computing the model complexity
even for a finite set of parameters extremely complicated, which makes it un-
likely that, in its pure form, the latest MDL measure will be of any use for
LCS.

7.6.2 Structural Risk Minimisation

Structural Risk Minimisation (SRM) is based on minimising an upper bound
on the expected risk (3.1), given the sum of the empirical risk (3.2) and a
model complexity metric based on the functional form of the model [225].
The functional form of the model complexity enters SRM in the form of the
model’s Vapnik-Chervonenkis (VC) dimensions. Having the empirical risk and
the VC dimensions of the model, we can find a model that minimises the
expected risk.

The difficulty of the SRM approach when applied to LCS is to find the
VC dimensions of the LCS model. For linear regression classifiers, the VC
dimensions are simply the dimensionality of the input space DX . Mixing these
models, however, introduces non-linearity that makes evaluation of the VC
dimensions difficult. An additional weakness of SRM is that it deals with

172 7 The Optimal Set of Classifiers

worst-case bounds that do apply to any distribution of the data, which causes
the bound on the expected risk to be quite loose and reduces its usefulness
for model selection [20].

A more powerful approach that provides us with a tighter bound to the
expected risk is to use data-dependent SRM. Such an approach has been
applied to the Mixtures-of-Expert model by Azran et al. [6, 5]. It still remains
to be seen if this approach can be generalised to the LCS model, such as
was done here with the Bayesian MoE model to provide the Bayesian LCS

model. If this is possible, data-dependent SRM might be a viable alternative
for defining the optimal set of classifiers.

7.6.3 Bayesian Ying-Yang

Bayesian Ying Yang (BYY) defines a unified framework that lets one derive
many statistics-based machine learning methods [250]. It describes the prob-
ability distribution given by the data, and the one described by the model,
and aims at finding models that are closest in distribution to the data. Using
the Kullback-Leibler divergence as a distribution comparison metric results
in maximum likelihood learning, and therefore will cause overfitting of the
model. An alternative is Harmony Learning which is based on minimising the
cross entropy between the data distribution and the model distribution, and
prefers statistically simple distributions, that is, distributions of low entropy.

Even though it is very likely applicable to LCS as it has already been
applied to the Mixtures-of-Expert model [249], there is no clear philosophical
background that justifies the use of the cross entropy. Therefore, the Bayesian
approach that was introduced in this chapter seems to be a better alternative.

7.6.4 Training Data-based Approaches

It has been shown that penalising the model complexity based on some struc-
tural properties of the model alone cannot compete on all scales with data-
based methods like cross validation [128]. Furthermore, using the training data
rather than an independent test set gives even better results in minimising
the expected risk [14]. Two examples of such complexity measures are the
Rademacher complexity and the Gaussian complexity [15]. Both of them are
defined as the expected error of the model when trying to fit the data per-
turbed by a sequence of either Rademacher random variables (uniform over
{±1}) or Gaussian N (0, 1) random variables. Hence, they measure the model
complexity by the model’s ability to match a noisy sequence.

Using such methods in LCS would require training two models for the same
model structure, where one is trained with the normal training data, and the
other with the perturbed data. It is questionable if such additional space and
computational effort justifies the application of the methods. Furthermore,
using sampling of random variables to find the model complexity makes it
impossible to find an analytical expression for the utility of the model and

7.7 Discussion and Summary 173

thus provides little insight in how a particular model structure is selected.
Nonetheless, it might still be of use as a benchmark method.

7.7 Discussion and Summary

This chapter tackled the core question of LCS: what is the best set of classifiers
that explains the given data? Rather than relying on intuition, this question
was approached formally by aiming to find the best model structure M that
explains the given data D. More specifically, the principles of Bayesian model
selection were applied to define the best set of classifiers to be the most likely
one given the data, that is, the one that maximises p(M|D).

Computing this probability density requires a Bayesian LCS model that
was introduced by adding priors to the probabilistic model from Chap. 4.
Additionally, the flexibility of the regression classifier model was increased
from univariate to multivariate regression. The requirement of specifying prior
parameters is not a weakness of this approach, but rather a strength, as the
priors make explicit the commonly implicit assumptions made about the data-
generating process.

Variational Bayesian inference was employed to find a closed-form solu-
tion to p(M|D), in combination with various approximation to handle the
generalised softmax function that is used to combine the local classifier mod-
els to a global model. Whilst variational Bayesian inference usually provides
a lower bound L(q) on ln p(D|M) that is directly related to p(M|D), these
approximations invalidate the lower bound nature of L(q). Even without these
approximations, the use of L(q) for selecting the best set of classifiers depends
very much on the tightness of the bound, and if this tightness is consistent
for different model structures M. Variational Bayesian inference has been
shown to perform well in practice [223, 20], and the same approximations
that were used here were successfully used for the Mixtures-of-Experts model
[233, 234]. Thus, the presented method can be expected to feature good per-
formance when applied to LCS, but more definite statements require further
empirical investigation.

What was introduced in this chapter is the first formal and general def-
inition of what if means for a set of classifiers to be optimal, using the best
applicable of the currently common model selection approaches. The defini-
tion is general as i) it is independent of the representation of the matching
function, ii) it can be used for both discrete and continuous input spaces, iii)
it can handle matching by degree, and iv) it is not restricted to the LCS

model that is introduced in this book but is applicable to all LCS model
types that can be described probabilistically, including the linear LCS model.
The reader is reminded that the definition itself is independent of the vari-
ational inference, and thus is not affected by the issues that are introduced
through approximating the posterior. A further significant advancement that
comes with the definition of optimality is a Bayesian model for LCS that goes

174 7 The Optimal Set of Classifiers

beyond the probabilistic model as it makes the prior assumptions about the
data-generating process explicit. Additionally, the use of multivariate regres-
sion is also a novelty in the LCS context.

Defining the best set of classifiers as a maximisation problem also promotes
its theoretical investigation: depending on the LCS model type, one could, for
example, ask the question if the optimal set of classifiers is ever overlapping.
In other words, does the optimal set of classifiers include classifiers that are
responsible for the same input and thus have overlapping matching? Given
that the removal of overlaps increases p(M|D) in all cases, then this is not
the case. Such knowledge can guide model structure search itself, as it can
avoid classifier constellations that are very likely suboptimal. Thus, further
research in this area is not only of theoretical value but can guide the design
of other LCS components.

After this rather abstract introduction of the definition of the optimal clas-
sifier set and a method of computing the model probability, a more concrete
description of how it can be implemented will be provided. Also, a set of sim-
ple experiments demonstrates that Bayesian model selection is indeed able to
identify good sets of classifiers.

8

An Algorithmic Description

In the previous chapter, the optimal set of classifiers given some data D was
defined as the one given by the model structure M that maximises p(M|D).
In addition, a Bayesian LCS model for both regression and classification was
introduced, and it was shown how to apply variational Bayesian inference to
compute a lower bound on ln p(M|D) for some given M and D.

To demonstrate that the definition of the optimal classifier set leads to
useful results, a set of simple algorithms are introduced that demonstrate its
use on a set of regression tasks. This includes two possible approaches to
search the model structure space in order to maximise p(M|D), one based
on a basic genetic algorithm to create a simple Pittsburgh-style LCS, and
the other on sampling from the model posterior p(M|D) by Markov Chain
Monte Carlo (MCMC) methods. These approaches are by no means supposed
to act as viable competitors to current LCS, but rather as prototype imple-
mentations to demonstrate the correctness and usefulness of the optimality
definition. Additionally, the presented formulation of the algorithm seeks for
readability rather than performance. Thus, there might still be plenty of room
for optimisation.

The core of both approaches is the evaluation of p(M|D) and its compar-
ison for different classifier sets in order to find the best set. The evaluation of
p(M|D) is approached by variational Bayesian inference, as introduced in the
previous chapter. Thus, the algorithmic description of how to find p(M|D)
also provides a summary of the variational approach for regression classi-
fier models and a better understanding of how it can be implemented. Even
though not described here, the algorithm can easily be modified to handle
classification rather than regression. A general drawback of the algorithm as
it is presented here is that it does not scale well with the number of classifiers,
and that it can currently only operate in batch mode. The reader is reminded,
however, that the algorithmic description is only meant to show that the def-
inition of the optimal set of classifiers is a viable one. Possible extensions to
this work, as described later in this chapter, allude on how this definition can
be incorporated into current LCS or can kindle the development of new LCS.

176 8 An Algorithmic Description

Firstly, a set of functions are introduced, that in combination compute a
measure of the quality of a classifier set given the data. As this measure can
subsequently by used by any global search algorithm that is able to find its
maximum in the space of possible model structures, its algorithmic description
is kept separate from the model structure search. For the structure search,
two simple alternatives are provided in a later section, one based on genetic
algorithms, and another based on sampling the model posterior p(M|D) by
MCMC methods. Finally, both approaches are applied to simple regression
tasks to demonstrate the usefulness of the classifier set optimality criterion.

8.1 Computing p(M|D)

Let us start with a set of functions that allow the computation of an approxi-
mation to p(M|D) for a given data set D and model structure M. These func-
tions rely on a small set of global system parameters and constants that are
given in Table 8.1. The functions are presented in a top-down order, starting
with a function that returns p(M|D), and continuing with the sub-functions
that it calls. The functions use a small set of non-standard operators and
global functions that are described in Table 8.2.

Symbol Recom. Description

aα 10−2 Scale parameter of weight vector variance prior
bα 10−4 Shape parameter of weight vector variance prior
aβ 10−2 Scale parameter of mixing weight vector variance prior
bβ 10−4 Shape parameter of mixing weight vector variance prior
aτ 10−2 Scale parameter of noise variance prior
bτ 10−4 Shape parameter of noise variance prior

∆sLk(q) 10−4 Stopping criterion for classifier update
∆sLM (q) 10−2 Stopping criterion for mixing model update

∆sKL(R‖G) 10−8 Stopping criterion for mixing weight update
expmin − lowest real number x on system such that exp(x) > 0
lnmax − ln(x), where x is the highest real number on system

Table 8.1. Description of the system parameters and constants. These include
the distribution parameters of the priors and hyperpriors, and constants that
parametrise the stopping criteria of parameter update iterations. The recommended
values specify rather uninformative priors and hyperpriors, such that the introduced
bias due to these priors is negligible

The data is assumed to be given by the N × DX input matrix X and the
N ×DY output matrix Y, as described in Sect. 7.2.1. The model structure is
fully defined by the N × K matching matrix M, that is given by

8.1 Computing p(M|D) 177

Fn. / Op. Description

A ⊗ B given an a× b matrix or vector A, and c×d matrix or vector B,
and a = c, b = d, A⊗B returns an a×b matrix that is the result
of an element-wise multiplication of A and B. If a = c, d = 1,
that is, if B is a column vector with c elements, then every
column of A is multiplied element-wise by B, and the result is
returned. Analogously, if B is a row vector with b elements, then
each row of A is multiplied element-wise by B, and the result is
returned.

A ⊘ B the same as A⊗B, only performing division rather than multi-
plication.

Sum(A) returns the sum over all elements of matrix or vector A.
RowSum(A) given an a×b matrix A, returns a column vector of size a, where

its ith element is the sum of the b elements of the ith row of A.
FixNaN(A, b) replaces all NaN elements in matrix or vector A by b.

Table 8.2. Operators and global functions used in the algorithmic descriptions

M =







m1(x1) · · · mK(x1)
...

. . .
...

m1(xN) · · · mK(xN)






. (8.1)

Thus, column k of this matrix specifies the degree of matching of classifier k
for all available observations. Note that the definition of M differs from the
one in Chap. 5, where M was a diagonal matrix that specified the matching
for a single classifier.

In addition to the matching matrix, we also need to define the N × DV

mixing feature matrix Φ, that is given by

Φ =







−φ(x1)
T−

...
−φ(xN)T−






, (8.2)

and thus specifies the feature vector φ(x) for each observation. In LCS, we
usually have φ(x) = 1 for all x, and thus also Φ = (1, . . . 1)T , but the algorithm
presented here also works for other definitions of φ.

8.1.1 Model Probability and Evidence

The Function ModelProbability takes the model structure and the data as
arguments and returns L(q) + ln p(M) as an approximation to the unnor-
malised ln p(M|D). Thus, it replaces the model evidence p(D|M) in (7.3) by
its approximation L(q). The function assumes that the order of the classifiers
can be arbitrarily permuted without changing the model structure and there-
fore uses the p(M) given by (7.4). In approximating ln p(M|D), the function

178 8 An Algorithmic Description

Function ModelProbability(M,X,Y,Φ)

Input: matching matrix M, input matrix X, output matrix Y, mixing
feature matrix Φ

Output: approximate model probability L(q) + ln p(M)

get K from shape of M1

for k ← 1 to K do2

mk ← kth column of M3

W∗
k,Λ∗

k
−1, a∗

τk
, b∗τk

, a∗
αk

, b∗αk
← TrainClassifier(mk, X, Y)4

W,Λ−1 ← {W1, . . . ,WK}, {Λ−1
1 , . . . ,Λ−1

K }5

aτ ,bτ ← {aτ1
, . . . , aτK

}, {bτ1
, . . . , bτK

}6

aα,bα ← {aα1
, . . . , aαK

}, {bα1
, . . . , bαK

}7

V,Λ−1
V aβ ,bβ ← TrainMixing(M,X,Y,Φ,W,Λ−1,aτ ,bτ ,aα,bα)8

θ ← {W,Λ−1,aτ ,bτ ,aα,bα,V,Λ−1
V aβ ,bβ}9

L(q) ← VarBound(M,X,Y,Φ, θ)10

return L(q) + ln K!11

does not add the normalisation constant. Hence, even though the return val-
ues are not proper probabilities, they can still be used for the comparison of
different model structures, as the normalisation term is shared between all of
them.

The computation of L(q)+ln p(M) is straightforward: Lines 2 to 7 compute
and assemble the parameters of the classifiers by calling TrainClassifier

for each classifier k separately, and provide it with the data and the match-
ing vector mk for that classifier. After that, the mixing model parameters
are computed in Line 8 by calling TrainMixing, based on the fully trained
classifiers.

Having evaluated all classifiers, all parameters are collected in Line 9 to
give θ and are used in Line 10 to compute L(q) by calling VarBound. After
that, the function returns L(q) + lnK!, based on (7.3) and (7.4).

8.1.2 Training the Classifiers

The Function TrainClassifier takes the data X,Y and the matching vector
mk and returns all model parameters for the trained classifier k. The model
parameters are found by iteratively updating the distribution parameters of
the variational posteriors q∗W,τ (Wk, τk) and q∗α(αk) until the convergence cri-
terion is satisfied. This criterion is given by the classifier-specific components
Lk(q) of the variational bound L(q), as given by (7.91). However, rather than
evaluating Lk(q) with the responsibilities rnk, as done in (7.91), the match-
ing function mk(xn) are used instead. The underlying idea is that – as each
classifier is trained independently – the responsibilities are equivalent to the
matching function values. This has the effect that by updating the classifier
parameters according to (7.97) – (7.100), Lk(q) is indeed maximised, which is

8.1 Computing p(M|D) 179

Function TrainClassifier(mk, X, Y)

Input: matching vector mk, input matrix X, output matrix Y

Output: DY × DX weight matrix Wk, DX × DX covariance matrix Λ−1
k ,

noise precision parameters aτk
, bτk

, weight vector prior parameters
aαk

, bαk

get DX , DY from shape of X,Y1

Xk ← X ⊗√
mk2

Yk ← Y ⊗√
mk3

aαk
, bαk

← aα, bα4

aτk
, bτk

← aτ , bτ5

Lk(q) ← −∞6

∆Lk(q) ← ∆sLk(q) + 17

while ∆Lk(q) > ∆sLk(q) do8

Eα(αk) ← aαk
/bαk

9

Λk ← Eα(αk)I + XT
k Xk10

Λ−1
k ← (Λk)−1

11

Wk ← YT
k XkΛ

−1
k12

aτk
← aτ + 1

2
Sum(mk)13

bτk
← bτ + 1

2DY

`

Sum(Yk ⊗ Yk) − Sum(Wk ⊗ WkΛk)
´

14

Eτ (τk) ← aτk
/bτk

15

aαk
← aα +

DX DY

2
16

bαk
← bα + 1

2

`

Eτ (τk) Sum(Wk ⊗ Wk) +DYTr(Λ−1
k)

´

17

Lk,prev(q) ← Lk(q)18

Lk(q) ← VarClBound(X,Y,Wk,Λ−1
k , aτk

, bτk
, aαk

, bαk
,mk)19

∆Lk(q) ← Lk(q) − Lk,prev(q)20

assert ∆Lk(q) ≥ 021

return Wk,Λ−1
k , aτk

, bτk
, aαk

, bαk
22

not necessarily the case if rnk 6= mk(xn), as discussed in Sect. 7.3.9. Therefore,
every parameter update is guaranteed to increase Lk(q), until the algorithm
converges.

In more detail, Lines 2 and 3 compute the matched input vector Xk and
output vector Yk, based on

√

mk(x)
√

mk(x) = mk(x). Note that each col-
umn of X and Y is element-wise multiplied by

√
mk, where the square root

is applied to each element of mk separately. The prior and hyperprior param-
eters are initialised with their prior parameter values in Lines 4 and 5.

In the actual iteration, Lines 9 to 14 compute the parameters of the vari-
ational posterior q∗W,τ (Wk, τk) by the use of (7.97) – (7.100) and (7.64). To

get the weight vector covariance Λ−1
k the equality XT

k Xk =
∑

n mk(xn)xnxT
n

is used. The weight matrix Wk is evaluated by observing that the jth row of
YT

k XkΛ
−1
k , giving wkj , is equivalent to Λ−1

k

∑

n mk(xn)xnynj . The update of
bτk

uses Sum(Yk ⊗Yk) that effectively squares each element of Yk before re-
turning the sum over all elements, that is

∑

j

∑

n mk(xn)y2
nj .

∑

j wT
kjΛkwkj

180 8 An Algorithmic Description

in (7.100) is computed by observing that it can be reformulated to the sum
over all elements of the element-wise multiplication of Wk and WkΛk.

Lines 15 to 17 update the parameters of the variational posterior q∗α(αk),
as given by (7.40), (7.41), and (7.72). Here, the sum over all squared elements
of Wk is used to evaluate

∑

j wT
kjwkj .

The function determines convergence of the parameter updates in Lines 18
to 21 by computing the change of Lk(q) over two successive iterations. If this
change drops below the system parameter ∆sLk(q), then the function returns.
The value of Lk(q) is computed by Function VarClBound, which is described
in Sect. 8.1.4. Its last argument is a vector of responsibilities for classifier k,
which is substituted by the matching function values for reasons mentioned
above. Each parameter update either increases Lk(q) or leaves it unchanged,
which is specified in Line 21. If this is not the case, then the implementation
is faulty and/or suffers from numerical instabilities. In the experiments that
were performed, convergence was usually reached after 3–4 iterations.

8.1.3 Training the Mixing Model

Function TrainMixing(M,X,Y,Φ,W,Λ−1,aτ ,bτ ,aα,bα)

Input: matching matrix M, input matrix X, output matrix Y, mixing
feature matrix Φ, classifier parameters W,Λ−1,aτ ,bτ ,aα,bα

Output: DV × K mixing weight matrix V, (KDV) × (KDV) mixing weight
covariance matrix, mixing weight vector prior parameters aβ ,bβ

get DX , DY , DV , K from shape of X,Y,Φ,W1

V ← DV × K matrix with elements sampled from N
“

0,
“

aβ

bβ

””

2

aβ ← {aβ1
, . . . , aβK

}, all initialised to aβk
= aβ3

bβ ← {bβ1
, . . . , bβK

}, all initialised to bβk
= bβ4

LM (q) ← −∞5

∆LM (q) ← ∆sLM (q) + 16

while ∆LM (q) > ∆sLM (q) do7

V,Λ−1
V ← TrainMixWeights(M,X,Y,Φ,W,Λ−1,aτ ,bτ ,V,aβ ,bβ)8

aβ ,bβ ← TrainMixPriors(V,Λ−1
V)9

G ← Mixing(M,Φ,V)10

R ← Responsibilities(X,Y,G,W,Λ−1,aτ ,bτ)11

LM,prev(q) ← LM (q)12

LM (q) ← VarMixBound(G,R,V,Λ−1
V ,aβ ,bβ)13

∆LM (q) ← |LM (q) − LM,prev(q)|14

return V,Λ−1
V ,aβ ,bβ15

Training the mixing model is more complex than training the classifiers,
as the IRLS algorithm is used to find the parameters of q∗V (V). The function

8.1 Computing p(M|D) 181

TrainMixing takes the model structure, data, and the parameters of the fully
trained classifiers, and returns the parameters of the mixing model.

As with training the classifiers, the parameters of the mixing model are
found incrementally, by sequentially updating the parameters of the varia-
tional posteriors q∗V (V), q∗β(β) and q∗Z(Z). Convergence of the updates is de-
termined by monitoring the change of the mixing model-related components
LM (q) of the variational bound L(q), as given by (7.95). If the magnitude of
change of LM (q) between two successive iterations is lower than the system
parameter ∆sLM (q), then the algorithm assumes convergence and returns.

The parameters are initialised in Lines 2 to 4 of TrainMixing. The DV ×K
mixing matrix V holds the vector vk that corresponds to classifier k in its kth
column. As by (7.13) the prior on each element of vk is given by a zero-mean
Gaussian with variance β−1

k , each element of V is initialised by sampling from
N (0, bβ/aβ) where the value of the random variable βk is approximated by
its prior expectation. The distribution parameters for qβ(βk) are initialised by
setting them to the prior parameters.

An iteration starts by calling TrainMixWeights in Line 8 to get the param-
eters of the variational posterior q∗V (V). These are subsequently used in Line
9 to update the parameters of q∗β(βk) for each k by calling TrainMixPriors.
Lines 10 to 14 determine the magnitude of change of LM (q) when compared
to the last iteration. This is achieved by computing the N × K mixing ma-
trix G = (gk(xn)) by calling Mixing. Based on G, the responsibility matrix
R = (rnk) is evaluated by calling Responsibilities in Line 11. This allows
for the evaluation of LM (q) in Line 13 by calling VarMixBound, and determines
the magnitude of change ∆LM (q) in the next Line, which is subsequently used
to determine if the parameter updates converged. In the performed experi-
ments, the function usually converged after 5–6 iterations.

Next, the Functions TrainMixWeights, TrainMixPriors, Mixing and
Responsibilities will be introduced, as they are all used by TrainMixing

to train the mixing model. VarMixBound is described in the later Sect. 8.1.4.

Function Mixing(M,Φ,V)

Input: matching matrix M, mixing feature matrix Φ, mixing weight matrix
V

Output: N × K mixing matrix G

get K from shape of V1

G ← ΦV2

limit all elements of G such that expmin ≤ gnk ≤ lnmax − ln K3

G ← exp(G) ⊗ M4

G ← G⊘ RowSum(G)5

FixNaN(G, 1/K)6

return G7

182 8 An Algorithmic Description

Starting with Mixing, this function is used to compute the mixing matrix
G that contains the values for gk(xn) for each classifier/input combination. It
takes the matching matrix M, the mixing features Φ, and the mixing weight
matrix V as arguments, and returns G.

The mixing matrix G is evaluated by computing (7.10) in several steps:
firstly, in Line 2, vT

k φ(xn) is computed for each combination of n and k. Before
the exponential of these values is taken, it needs to be ensured that this does
not cause any overflow/underflow. This is done by limiting the values in G
in Line 3 to a certain range, with the following underlying idea [177]: they
are limited from below by expmin to ensure that their exponential is positive,
as their logarithm might be later taken. Additionally, they are limited from
above by lnmax − lnK such that summing over K such elements does not
cause an overflow. Once this is done, the element-wise exponential can be
taken, and each element is multiplied by the corresponding matching function
value, as done in Line 4. This essentially gives the nominator of (7.10) for
all combinations of n and k. Normalisation over k is performed in the next
line by dividing each element in a certain row by the element sum of this
row. If rows in G were zero before normalisation, 0/0 was performed, which
is fixed in Line 6 by assigning equal weights to all classifiers for inputs that
are not matched by any classifier. Usually, this should never happen as only
model structures are accepted where

∑

k mk(xn) > 0 for all n. Nonetheless,
this check was added to ensure that even these cases are handled gracefully.

Function Responsibilities(X,Y,G,W,Λ−1,aτ ,bτ)

Input: input matrix X, output matrix Y, gating matrix G, classifier
parameters W,Λ−1,aτ ,bτ

Output: N × K responsibility matrix R

get K, DY from shape of Y,G1

for k = 1 to K do2

Wk,Λ−1
k , aτk

, bτk
← pick from W,Λ−1,aτ ,bτ3

kth column of R ← exp
“

DY

2
(ψ(aτk

) − ln bτk
)

4

− 1
2

` aτk

bτk

RowSum((Y − XWk
T)2) +DY RowSum(X ⊗ XΛ−1

k)
´

”

5

R ← R ⊗ G6

R ← R⊘ RowSum(R)7

FixNaN(R, 0)8

return R9

Based on the gating matrix G and the goodness-of-fit of the classifiers,
the Function Responsibilities computes the N × K responsibility matrix,
with rnk as its nkth element. Its elements are evaluated by following (7.62),
(7.63), (7.69) and (7.74).

8.1 Computing p(M|D) 183

The loop from Line 2 to 5 in Responsibilities iterates over all k to fill
the columns of R with the values for ρnk according to (7.62), but without
the term gk(xn)1. This is simplified by observing that the term

∑

j(ynj −
wT

kjxn)2, which is by (7.74) part of
∑

j EW,τ (τk(ynj − wT
kjxn)2), is given for

each observation separately in the vector that results from summing over
the rows of (Y − XWT

k)2, where the square is taken element-wise. Similarly,
xT

nΛ−1
k xn of the same expectation is given for each observation by the vector

that results from summing over the rows of X⊗XΛ−1
k , based on xT

nΛ−1
k xn =

∑

i(xn)i(Λ
−1
k xn)i. The values of gk(xn) are added to ρnk in Line 6, and the

normalisation step by (7.63) is performed in Line 7. For the same reason as in
the Mixing function, all NaN values in R need to be subsequently replaced by 0
to not assign responsibility to any classifiers for inputs that are not matched.

Function TrainMixWeights(M,X,Y,Φ,W,Λ−1,aτ ,bτ ,V,aβ ,bβ)

Input: matching matrix M, input matrix X, output matrix Y, mixing
feature matrix Φ, classifier parameters W,Λ−1,aτ ,bτ , mixing
weight matrix V, mixing weight prior parameters aβ ,bβ

Output: DV × K mixing weight matrix V, (KDV) × (KDV) mixing weight
covariance matrix Λ−1

V

Eβ(β) ←row vector with elements
“

aβ1

bβ1

, . . . ,
aβK

bβK

”

1

G ← Mixing(M,Φ,V)2

R ← Responsibilities(X,Y,G,W,Λ−1,aτ ,bτ)3

KL(R‖G) ← ∞4

∆KL(R‖G) ← ∆sKL(R‖G) + 15

while ∆KL(R‖G) > ∆sKL(R‖G) do6

E ← ΦT (G − R) + V ⊗ Eβ(β)7

e ← (E11, . . . ,EDV 1,E12, . . . ,EDV 2, . . . ,E1K , . . . ,EDV K)T
8

H ← Hessian(Φ,G,aβ ,bβ)9

∆v ← −H−1e10

∆V ← DV × K matrix with jkth element11

given by ((k − 1)K + j)th element of ∆v12

V ← V + ∆V13

G ← Mixing(M,Φ,V)14

R ← Responsibilities(X,Y,G,W,Λ−1,aτ ,bτ)15

KLprev(R‖G) ← KL(R‖G)16

KL(R‖G) ← Sum(R⊗ FixNaN(ln(G ⊘ R), 0))17

∆KL(R‖G) = |KLprev(R‖G) − KL(R‖G)|18

H ← Hessian(Φ,G,aβ ,bβ)19

Λ−1
V ← H−1

20

return V,Λ−1
V21

1 Note that we are operating on ρnk rather than ln ρnk, as given by (7.62), as
we certainly have gk(xn) = 0 in cases where mk(xn) = 0, which would lead to
subsequent numerical problems when evaluating ln gk(xn).

184 8 An Algorithmic Description

The Function TrainMixWeights approximates the mixing weights varia-
tional posterior q∗V (V) (7.51) by performing the IRLS algorithm. It takes the
matching matrix, the data and mixing feature matrix, the trained classifier pa-
rameters, the mixing weight matrix, and the mixing weight prior parameters.
As the IRLS algorithm performs incremental updates of the mixing weights
V until convergence, V is not re-initialised every time TrainMixWeights is
called, but rather the previous estimates are used as their initial values to
reduce the number of iterations that are required until convergence.

As the aim is to model the responsibilities by finding mixing weights that
make the mixing coefficients given by gk(xn) similar to rnk, convergence is
determined by the Kullback-Leibler divergence measure KL(R‖G) that mea-
sures the distance between the probability distributions given by R and G.
Formally, it is defined by KL(R‖G) =

∑

n

∑

k rnk ln(gk(xn)/rnk), and is rep-
resented in LM (q) (7.95) by the terms EZ,V (ln p(Z|V) − EZ(ln q(Z)), given
by (7.84). As the Kullback-Leibler divergence is non-negative and zero if and
only if R = G [239], the algorithm assumes convergence of the IRLS algo-
rithm if the change in KL(R‖G) between two successive iterations is below
the system parameter ∆sKL(R‖G).

TrainMixWeights starts by computing the expectation Eβ(βk) for all k in
Line 1. The IRLS iteration (6.5) requires the error gradient ∇E(V) and the
Hessian H, which are by (7.48) and (7.49) based on the values of gk(xn) and
rnk. Hence, TrainMixWeights continues by computing G and R in Lines 2
and 3.

The error gradient ∇E(V) by (7.48) is evaluated in Lines 7 and 8. Line 7
uses the fact that ΦT (G−R) results in a DV ×K matrix that has the vector
∑

n(gj(xn) − rnj)φ(xn) as its jth column. Similarly, V ⊗ Eβ(β) results in a
matrix of the same size, with Eβ(βj)vj as its jth column. Line 8 rearranges
the matrix E, which has ∇vj

E(V) as its jth column, to the gradient vector
e = ∇E(V). The Hessian H is assembled in Line 9 by calling the Function
Hessian, and is used in the next line to compute the vector ∆v by which the
mixing weights need to be changed according to the IRLS algorithm (6.5).
The mixing weight vector is updated by rearranging ∆v to the shape of V in
Line 12, and adding it to V in the next line.

As the mixing weights have changed, G and R are recomputed with the
updated weights, to get KL(R‖G), and eventually to use it in the next it-
eration. The Kullback-Leibler divergence between the responsibilities R and
their model G are evaluated in Line 17, and then compared to its value of
the last iteration to determine convergence of the IRLS algorithm. Note that
due to the use of matrix operations, the elements in R are not checked for
being rnk = 0 due to gk(x) = 0 when computing G ⊘ R, which might cause
NaN entries in the resulting matrix. Even though these entries are multiplied
by rnk = 0 thereafter, they firstly need to be replaced by zero, as otherwise
we would still get 0 × NaN = NaN.

The IRLS algorithm gives the mean of q∗V (V) by the mixing weights that
minimise the error function E(V). The covariance matrix Λ−1

V still needs to

8.1 Computing p(M|D) 185

be evaluated and is by (7.50) the inverse Hessian, as evaluated in Line 19.
Due to its dependence on G, the last Hessian in the IRLS iteration in Line 9
cannot be used for that purpose, as G has changed thereafter.

Function Hessian(Φ,G,aβ ,bβ)

Input: mixing feature matrix Φ, mixing matrix G, mixing weight prior
parameters aβ ,bβ

Output: (KDV) × (KDV) Hessian matrix H

get DV , K from shape of V1

H ← empty (KDV) × (KDV) matrix2

for k = 1 to K do3

gk ← kth column of G4

for j = 1 to k − 1 do5

gj ← jth column of G6

Hkj ← −ΦT (Φ ⊗ (gk ⊗ gj))7

kjth DV × DV block of H ← Hkj8

jkth DV × DV block of H ← Hkj9

aβk
, bβk

← pick from aβ ,bβ10

Hkk ← ΦT (Φ ⊗ (gk ⊗ (1 − gk))) +
aβk

bβk

I
11

kth DV × DV block along diagonal of H ← Hkk12

return H13

To complete TrainMixWeights, let us consider how the Function Hessian

assembles the Hessian matrix H: it first creates an empty (KDV) × (KDV)
matrix that is thereafter filled by its block elements Hkj = Hjk, as given by
(7.49). Here, the equality

∑

n

φ(xn)
(

gk(xn)gj(xn)φ(xn)T
)

= ΦT (Φ ⊗ (gk ⊗ gj)) (8.3)

is used for the off-diagonal blocks of H where Ikj = 0 in (7.49), and a similar
relation is used to get the diagonal blocks of H.

The posterior parameters of the prior on the mixing weights are evaluated
according to (7.56), (7.57), and (7.70) in order to get q∗β(βk) for all k. Function
TrainMixPriors takes the parameters of q∗V (V) and returns the parameters
for all q∗β(βk). The posterior parameters are computed by iterating over all k,
and in Lines 5 and 6 by performing a straightforward evaluation of (7.56) and
(7.57), where in the latter, (7.70) replaces EV (vT

k vk).

8.1.4 The Variational Bound

The variational bound L(q) is evaluated in Function VarBound according to
(7.96). The function takes the model structure, the data, and the trained

186 8 An Algorithmic Description

Function TrainMixPriors(V,Λ−1
V)

Input: mixing weight matrix V, mixing weight covariance matrix Λ−1
V

Output: mixing weight vector prior parameters aβ ,bβ

get DV , K from shape of V1

for k = 1 to K do2

v ← kth column of V3

(Λ−1
V)kk ← kth DV × DV block along diagonal of Λ−1

V4

aβk
← aβ + DV

2
5

bβk
← bβ + 1

2

`

Tr
`

(Λ−1
V)kk

´

+ vT
k vk

´

6

aβ ,bβ ← {aβ1
, . . . , aβK

}, {bβ1
, . . . , bβK

}7

return aβ ,bβ8

Function VarBound(M,X,Y,Φ,θ)

Input: matching matrix M, input matrix X, output matrix Y, mixing
feature matrix Φ, trained model parameters θ

Output: variational bound L(q)

get K from shape of V1

G ← Mixing(M,Φ,V)2

R ← Responsibilities(X,Y,G,W,Λ−1,aτ ,bτ)3

LK(q) ← 04

for k = 1 to K do5

rk ← kth column of R6

LK(q) ← LK(q)7

+ VarClBound(X,Y,Wk,Λ−1
k , aτk

, bτk
, aαk

, bαk
, rk)8

LM (q) ← VarMixBound(G,R,V,Λ−1
V ,aβ ,bβ)9

return LK(q) + LM (q)10

classifier and mixing model parameters, and returns the value for L(q). The
classifier-specific components Lk(q) are computed separately for each classifier
k in Line 8 by calling VarClBound. Note that in contrast to calling VarClBound

with the matching function values of the classifiers, as done in Function
TrainClassifier, we here conform to (7.91) and provide VarClBound with
the previously evaluated responsibilities. The full variational bound is found
by adding the mixing model-specific components LM (q), that are computed
in Line 8 by a call to VarMixBound, to the sum of all Lk(q)’s.

By evaluating (7.91), the Function VarClBound returns the components
of L(q) that are specific to classifier k. It takes the data, the trained classi-
fier parameters, and the responsibilities with respect to that classifier, and
returns the value for Lk(q). This values is computed by splitting (7.91) into
the components Lk,1(q) to Lk,4(q), evaluating them one by one, and then re-
turning their sum. To get Lk,2(q), the same matrix simplifications as in Line

8.1 Computing p(M|D) 187

Function VarClBound(X,Y,Wk,Λ−1
k , aτk

, bτk
, aαk

, bαk
, rk)

Input: input matrix X, output matrix Y, classifier parameters
Wk,Λ−1

k , aτk
, bτk

, aαk
, bαk

, responsibility vector rk

Output: classifier component Lk(q) of variational bound

get DX , DY from shape of X,Y1

Eτ (τk) ← aτk
/bτk

2

Lk,1(q) ← DY

2
(ψ(aτk

) − ln bτk
− ln 2π) Sum(rk)3

Lk,2(q) ← − 1
2
rT

k

`

Eτ (τk) RowSum((Y − XWT
k)2) +DY RowSum(X ⊗ XΛ−1

k)
´

4

Lk,3(q) ← − ln Γ(aα)+aα ln bα +ln Γ(aαk
)−aαk

ln bαk
+

DX DY

2
+

DY

2
ln |Λ−1

k |5

Lk,4(q) ← DY

`

− ln Γ(aτ) + aτ ln bτ + (aτ − aτk
)ψ(aτk

) − aτ ln bτk
− bτ Eτ (τk)6

+ ln Γ(aτk
) + aτk

´

7

return Lk,1(q) + Lk,2(q) + Lk,3(q) + Lk,4(q)8

5 of Function Responsibilities have been used to get ‖yn − Wkxn‖2 and
xT

nΛ−1
k xn.

Function VarMixBound(G,R,V,Λ−1
V ,aβ ,bβ)

Input: mixing matrix G, responsibilities matrix R, mixing weight matrix V,
mixing covariance matrix Λ−1

V mixing weight prior parameters aβ ,bβ

Output: mixing component LM (q) of variational bound

get DV , K from shape of V1

LM,1(q) ← K (− ln Γ(aβ) + aβ ln bβ)2

for k = 1 to K do3

aβk
, bβk

← pick from aβ ,bβ4

LM,1(q) ← LM,1(q) + ln Γ(aβk
) − aβk

ln bβk
5

LM,2(q) ← Sum(R⊗ FixNaN(ln(G ⊘ R), 0))6

LM,3(q) ← 1
2

ln |Λ−1
V | + KDV

2
7

return LM,1(q) + LM,2(q) + LM,3(q)8

Finally, Function VarMixBound takes mixing values and responsibilities,
and the mixing model parameters, and returns the mixing model-specific com-
ponents LM (q) of L(q) by evaluating (7.95). As in VarClBound, the compu-
tation of LM (q) is split into the components LM,1(q), LM,2(q), and LM,3(q),
whose sum is returned. LM,1(q) contains the components of LM (q) that de-
pend on the parameters q∗β(β), and is computed in Lines 2 to 5 by iterating
over all k. LM,2(q) is the Kullback-Leibler divergence KL(R‖G), as given
by (7.84), which is computed in the same way as in Line 17 of Function
TrainMixWeights.

188 8 An Algorithmic Description

8.1.5 Scaling Issues

Let us now consider how the presented algorithm scales with the dimension-
ality of the input space DX , output space DY , the mixing feature space DV ,
the number N of observations that are available, and the number K of clas-
sifiers. All O(·) are based on the observation that the multiplication of an
a × b matrix with a b × c matrix scales with O(abc), and the inversion and
getting the determinant of an a×a matrix have complexity O(a3) and O(a2),
respectively.

Function O(·) Comments

ModelProbability NK3D3
XDYD3

V K3D3
V from TrainMixing,

D3
X from TrainClassifier

TrainClassifier ND3
XDY D3

X due to Λ−1
k

TrainMixing NK3D2
XDYD3

V K3D2
XD3

V from
TrainMixWeights

Mixing NKDV −
Responsibilities NKD2

XDY D2
X due to XΛ−1

k

TrainMixWeights NK3D2
XDYD3

V (KDV)3 due to H−1,
D2

X from Responsibilities

Hessian NK2D2
V K2 due to nested iteration,

D2
V due to ΦT (Φ ⊗ (gk ⊗ gj))

TrainMixPriors KDV −
VarClBound ND2

XDY D2
X due to XΛ−1

k or |Λ−1
k |

VarMixBound NK2D2
V (KDV)2 due to |Λ−1

V |

Fig. 8.1. Complexity of the different functions with respect to the number of obser-
vations N , the number of classifiers K, the dimensionality of the input space DX ,
the dimensionality of the output space DY , and the dimensionality of the mixing
feature space DV

Table 8.1 gives an overview of how the different functions scale with N ,
K, DX , DY and DV . Unfortunately, even though ModelProbability scales
linearly with N and DY , it neither scales well with DX , nor with K and DV .
In all three cases, the 3rd polynomial is caused by a matrix inversion.

Considering that D3
X is due to inverting the precision matrix Λk, it might

be reducible to D2
X by using the Sherman-Morrison formula, as shown in

Sect. 5.3.5. DX is the dimensionality of the input space with respect to the
classifier model, and is given by DX = 1 for averaging classifiers, and by
DX = 2 for classifiers that model straight lines. Thus, it is in general not too
high and D3

X will not be the most influential complexity component. In any
case, as long as we are required to maintain a covariance matrix Λ−1

k of size
DX × DX , the influence of DX is unlikely to be reducible below D2

X

The biggest weakness of the prototype algorithm that was presented here
is that the number of operations required to find the parameters of the mixing

8.2 Two Alternatives for Model Structure Search 189

model scale with K3D3
V . This is due to the inversion of the (KDV)× (KDV)

Hessian matrix that is required at each iteration of the IRLS algorithm. To
apply variational inference to real-world problems, the algorithm would be
required to scale linearly with the number of classifiers K. This is best achieved
by approximating the optimal mixing weights by well-tuned heuristics, as was
already done for the prior-free LCS model in Chap. 6. What remains to do
is to find similar heuristics that honour the prior. The mixing feature space
dimensionality, on the other hand, is usually DV = 1, and its influence is
therefore negligible.

In summary, the presented algorithm scales with O(NK3D3
XDYD3

V).
While it might be possible to reduce D3

X to D2
X , it still scales super-linearly

with the number of classifiers K. This is due to the use of the generalised
softmax function that requires the application of the IRLS algorithm to find
its parameters. To reduce the complexity, the softmax function needs to either
be replaced by another model that is easier to train, or well-tuned heuristics
that provide a good approximation to it.

8.2 Two Alternatives for Model Structure Search

Recall that the optimal set of classifiers M was defined as the set that max-
imises p(M|D). Therefore, in order to find this optimal set we need to search
the space {M} for the M such that p(M|D) ≥ p(M̄|D) for all M̄. This can
theoretically be approached by any method that is able to find some element
in a set that maximises some function of the elements in that set, such as
simulated annealing [224], or genetic algorithms [96, 171].

The two methods that will be described here are the ones that have been
used to test the usefulness of the optimality definition. They are conceptually
simple and not particularly intelligent, as neither of them uses any information
embedded in the probabilistic LCS model besides the value proportional to
ln p(M|D) to form the search trajectory through the model structure space.
Consequently, there is still plenty of room for improvement.

The reason why two alternatives are introduced is i) to emphasise the
conceptual separation between evaluating the quality of a set of classifiers, and
searching for better ones, and ii) to show that in theory any global optimiser
can be used to perform the task of model structure search. As the aim is
independent of the search procedure, reaching this aim only depends on the
compatibility of the search procedure with the model structure space. After
having introduced the two alternatives, a short discussion in Sect. 8.2.3 deals
with their differences, and what might in general be good guidelines to improve
the effectiveness of searching for good sets of classifiers.

Note that the optimal set of classifiers strongly depends on the chosen
representation for the matching functions, as we can only find solutions that
we are able to represent. Nonetheless, to keep the description of the meth-
ods representation-independent, the discussion of representation-dependent

190 8 An Algorithmic Description

components of the methods are postponed until choosing some representation
becomes inevitable; that is, in Sect. 8.3.

8.2.1 Model Structure Search by a Genetic Algorithm

Genetic algorithms (GA) are a family of global optimisers that are conceptu-
ally based on Darwinian evolution. The reader is expected to be familiar with
their underlying idea and basic implementations, of which good overviews are
available by Goldberg [96] and Mitchell [171].

An individual in the population that the GA operates on is defined
by an LCS model structure M, and its fitness is given by the value that
ModelProbability returns for this model structure. As the genetic algorithm
seeks to increase the fitness of the individuals in the population, its goal is to
find the model structure that maximises p(M|D). An allele of an individual’s
genome is given by the representation of a single classifier’s matching function,
which makes the genome’s length determined by the number of classifiers of
the associated model structure. As this number is not fixed, the individuals
in the population can be of variable length2.

Starting with an initial population of P randomly generated individuals,
a single iteration of the genetic algorithm is performed as follows: firstly, the
matching matrix M is determined after (8.1) for each individual, based on
its representation of the matching functions and the input matrix X. This
matching matrix is subsequently used to determine each individual’s fitness
by calling ModelProbability. After that, a new population is created by se-
lecting two individuals from the current population and applying crossover
with probability pc and mutation with probability pm. The last step is re-
peated until the new population again holds P individuals. Then, the new
population replaces the current one, and the next iteration begins.

An individual is initially generated by randomly choosing the number of
classifiers it represents, and then initialising the matching function of each of
its classifiers, again randomly. How these matching functions are initialised
depends on the representation and is thus discussed later. To avoid the influ-
ence of fitness scaling, the individuals from the current population are selected
by deterministic tournament selection with tournament size ts. Mutation is
again dependent on the chosen representation, and will be discussed later.

As two selected individuals can be of different length, standard uniform
cross-over cannot be applied. Instead different means have to be used: the
aim is to keep total number of classifiers constant, but as the location of the

2 Variable-length individuals might cause bloat, which is a common problem when
using Evolutionary Computation algorithms with such individuals, as frequently
observed in genetic programming [161]. It also plagues some Pittsburgh-style
LCS that use variable-length individuals, such as LS-1 [203] and GAssist [7], and
counteracting measures have to be taken to avoid its occurrence. Here, this is not
an issue, as overly complex model structures will receive a lower fitness due to the
preference of the applied model selection criterion for models of low complexity.

8.2 Two Alternatives for Model Structure Search 191

Function Crossover(Ma,Mb)

Input: two model structures Ma,Mb

Output: resulting two model structures M′
a,M′

b after crossover

Ka, Kb ← number of classifiers in Ma,Mb1

Ma,Mb matching function sets from Ma,Mb2

M′
a ← Ma ∪ Mb3

K′
b ← random integer K such that 1 ≤ K < Ka + Kb4

M′
b ← ∅5

for k = 1 to K′
b do6

mk ←randomly selected matching function from M′
a7

M′
b ← M′

b ∪ {mk}8

M′
a ← M′

a \ mk9

M′
a,M′

b ← {Ka + Kb − K′
b,M

′
a}, {K′

b,M
′
b}10

return M′
a,M′

b11

classifiers in the genome of an individual do not provide any information,
their location is allowed to change. Thus, we proceed as shown in function
Crossover by randomly choosing the new number K ′

a and K ′
b of classifiers

in each of the new individuals M′
a and M′

b such that the sum of classifiers
Ka +Kb = K ′

a +K ′
b remains unchanged, and each new individual has at least

one classifier. The matching functions of individual M′
b are determined by

randomly picking K ′
b matching functions from either of the old individuals.

The other individual M′
a received all the remaining Ka + Kb − K ′

b match-
ing functions. In summary, crossover is performed by collecting the matching
functions of both individuals, and randomly redistributing them.

No particular criteria determine the convergence of the genetic algorithm
when used in the following experiments. Rather, the number of iterations
that it performs is pre-specified. Additionally, an elitist strategy is employed
by separately maintaining the highest-fitness model structure M∗ found so
far. This model structure is not part of the normal population, but is replaced
as soon as a fitter model structure is found.

This completes the description of the genetic algorithm that was used. It
is kept deliberately simple to not distract from the task it has to solve, which
is to find the model structure that maximises p(M|D). In the presented form,
it might be considered as being a simple Pittsburgh-style LCS .

8.2.2 Model Structure Search by Markov Chain Monte Carlo

The given use of the MCMC algorithm provides a sample sequence M1,M2, . . .
from the model structure space that follows a Markov chain with steady state
probabilities p(M|D), and thus allows sampling from p(M|D) [20]. As such
a sampling process spends more time in high-probability ares of p(M|D),
it takes more samples from high-probability model structures. Hence, the
MCMC algorithm can be seen as a stochastic hill-climber that aims at finding

192 8 An Algorithmic Description

the M that maximises p(M|D). The algorithm presented here is based on a
similar algorithm developed for CART model search in [64].

The sample sequence is generated by the Metropolis-Hastings algorithm
[106], which is give by the following procedure: given an initial model structure
M0, a candidate model structure M′ is created in step t + 1, based on the
current model structure Mt. This candidate is accepted, that is, Mt+1 = M′,
with probability

min

(

p(Mt|M′)

p(M′|Mt)

p(M′|D)

p(Mt|D)
, 1

)

, (8.4)

and otherwise rejected, in which case the sequence continues with the previous
model, that is, Mt+1 = Mt. p(Mt|M′) and p(M′|Mt) are the probability
distributions that describes the process of generating the candidate model
M′. As the search procedure tends to prefer model structures that improve
p(M|D), it is prone to spending many steps in areas of the model structure
space where p(M|D) is locally optimal. To avoid being stuck in such areas,
random restarts are performed after a certain number of steps, which are
executed by randomly reinitialising the current model structure.

The initial model structure M0, as well as the model structure after a
random restart, is generated by randomly initialising K classifiers, where K
needs to be given. The matching function is assumed to be sampled from a
probability distribution p(mk). Thus, M0 is generated by taking K samples
from p(mk). The exact form of p(mk) depends on the chosen representation,
and thus will be discussed later.

A new candidate model structure M′ is created from the current model
structure Mt with Kt classifiers similarly to the procedure used by Chipman,
George and McCulloch [64], by choosing one of the following actions:

change. Picks one classifier of Mt at random, and re-initialises its matching
function by taking a sample from p(mk).

add. Adds one classifier to Mt, with a matching function sampled from p(mk),
resulting in Kt + 1 classifiers.

remove. Removes one classifier from Mt at random, resulting in Kt − 1 clas-
sifiers.

The actions are chosen by taking samples from the discrete random variable
A ∈ {change, add, remove}, where we assume p(A = add) = p(A = remove)
and p(A = change) = 1 − 2p(A = add).

Let us now consider how to compute the acceptance probability (8.4) for
each of these actions. We have p(M|D) ∝ p(D|M)p(M|K)p(K) by Bayes’
Theorem, where, different to (7.3), we have separated the number of classi-
fiers K from the model structure M. As in (7.4), a uniform prior over unique
models is assumed, resulting in p(K) ∝ 1/K!. Additionally, every classifier
in M is created independently by sampling from p(mk), which results in
p(M|K) = p(mk)K . Using variational inference, the model evidence is ap-
proximated by the variational bound p(D|M) ∝ exp(LM(q)), where LM(q)
denotes the variational bound of model M. Thus, in combination we have

8.2 Two Alternatives for Model Structure Search 193

p(M′|D)

p(Mt|D)
≈ exp(LM′(q))p(mk)K′

(K ′!)−1

exp(LMt
(q))p(mk)Kt(Kt!)−1

, (8.5)

where K ′ denotes the number of classifiers in M′.
We get the model transition probability p(M′|Mt) by marginalising over

the actions A, to get

p(M′|Mt) = p(M′|Mt, A = change)p(A = change)

+p(M′|Mt, A = add)p(A = add)

+p(M′|Mt, A = remove)p(A = remove), (8.6)

and a similar expression for p(Mt|M′). When choosing action add, then
K ′ = Kt + 1, and p(M′|Mt, A = change) = p(M′|Mt, A = remove) = 0,
as neither the action change nor the action remove cause a classifier to be
added. Mt and M′ differ in a single classifier that is picked from p(mk), and
therefore p(Mt|M′, A = add) = p(mk). Similarly, when choosing the action
remove for Mt, an arbitrary classifier is picked with probability 1/Kt, and
therefore p(M′|Mt, A = remove) = 1/Kt. The action change requires choos-
ing a classifier with probability 1/Kt and reinitialising it with probability
p(mk), giving p(M′|Mt, A = change) = p(mk)/Kt. The reverse transitions
p(Mt|M′) can be evaluated by observing that the only possible action that
causes the reverse transition from M′ to Mt after the action add is the ac-
tion remove, and vice versa. Equally, change causes the reverse transition after
performing action change.

Overall, the candidate model M′ that was created by add from Mt is
accepted by (8.4) with probability

min

(

p(Mt|M′, A = remove)p(A = remove)

p(M′|Mt, A = add)p(A = add)

p(M′|D)

p(Mt|D)
, 1

)

≈ min (exp (LM′(q) − LMt
(q) − 2 ln(Kt + 1)) , 1) , (8.7)

where we have used our previous assumption p(A = add) = p(A = remove),
K ′ = Kt +1, and (8.5). When choosing the action remove, on the other hand,
the candidate model M′ is accepted with probability

min

(

p(Mt|M′, A = add)p(A = add)

p(M′|Mt, A = remove)p(A = remove)

p(M′|D)

p(Mt|D)
, 1

)

≈ min (exp (LM′(q) − LMt
(q) − 2 ln Kt) , 1) , (8.8)

based on K ′ = Kt − 1, and (8.5). Note that in case of having K ′ = 0, the
variational bound will be LM′(q) = −∞, and the candidate model will be
always rejected, which confirms that a model without a single classifier is of
no value. Finally, a candidate model M′ where a single classifier from Mt has
been changed by action change is accepted with probability

min

(

p(Mt|M′, A = change)p(A = change)

p(M′|Mt, A = change)p(A = change)

p(M′|D)

p(Mt|D)
, 1

)

≈ min (exp (LM′(q) − LMt
(q)) , 1) . (8.9)

194 8 An Algorithmic Description

To summarise, the MCMC algorithm starts with a randomly initialised
model structure M0 with K0 classifiers and at each step t+1 performs either
change, add, or remove to create a candidate model structure M′ from Mt

that is either accepted (Mt+1 = M′) with a probability that, dependent on
the chosen action, is given by (8.7), (8.8) or (8.9), and otherwise rejected
(Mt+1 = Mt).

8.2.3 Building Blocks in Classifier Sets

As apparent from the above descriptions, the most pronounced difference be-
tween the GA and the MCMC search procedures is that the MCMC search
only considers a single model structure at a time, while the GA operates
on a population of them simultaneously. This parallelism allows the GA to
maintain several competing model structure hypotheses that might contain
valuable building blocks to form better model structures. In GA, building
blocks refer to a group of alleles that in combination provide a part of the
solution [96]. With respect to the model structure search, a building block is
a subset of the classifiers in a model structure that in combination provides a
good model for a subset of the data. A good model structure search maintains
such building blocks and recombines them with other building blocks to form
new model structure hypotheses.

Do such building blocks really exist in the given LCS model, and in LCS in
general? Let us consider a simple example where the model structure contains
a single classifier that matches all inputs with about equal probability. The
only sensible action that MCMC search can perform is to add another classifier
to see if it improves the model structure, which results in a classifier that
matches all observations about equally, and a possibly more specific classifier
that concentrates on a subset of the data. Only in rare cases will such a
combination provide a better model for the data (see Sect. 8.3.3 for an example
where it does). Rather, the globally matching classifier should be rearranged
such that it does not directly compete with the specific classifier in modelling
its part of the data. The resulting pair of classifiers would then cooperate to
model a part of the data and can be seen as a building block of a potentially
good model structure. Thus, while these building blocks exist, they are not
exploited when using the MCMC algorithm for model structure search.

When using a GA for model structure search, on the other hand, the pop-
ulation of individuals can contain several potentially useful building blocks,
and it is the responsibility of the crossover operator to identify and recom-
bine them. As shown by Syswerda [217], uniform crossover generally yields
better results that one-point and two-point crossover. The crossover operator
that is used aims at uniform crossover for variable-length individuals. Further
improvement in identifying building blocks can be made by using Estimation
of Distribution Algorithms (EDAs) [187], but as there are currently no EDAs
that directly apply to the problem structure at hand [153] this topic requires
further investigation.

8.3 Empirical Demonstration 195

8.3 Empirical Demonstration

To demonstrate the usefulness of the optimality criterion that was introduced
in the last chapter, the previously described algorithms are used to find a
good set of classifiers for a set of simple regression tasks. These tasks are
kept simple in the sense that the number of classifiers that are expected to
be required are low, such that the O(K3) complexity of ModelProbability

does not cause any computational problems. Additionally, the crudeness of
the model structure search procedures does not allow us to handle problems
where the best solution is given by a complex agglomeration of classifiers.
All regression tasks have DX = 1 and DY = 1 such that the results can be
visualised easily. The mixing features are given by φ(x) = 1 for all x. Not
all functions are standardised, but their domain is always within [-1:4] and
their range is within [-1:1]. For all experiments, classifiers that model straight
lines are used, together with uninformative priors and hyperpriors as given in
Table 8.1.

Even though the prime problems that most new LCS are tested against
are Multiplexer problems of various lengths [244], they are a challenge for the
model structure search rather than the optimality criterion and thus are not
part of the provided test set. Rather, a significant amount of noise is added to
the data, as the aim is to provide a criterion that defines the minimal model,
and can separate the underlying patterns from the noise, given that enough
data is available.

Firstly, two different representations that are used for the matching func-
tions are introduced. Then, the four regression tasks, their aim, and the found
results are described, one by one.

8.3.1 Representations

The two representations that are going to be used are matching by radial-
bases functions, and matching by soft intervals. Starting with matching by
radial-basis functions, their matching functions as well as their initialisation
and mutation is described.

Matching by Radial-Basis Functions

The matching function for matching by radial-basis functions is defined by

mk(x) = exp

(

1

2σ2
k

(x − µ)2
)

, (8.10)

which is an unnormalised Gaussian that is parametrised by a scalar µk and
a positive spread σk. Thus, the probability of classifier k matching input x
decreases with the distance from µk, where the strength of the decrease is
determined by σk. If σk is small, then the matching probability decreases

196 8 An Algorithmic Description

rapidly with the squared distance of x from µk. Note that, as mk(x) > 0 for
all −∞ < x < ∞, all classifiers match all inputs, even if only with a very low
probability. Thus, we always guarantee that

∑

k mk(xn) > 0 for all n, that is,
that all inputs are matched by at least one classifier, as required. Examples
for the shape of the radial-basis matching function are shown in Fig. 8.2.
This form of matching function was chosen to demonstrate the possibility of
matching by probability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
at

ch
in

g
pr

ob
ab

ili
ty

x

Matching by Radial Basis Functions

cl. 1
cl. 2
cl. 3
cl. 4

Fig. 8.2. Matching probability for matching by radial basis functions for different
parameters. Classifiers 1, 2, and 3 all have their matching functions centred on
µ1 = µ2 = µ3 = 0.5, but have different spreads σ1 = 0.1, σ2 = 0.01, σ3 = 1. This
visualises how a larger spread causes the classifier to match a larger area of the
input space with higher probability. The matching function of classifier 4 is centred
on µ4 = 0.8 and has spread σ4 = 0.2, showing that µ controls the location x of the
input space where the classifier matches with probability 1

Rather than declaring µk and σk directly, the matching parameters 0 ≤
ak ≤ 100 and 0 ≤ bk ≤ 50 determine µk and σk by µk = l +(u− l)ak/100 and
σ2

k = 10−bk/10, where [l, u] is that range of the input x. Thus, ak determines
the centre of the classifier, where 0 and 100 specify the lower and higher end
of x, respectively. σk is given by bk such that 10−50 ≤ σ2

k ≤ 1, and a low
bk gives a wide spread of the classifier matching function. A new classifier is
initialised by randomly choosing ak uniformly from [0, 100), and bk uniformly
from [0, 50). The two values are mutated by adding a sample from N (0, 10)
to ak, and a sample from N (0, 5) to bk, but ensuring thereafter that they still
conform to 0 ≤ ak ≤ 100 and 0 ≤ bk ≤ 50. The reason for operating on ak, bk

8.3 Empirical Demonstration 197

rather than µk, σk is that it simplifies the mutation operation by making it
independent of the range of x for µk and allows for non-linearity with respect
to σk. Alternatively, one could simply acquire the mutation operator that was
used by Butz, Lanzi and Wilson [53].

Matching by Soft Intervals

Matching by soft intervals is similar to the interval matching that was intro-
duced in XCS by Wilson [246], with the difference that here, the intervals
have soft boundaries. The reason for using soft rather than hard boundaries
is to express the fact that we are never absolutely certain about the exact
location of these boundaries, and to avoid the need to explicitly care about
having each input matched by at least one classifier.

To avoid the representational bias of the centre/spread representation of
Wilson [246], the lower/upper bound representation that was introduced and
analysed by Stone and Bull [209] is used instead. The softness of the boundary
is provided by an unnormalised Gaussian that is attached to both sides of the
interval within which the classifier matches with probability 1. To avoid the
boundaries from being too soft, they are partially included in the interval.
More precisely, when specifying the interval for classifier k by its lower bound
lk and upper bound uk, exactly one standard deviation of the Gaussian is to
lie inside this interval, with the additional requirement of having 95% of the
area underneath the matching function inside this interval. More formally, we
need 0.95(b′k +

√
2πσk) = bk to hold to have the interval bk = uk − lk specify

95% of the area underneath the matching function, where b′k gives the width
of the interval where the classifier matches with probability 1, using the area√

2πσ underneath an unnormalised Gaussian with standard deviation σ. The
requirement of the specified interval extending by one standard deviation to
either side of the Gaussian is satisfied by b′k +0.6827

√
2πσk = bk, based on the

fact that the area underneath the unnormalised Gaussian within one standard
deviation from its centre is 0.6827

√
2πσ. Solving these equations with respect

to b′k and σk for a given bk results in

σk =
1

0.95 − 1

1 − 0.6827

1√
2π

bk ≈ 0.0662bk, (8.11)

b′k = bk − 0.6827
√

2πσk ≈ 0.8868bk. (8.12)

Thus, about 89% of the specified interval are matched with probability 1,
and the leftover 5.5% to either side are matched according to one standard
deviation of a Gaussian. Therefore, the matching function for soft interval
matching is given by

mk(x) =















exp
(

− 1
2σ2

k

(x − l′k)2
)

if x < l′k,

exp
(

− 1
2σ2

k

(x − u′
k)2

)

if x > u′
k

1 otherwise,

(8.13)

198 8 An Algorithmic Description

where l′k and u′
k are the lower and upper bound of the interval that the

classifier matches with probability 1, and are given by l′k ≈ lk + 0.0566bk and
u′

k ≈ uk − 0.0566bk, such that u′
k − l′k = b′k. Fig. 8.3 shows examples for the

shape of the matching function for soft interval matching.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
at

ch
in

g
pr

ob
ab

ili
ty

x

Matching by Soft Intervals

cl. 1
cl. 2
cl. 3

Fig. 8.3. Matching probability for matching by soft interval for different parameters.
Classifiers 1 and 2 are adjacent as l1 = 0, u1 = l2 = 0.2, and u2 = 0.5. The area
where these two classifiers overlap shows that the classifiers do not match their full
interval with probability 1 due to the soft boundaries of the intervals. Nonetheless,
95% of the area beneath the matching function are within the specified interval.
Classifier 3 matches the interval l3 = 0.7, u3 = 0.9. Comparing the boundary of
classifier 2 and 3 shows that the spread of the boundary grows with the width of
the interval that it matches

Classifier k is initialised as by Stone and Bull, by sampling lk and uk

from by a uniform distribution over [l, u], which is the range of x. If lk > uk,
then their values are swapped. While Stone and Bull [209] and Wilson [246]
mutate the boundary values a uniform random variable, here the changes
are sampled from a Gaussian to make small changes more likely than large
changes. Thus, the boundaries after mutation are given by perturbing both
bounds by N (0, (u− l)/10), that is, a sample from a zero-mean Gaussian with
a standard deviation that is a 10th of the range of x. After that, it is again
made sure that l ≤ lk < uk ≤ u by swapping and bounding their values if
required.

Even though both matching functions are only introduced for the case
when DX = 1, they can be easily extended to higher-dimensional input spaces.
In the case of radial-basis function matching, the matching function is specified

8.3 Empirical Demonstration 199

by a multivariate Gaussian, analogous to the hyper-ellipsoidal conditions for
XCS [42, 53]. Matching by a soft interval becomes slightly more complex due
to the interval-specification of the matching function, but its computation
can be simplified by defining the matching function as the product of one
single-dimensional matching function per dimension of the input space.

8.3.2 Generated Function

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

O
ut

pu
t y

Input x

Classifiers and Mixed Model for Generated Function

mixed model
cl. 1
cl. 2
cl. 3
data

Fig. 8.4. Classifier models, mixed model and available data for the generated func-
tion

To see if the optimality criterion is correct if the data conforms to the
underlying assumptions of the model, it is firstly tested on a function that
was generated to satisfy these assumptions. The data is generated by taking
300 samples from 3 linear classifiers with models N (y|0.05+0.5x, 0.1), N (y|2−
4x, 0.1), and N (y| − 1.5 + 2.5x, 0.1) which use radial-basis function matching
with (µ, σ2) parameters (0.2, 0.05), (0.5, 0.01), (0.8, 0.05) and mixing weights
v1 = 0.5, v2 = 1.0, v3 = 0.4, respectively. A plot of the classifiers’ means, their
generated function mean, and the available data can be found in Fig. 8.4.

Both GA and MCMC model structure search were tested, where the GA
is in this and all other experiments initialised with a population of size P =
20, crossover and mutation probability pc = pm = 0.4, and tournament size
ts = 5. The number of classifiers in each of the individuals is sampled from
the binomial distribution B(8, 0.5), such that, on average, an individual has 4
classifiers. The performance of the GA model structure search is not sensitive

200 8 An Algorithmic Description

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

 6

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Fig. 8.5. Plots showing the best found model structure for the generated function
using GA model structure search, and fitness and average number of classifiers over
the GA iterations. Plot (a) shows the available data, the model of the classifiers, and
their mixed prediction with 1 standard deviation to either side, and additionally the
mean of the generating function. The matching function parameters of the classifiers
are µ1 = 0.09, σ2

1 = 0.063 and µ2 = 0.81, σ2
2 = 0.006. Plot (b) shows the maximum,

average, and minimum fitness of the individuals in the population after each GA
iteration. The minimum fitness is usually below the lower edge of the plot. The
plot also shows the average number of classifiers for all individuals in the current
population

to the initial size of the individuals and gives similar results for different
initialisations of its population.

The result after a single run with 250 GA iterations are shown in Fig. 8.5.
As can be seen, the model was not correctly identified as the number of
classifiers of the best found individual is 2 rather than the desired 3, with
L(q)−ln K! ≈ 118.81. Nonetheless, the generated function mean is still within
the first standard deviation of the predicted mean.

The MCMC model structure search was applied to the same data, using
for this and all further experiments 10 restarts with 500 steps each, and p(A =
add) = p(A = remove) = 1/4. Thus, MCMC search uses the same number
of model structure evaluations as the GA. The initial number of classifiers is
after each restart sampled from the binomial distribution B(8, 0.5), resulting
in 4 classifiers on average.

As can be seen in Fig. 8.6, MCMC model structure search performed better
than the GA by correctly identifying all 3 classifiers with L(q)−ln K! ≈ 174.50,
indicating a higher p(M|D) than for the one found by the GA. While the dis-
covered model structure is not exactly that of the data-generating process, it
is intriguingly similar, given the rather crude search procedure. The reject rate
of the MCMC algorithm was about 96.9%, which shows that the algorithm
quickly finds a local optimum and remains there.

8.3 Empirical Demonstration 201

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2
cl. 3

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

 6

 7

 8

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Fig. 8.6. Plots showing the best discovered model structure for the generated func-
tion using MCMC model structure search, and variational bound and number of
classifiers over the MCMC steps. Plot (a) shows the available data, the model of
the classifiers, and their mixed prediction with 1 standard deviation to either side,
and additionally the mean of the generating function. The matching function pa-
rameters of the classifiers are µ1 = 0.16, σ2

1 = 0.01, µ2 = 0.461, σ2
2 = 0.025, and

µ3 = 0.78, σ2
3 = 0.006. Plot (b) shows the variational bound L(q) for each step of

the MCMC algorithm, and clearly visualises the random restarts after 500 steps. It
also shows the number of classifiers K in the current model structure for each step
of the MCMC search

8.3.3 Sparse, Noisy Data

While the noise of the generated function is rather low and there is plenty
of data available, the next experiment investigates if the optimality criterion
can handle more noise and less data. For this purpose the test function from
Waterhouse et al. [234] is taken, where it was used to test the performance of
the Bayesian MoE model with a fixed model structure. The function is given
by f(x) = 4.25(e−x −4e−2x +3e−3x)+N (0, 0.2) over 0 ≤ x ≤ 4, and is shown
in Fig. 8.7, together with the 200 sampled observations. Waterhouse et al. used
additive noise with variance 0.44 which was here reduced to 0.2 as otherwise
no pattern was apparent in the data. It is assumed that the Bayesian MoE
model was only able to identify a good model despite the high noise due to
its pre-determined model structure.

Again using radial-basis function matching, the GA and MCMC settings
are the same as in the previous experiment, except for the initial number of
classifiers, which is in both cases sampled from B(4, 0.5). As before, the result
is insensitive to this number. The best discovered model structures are shown
in Fig. 8.8 for the GA, with L(q) − lnK! ≈ −159.07, and in Fig. 8.9 for the
MCMC, with L(q) − lnK! ≈ −158.55. The MCMC search had a reject rate
of about 97.0% over its 5000 steps.

Both the GA and the MCMC search resulted in about the same model
structure which at the first sight seems slightly surprising: looking at Fig. 8.7,
one would initially expect the function to be modelled by a flat line over

202 8 An Algorithmic Description

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

O
ut

pu
t y

Input x

Waterhouse et al. (1996) Function and Available Data

f(x) mean
data

Fig. 8.7. Plot showing the test function used in [234], and the 200 available obser-
vations

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

f(x)
cl. 1
cl. 2

-200

-190

-180

-170

-160

-150

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Fig. 8.8. Plots similar to the ones in Fig. 8.5, when using a GA for model structure
search applied to the function as used by Waterhouse et al. [234]. The best discovered
model structure is given by µ1 = 0.52, σ1 = 0.016 and µ2 = 3.32, σ2 = 1.000

1.5 < x < 4, and 2 straight lines for the bump at around x = 0.4, requiring
altogether 3 classifier. The model structure search, however, has identified a
model that only requires 2 classifiers by having a global classifier that models
the straight line, interleaved by a specific classifier that models the bump.
This clearly shows that the applied model selection method prefers simpler
models over more complex ones, in addition to the ability of handling rather
noisy data.

8.3 Empirical Demonstration 203

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2

-200

-190

-180

-170

-160

-150

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Fig. 8.9. Plots similar to the ones in Fig. 8.6, when using MCMC model structure
search applied to the function as given in [234]. The best discovered model structure
is given by µ1 = 0.56, σ1 = 0.025 and µ2 = 2.40, σ2 = 0.501

8.3.4 Function with Variable Noise

One of the disadvantages of XCS, as discussed in Sect. 7.1.1, is that the
desired mean absolute error of each classifier is globally specified by the system
parameter ǫ0. Therefore, XCS cannot properly handle data where the noise
level varies significantly over the input space. The introduced LCS model
assumes constant noise variance at the classifier level, but does not make
such an assumption at the global level. Thus, it can handle cases where each
classifier requires to accept a different level of noise, as is demonstrated by
the following experiment.

Similar, but not equal to the study by Waterhouse et al. [234], the target
function has two different noise levels. It is given for −1 ≤ x ≤ 1 by f(x) =
−1−2x+N (0, 0.6) if x < 0, and f(x) = −1+2x+N (0, 0.1) otherwise. Thus,
the V-shaped function has a noise variance of 0.6 below x = 0, and a noise
variance of 0.1 above it. Its mean and 200 data points that are used as the
data set are shown in Fig. 8.10. To assign each classifier to a clear interval of
the input space, soft interval matching is used.

Both GA and MCMC search were applied with with the same settings
as before, with the initial number of classifiers sampled from B(8, 0.5). The
best discovered model structures are shown for the GA in Fig. 8.11, with
L(q) + lnK! ≈ −63.12, and for MCMC search in Fig. 8.12, with a slightly
better L(q)+ ln K! ≈ −58.59. The reject rate of the MCMC search was about
96.6%.

In both cases, the model structure search was able to identify two classifiers
with different noise variance. The difference in the modelled noise variance is
clearly visible in both Fig. 8.11 and 8.12 by the plotted prediction standard
deviation. This demonstrates that the LCS model is suitable for data where
the level of noise differs for different areas of the input space.

204 8 An Algorithmic Description

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

O
ut

pu
t y

Input x

Function with Variable Noise and Available Data

f(x) mean
data

Fig. 8.10. Plot showing the mean of the function with variable noise, and the 200
observations that are available from this function

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

f(x)
cl. 1
cl. 2

-200

-180

-160

-140

-120

-100

-80

-60

-40

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 5

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Fig. 8.11. Plots similar to the ones in Fig. 8.5, where GA model structure search
was applied to a function with variable noise. The best discovered model structure
is given by l1 = −0.82, u1 = 0.08 and l2 = 0.04, u2 = 1.00

8.3.5 A Slightly More Complex Function

To demonstrate the limitations of the rather näıve model structure search
methods as introduced in this chapter, the last experiment is performed on a
slightly more complex function. The used function is the noisy sinusoid given
over the range −1 ≤ x ≤ 1 by f(x) = sin(2πx) + N (0, 0.15), as shown in
Fig. 8.13. Soft interval matching is again used to clearly specify the area of

8.3 Empirical Demonstration 205

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2

-200

-180

-160

-140

-120

-100

-80

-60

-40

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

 6

 7

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Fig. 8.12. Plots similar to the ones in Fig. 8.6, where MCMC model structure search
was applied to a function with variable noise. The best discovered model structure
is given by l1 = −0.98, u1 = −0.06 and l2 = 0.08, u2 = 0.80

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
ut

pu
t y

Input x

Noisy Sinusoid and Available Data

f(x) mean
data

Fig. 8.13. Plot showing the mean of the noisy sinusoidal function, and the 300
observations that are available from this function

the input space that a classifier models. The data set is given by 300 samples
from f(x).

Both GA and MCMC search are initialised as before, with the number
of classifiers sampled from B(8, 0.5). The GA search identified 7 classifiers
with L(q) + lnK! ≈ −155.68, as shown in Fig. 8.14. It is apparent that the
model can be improved by reducing the number of classifiers to 5 and moving
them to adequate locations. However, as can be seen in Fig. 8.14(b), the
GA initially was operating with 5 classifiers, but was not able to find good

206 8 An Algorithmic Description

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

f(x)
cl. 1
cl. 2
cl. 3
cl. 4
cl. 5
cl. 6
cl. 7

-400

-350

-300

-250

-200

-150

-100

 0 50 100 150 200 250
 0

 2

 4

 6

 8

 10

F
itn

es
s

A
ve

ra
ge

 K

GA iteration

Fitness and Average Number of Classifiers

max. fitness
avg. fitness
min. fitness

avg. K

(a) (b)

Fig. 8.14. Plots similar to the ones in Fig. 8.5, using GA model structure search
applied to the noisy sinusoidal function. The best discovered model structure is given
by l1 = −0.98, u1 = −0.40, l2 = −0.78, u2 = −0.32, l3 = −0.22, u3 = 0.16, l4 =
−0.08, u4 = 0.12, l5 = 0.34, u5 = 0.50, l6 = 0.34, u6 = 1.00, and l7 = 0.60, u2 = 0.68

interval placements, as the low maximum fitness shows. Once it increased the
number of classifiers to 7, at around the 60th iteration, it was able to provide a
fitter model structure, but at the cost of an increased number of classifiers. It
maintained this model up to the 250th iteration without finding a better one,
which indicates that the genetic operators need to be improved and require
better tuning to the representation used in order to make the GA perform
better model structure search.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

O
ut

pu
t y

 a
nd

 P
re

di
ct

io
n

Input x

Mixed Prediction and Prediction of Classifiers

data
pred +/- 1sd

gen. fn.
cl. 1
cl. 2
cl. 3
cl. 4
cl. 5

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000
 0

 2

 4

 6

 8

 10

L(
q) K

MCMC step

Variational Bound and Number of Classifiers

L(q)
K

(a) (b)

Fig. 8.15. Plots similar to the ones in Fig. 8.6, using MCMC model structure
search applied the noisy sinusoidal function. The best discovered model structure is
given by l1 = −1.00, u1 = −0.68, l2 = −0.62, u2 = −0.30, l3 = −0.24, u3 = 0.14,
l4 = 0.34, u4 = 0.78, and l5 = 0.74, u5 = 0.98

That the inappropriate model can be attributed to a weak model structure
search rather than a failing optimality criterion becomes apparent when con-

8.4 Improving Model Structure Search 207

sidering the result of the MCMC search with a superior L(q)−ln K! ≈ −29.39,
as shown in Fig. 8.15. The discovered model is clearly better, which is also
reflected in a higher p(M|D). Note, however, that this model was not dis-
covered after all restarts of the MCMC algorithm. Rather, model structures
with 6 or 7 classifiers were sometimes preferred, as Fig. 8.15(b) shows. This
indicates that a further increase of the problem complexity will very likely
cause the MCMC search to fail as well.

8.4 Improving Model Structure Search

As previously emphasised, the model structure search procedures introduced
in this chapter are näıve in the sense that they are ignorant about a lot of the
information that is available in the LCS model. Also, they are only designed
for batch learning and as such are unable to handle tasks where incremental
learners are required.

Here, a few suggestions are given on how, on one hand, more information
can be used to guide the model structure search, and, on the other hand, how
the batch learning method can be turned into an incremental learner. The
introduced model structure search methods are general such that modifying
the LCS model type to a linear LCS, for example, does not invalidate these
methods. Guiding the model structure search by information that is extracted
from the probabilistic model makes the search procedure depend on the model
type. Thus, while it might be more powerful thereafter, it is also only appli-
cable to one particular model structure. The modifications that are suggested
here only apply to LCS model types that train their classifiers independently.

Independent of the LCS model type, incremental learning can occur at
two different levels: On one hand, one can learn the LCS model parameters
incrementally while keeping the model structure fixed. On the other hand,
the model structure can be improved incrementally, as done by Michigan-
style LCS. Both levels will be discussed here, but as before, they will only be
discussed for the LCS model type that is introduced in this book.

8.4.1 Using More Information

Suggestions on how the model structure search can be improved focus ex-
clusively on the GA, as it has the advantage of exploiting building blocks in
the LCS model (see Sect. 8.2.3). It can be improved on two levels: i) more
information embedded in the LCS model should be used than just the fitness
of a model structure, and ii) current theoretical and practical advances in
evolutionary computation should be used to improve the GA itself.

With respect to using the information that is available within the model
itself, model structure search operates on the classifiers, and in particular on
their matching function. Thus, it is of interest to gain more information about
a single classifier ck within a model structure M. Such information could, for

208 8 An Algorithmic Description

example, be gained by evaluating the probability p(ck|M,D) of the classi-
fier’s model in the light of the available data. By Bayes’ rule p(ck|M,D) ∝
p(D|ck,M)p(ck|M), where the classifier model evidence p(ck|M,D), is simi-
larly to (7.2) given by

p(D|ck,M) =

∫

p(D|θk, ck,M)p(θk|ck,M)dθk, (8.14)

and matching needs to be taken into account when formulating p(D|θk, ck,M).
As for good model structures, good classifiers are classifiers for which p(ck|M,D)
is large, or equivalently, for which p(D|ck,M) is large, given uniform classifier
priors p(ck|M). Therefore, the mutation operator of the GA can be biased
towards changing bad classifiers, and genetic operators can construct new in-
dividuals from good classifiers of other individuals, or prune individuals by
removing bad classifiers.

From the GA side itself, a more principled approach might be sought
from evolutionary computation techniques where variable-length individuals
are common. Genetic programming (GP) is one of them, as the program that
each individual represents is not fixed in size. However, while the fitness of
a program does not necessarily decrease with its complexity, Bayesian model
selection penalises overly complex model structures. Thus, GP suffers from the
problem of individuals growing out of bound that is naturally avoided in the
approach presented here. Nonetheless, some of the theoretical results of GP
might still be applicable to improving the GA to search the model structure
space.

Another route that can additionally improve the performance of the GA
is to use Estimation of Distribution Algorithms (EDAs) [187] that improve
the crossover operator by detecting and preserving building blocks. They do
so by creating a statistical model of the high-fitness individuals of the current
population and draw samples from this model to create new individuals, rather
than using standard crossover operators. Good building blocks are expected
to appear in several individuals and consequently receive additional support
in the model. The Bayesian Optimization Algorithm (BOA), for example,
models the alleles of selected individuals by a Bayesian network that is samples
thereafter to produce new individuals [186].

Currently, there exists no EDA that can handle variable-length individu-
als adequately [153]. The problem is that the space of possible classifiers, that
is, the space of possible matching function parametrisations, is too large to
frequently have similar classifiers within the population. The chance of hav-
ing the same building blocks is even exponentially smaller [44, 153]. Despite
these issues it is still worth trying to construct an EDA that can be used
with the population structure at hand, at least to provide a more principled
crossover operator. What needs to be considered when constructing the statis-
tical population model is the irrelevance of the location of a classifiers within
an individual. The only thing that matters is the classifier itself, and if it
frequently co-occurs with the same other classifiers. This should allow mod-

8.4 Improving Model Structure Search 209

elling and preserving building blocks within a set of classifiers. An additional
enhancement of the model is to take the nature of the matching function into
account, as done for Michigan-style LCS by Butz and Pelikan [55] and Butz
et al. [56].

8.4.2 Incremental Implementations

An even more challenging task is to turn the developed batch implementation
into an incremental learner. Incremental learning can be performed on two
levels, each of which will be discussed separately: i) the model parameters
θ can be updated incrementally, while holding the model structure M fixed
ii) the model structure can be updated incrementally under the assumption
that the correct model parameters are known immediately after each update.
The aim of an incremental learner is to perform incremental learning on both
levels. To do this successfully, however, we firstly have to be able to handle
incremental learning on each of the two levels separately.

Incremental learning on the model parameter level alone is sufficient to
handle reinforcement learning tasks. Incrementally learning the model struc-
ture, on the other hand, is computationally more efficient as it only requires
working with a single model structure at a time (making it a Michigan-style
LCS) rather than having to maintain several model structures at once (as is
the case for Pittsburgh-style LCS). Thus, performing incremental learning on
either level alone is already a useful development.

Incremental Model Parameter Update

Having provided a Bayesian LCS model for a fixed model structure M, one
could assume that it automatically provides the possibility of training its
parameters incrementally by using the posterior of one update as the prior of
the next update. However, due to the use of hyperpriors, this does not always
apply.

Assuming independent classifier training, let us initially focus on the clas-
sifiers. The classification model that was used does not use a hyperprior and
thus can be easily updated incrementally. The update (7.129) of its only pa-
rameter α∗

k is a simple sum over all observations, which can be performed for
each observation separately.

Classifier models for regression, on the other hand, have several inter-
linked parameters W, τ and α that are to be updated in combination. Let
us consider the posterior weight (7.98) and precision (7.97) of the classifier
model, which also results from performing matching-weighted ridge regression
with ridge complexity Eα(αk) (see Sect. 7.3.2). As shown in Sect. 5.3.5, ridge
regression can, due to its formal equivalence to RLS, be performed incremen-
tally. Note, however, that the ridge complexity is set by the expectation of the
prior on αk that is modelled by the hyperprior (7.9) and is updated together

210 8 An Algorithmic Description

with the classifier model parameters. A direct change of the ridge complex-
ity after having performed some RLS updates is not feasible. However, there
remain two possibilities for an incremental update of these parameters: one
could fix the prior parameters by specifying αk directly rather than modelling
it by a hyperprior. Potentially good values for αk are given in Sect. 7.2.3.
Alternatively, one can incrementally update

∑

n m(xn)xnxT
n and recover Λ∗

k

after each update by using (7.97) directly, which requires a matrix inversion
of complexity O(D3

X) rather than the O(D2
X) of the RLS algorithm. Thus,

either the bias of the model or the computational complexity of the update is
increased. Using uninformative priors, the first approach might be the one to
prefer. From inspecting (7.99) and (7.100) it can be seen that both parame-
ters of the noise precision model can be updated incrementally without any
modifications.

Even though a least squares approximation could be used to train the mix-
ing model, analogous to Sect. 6.1.2, the results in Chap. 6 have shown that it
is possible to design heuristics that outperform this approximation. Addition-
ally, these heuristics might not require any parameters to be updated, besides
the parameters of the classifiers themselves. Given that similar parameter-less
heuristics exist for the Bayesian model, they can be immediately used in in-
cremental implementations, as no parameters need to be updated. Possible
approaches where already outlined in Sect. 6.4.

Incremental Model Structure Search

The GA in Michigan-style LCS has strong parallels to cooperative co-
evolutionary algorithms (for example [242]). In these, the fitness of an in-
dividual depends on the other individuals in the population. Equally, the
fitness of a classifier in a Michigan-style LCS depends on the other classifiers
in the set of classifiers as they cooperate to form the solution. Note that while
in Pittsburgh-style LCS an individual is a set of classifiers that provides a
candidate solution, in Michigan-style each classifier is an individual and the
whole population forms the solution.

Having defined a fitness for a set of classifiers by the model structure prob-
ability, the aim is to design an algorithm that is able to increase the fitness
of this population by modifying separate classifiers. Expressed differently, we
want to design a GA for which the fixed point of its operators is the op-
timal set of classifiers such that p(M|D) is maximised. While this is not a
trivial problem, an obvious approach is to attempt to design a cooperative
co-evolutionary algorithm with such operators, or to modify existing LCS,
like XCS(F), to aim at satisfying the optimality criterion. However, the lack
of theoretical understanding of either method does not make the approach
any simpler [175].

Here, an alternative based on Replicator Dynamics (for example, [111]) is
suggested: assume that the number of possible matching function parametri-
sations is given by a finite P (for any finite X and a sensible representation

8.4 Improving Model Structure Search 211

this is always the case) and that C1, . . . , CP enumerate each possible type
of matching function. Each Ci stands for a classifier type that is a possible
replicator in a population. Let c = (c1, . . . , cP)T denote the frequency of each
of the classifier types. Assuming an infinite population model, ci gives the
proportion of classifiers of Ci in the population. As the ci’s satisfy 0 ≤ ci ≤ 1
and

∑

i ci = 1, c is an element of the P -dimensional simplex SP .
The fitness fi(c) of Ci is a function of all classifiers in the population,

described by c. The rate of increase ċi/ci of classifier type Ci is a measure of
its evolutionary success and may be expressed as the difference between the
fitness of Ci and the average fitness f̄(c) =

∑

i cifi(c), which results in the
replicator equation

ċi = ci

(

fi(c) − f̄(x)
)

. (8.15)

Thus, the frequency of classifier type Ci only remains unchanged if there is
no such classifier in the current population, or if its fitness equals the average
fitness of the current population. The population is stable only if this applies
to all its classifiers.

One wants to define a fitness function for each classifier such that the stable
population is the optimal population according to the optimality criterion.
Currently L(q) by (7.96) cannot be fully split into one component per classifier
due to the term ln |Λ∗

V
−1| in LM (q) that results from the mixing model.

Replacing this mixing model by heuristics should make such a split possible.
Even then it is for each classifier a function of all classifiers in the current
population, as the mixing coefficients assigned to a single classifier for some
input depend on other classifiers that match the same input, which conforms
to the above definition of the fitness of a classifier type being a function of
the frequency of all classifier types.

The stable state of the population is given if a classifier’s fitness is equal to
the average fitness of all classifiers. This seems very unlikely to result naturally
from splitting L(q) into the classifier components, and thus either (8.15) needs
to be modified, or the fitness function needs to be tuned so that this is the case.
If and how this can be done cannot be answered before the fitness function
is available. Furthermore, (8.15) does not allow the emergence of classifiers
that initially have a frequency of 0. As initialising the population with all
possible classifiers is not feasible even for rather small problems, new classifier
types need to be added stochastically and periodically. To make this possible,
(8.15) needs to be modified to take this into account, resulting in a stochastic
equation.

Obviously, a lot more work is required to see if the replicator dynamics
approach can be used to design Michigan-style LCS. If it can, the approach
opens the door to applying the numerous tools designed to analyse replicator
dynamics to the analysis of the classifier dynamics in Michigan-style LCS.

212 8 An Algorithmic Description

8.5 Summary

In this chapter it was demonstrated how to the optimality criterion that was
introduced in the previous chapter can be applied by implementing variational
Bayesian inference together with some model structure search procedure. Four
simple regression tasks were used to demonstrate that the optimality criterion
based on model selection yields adequate results.

A set of function were provided that perform variational Bayesian infer-
ence to approximate the model probability p(M|D) and act as a basis for
evaluating the quality of a set of classifiers. More specifically, the function
ModelProbability takes the model structure M and the data D as argu-
ments and returns an approximation to the unnormalised model probability.
Thus, in addition to the theoretical treatment of variational inference in the
previous chapter, it was shown here how to implement it for the regression
case. Due to required complex procedure of finding the mixing weight vectors
to combine the localised classifier models to a global model, the described
implementation scales unfavourably with the number of classifiers K. This
complexity might be reduced by replacing the generalised softmax function
by well-tuned heuristics, but further research is required to design such heuris-
tics.

Two methods to find the M that maximises p(M|D) have been introduced
to emphasise that in theory any global optimisation procedure can be used
to find the best set of classifiers. On one hand, a GA was described that
operates in a Pittsburgh-style LCS way, and on the other hand, an MCMC was
employed that samples p(M|D) and thus acts like a stochastic hill-climber.
Both methods are rather crude, but sufficient to demonstrate the abilities of
the optimality criterion.

Using the introduced optimisation algorithms, it was demonstrated on a
set of regression tasks that the definition of the best set of classifiers i) is able
to differentiate between patterns in the data and noise, ii) prefers simpler
model structures over more complex ones, and iii) can handle data where the
level of noise differs for different areas of the input space. These features have
not been available in any LCS before, without the requirement of manually
tuning system parameters that influence not only the model structure search
procedure but also the definition of what resembles a good set of classifiers.
Being able to handle different levels of noise is a feature that has possibly not
been available in any LCS before, regardless of how the system parameters
are tuned.

At last, the model structure search has been discussed in more detail, to
point out how it might be improved and modified to meet different require-
ments. Currently, none of the two model structure search procedures facilitate
any form of information that is available from the probabilistic LCS model
other than an approximation to p(M|D). Thus, the power of these methods
can be improved by using this additional information and by facilitating recent
developments that improve on the genetic operators.

8.5 Summary 213

Another downside of the presented methods is that they currently only
support batch learning. Incremental learning can be implemented on both
the model parameter and the model structure level, either of which were
discussed separately. While on the parameter level only minor modifications
are required, providing an incremental implementation on the model structure
level, which effectively results in a Michigan-style LCS, is a major challenge.
Its solution will finally bridge the gap between Pittsburgh-style and Michigan-
style LCS, which are, as presented here, just different implementations with
the same aim of finding the set of classifiers that explains the data best.
Up until now, there was no formally well-defined definition of this aim, and
providing this definition is the first step towards a solution to that challenge.

9

Towards Reinforcement Learning with LCS

Having until now concentrated on how LCS can handle regression and classi-
fication tasks, this chapter returns to the prime motivator for LCS, which are
sequential decision tasks. There has been little theoretical LCS work that con-
centrates on these tasks (for example, [31, 231]) despite some obvious problems
that need to be solved [12, 13, 78]. At the same time, other machine learning
methods have constantly improved their performance in handling these tasks
[129, 29, 210], based on extensive theoretical advances. In order to catch up
with these methods, LCS need to refine their theory if they want to be able
to feature competitive performance. This chapter provides a strong basis for
further theoretical development within the MDP framework, and discusses
some currently relevant issues.

Sequential decision tasks are, in general, characterised by having a set of
states and actions, where an action performed in a particular state causes
a transition to the same or another state. Each transition is mediated by a
scalar reward, and the aim is to perform actions in particular states such that
the sum of rewards received is maximised in the long run. How to choose an
action for a given state is determined by the policy. Even though the space
of possible policies could be searched directly, a more common and more
efficient approach is to learn for each state the sum of future rewards that one
can expect to receive from that state, and derive the optimal policy from that
knowledge.

The core of Dynamic Programming (DP) is how to learn the mapping
between states and their associated expected sum of rewards, but to do so re-
quires a model of the transition probabilities and the rewards that are given.
Reinforcement Learning (RL), on the other hand, aims at learning this map-
ping, known as the value function, at the same time as performing the actions,
and as such improves the policy simultaneously. It can do so either without
any model of the transitions and rewards – known as model-free RL – or by
modelling the transitions and rewards from observations and then using DP
methods based on these models to improve the policy – known as model-based

216 9 Towards Reinforcement Learning with LCS

RL. Here, we mainly focus on model-free RL as it is the variant that has been
used most frequently in LCS.

If the state space is large or even continuous then the value function is not
learned for each state separately but rather modelled by some function approx-
imation technique. However, this limits the quality of the discovered policy
by how close the approximated value function is to the real value function.
Furthermore, the shape of the value function is not known beforehand, and
so the function approximation technique has to be able to adjust its resources
adaptively. Considering that LCS provide such adaptive regression models,
they seem to be a key candidate for approximating the value function of RL
methods; and this is in fact exactly what LCS are used for when applied to
sequential decision tasks: they act as adaptive value function approximation
methods to aid learning the value function of RL methods.

Due to early LCS pre-dating common RL methods, they have not always
been characterised as approximating the value function. In fact, the first com-
parison between RL and LCS was performed by Dorigo and Bersini [75] to
show that a Very Simple CS without generalisation and a slightly modified
implicit bucket brigade is equivalent to tabular Q-Learning. A more general
study shows how evolutionary computation can be used for reinforcement
learning [176], but ignores the development of XCS [244], where Wilson ex-
plicitly uses Q-Learning as the RL component.

Recently, there has been some confusion [48, 230, 145] about how to cor-
rectly implement RL in XCS(F), and this has caused XCS(F) to be modified
in various ways. Using the model-based stance, variants of Q-Learning that
use LCS function approximation from first principles will be derived and show
that XCS(F) already performs correct RL without the need for modifications.
Also, it demonstrates how to correctly combine RL methods and LCS func-
tion approximation, as an illustration of a general principle, applied to the
LCS model type that was introduced in the previous chapters.

Using RL with any form of value function approximation might case the
RL method to become unstable and possibly diverge. Only certain forms of
function approximation can be used with RL – an issue that will be discussed
in detail in a later section, where the compatibility of the introduced LCS

model and RL is analysed. Besides stability, learning policies that require a
long sequence of actions is another issue that needs special consideration, as
function approximation might cause the policy to become sub-optimal. This,
and the exploration/exploitation dilemma will be discussed, where the latter
concerns the trade-off between exploiting current knowledge in forming the
policy and performing further exploration to gain more knowledge.

Appropriately linking LCS into RL firstly requires a formal basis for RL,
which is formed by various DP methods. Their introduction is kept brief, and
a longer LCS-related version is available as a technical report [80]. Nonethe-
less, we discuss some stability issues that RL is known to have when the value
function is approximated, as these are particularly relevant – though mostly
ignored – when combining RL with LCS. Hence, after showing how to derive

9.1 Problem Definition 217

the use of Q-Learning with LCS from first principles in Sect. 9.3 and dis-
cussing the recent confusion around XCS(F), Sect. 9.4 shows how to analyse
the stability of RL when used with LCS. Learning of long action sequences is
another issue that XCS is known to struggle with [12], and a previously pro-
posed solution [13] only applies to certain problem types. If the introduced
optimality criterion provides a potential solution is still an open question,
but the outlook is good, as will be discussed before providing an LCS-related
overview of the exploration/exploitation dilemma. But firstly, let us define
sequential decision tasks more formally in Sect. 9.1, and introduce DP and
RL methods that provide solutions to such tasks in Sect. 9.2.

9.1 Problem Definition

The sequential decision tasks that will be considered are the ones describable
by a Markov Decision Process (MDP) (see Sect. 2.1). To stay close to the
notation that is common in the literature [18, 216], some of the previously used
symbols will be assigned a new meaning. The definitions given in this section
are similar to the ones used by Bertsekas and Tsitsiklis [18] and Drugowitsch
and Barry [80].

9.1.1 Markov Decision Processes

xt xt+1

at rt

Fig. 9.1. The variables of an MDP involved in a single transition from state xt to
state xt+1 after the agent performed action at and received reward rt

Let X be the set of states x ∈ X of the problem domain, that is assumed to
be of finite size1 N , and hence is mapped into the natural numbers N. X was
previously defined to be the input space, but as the states are identified by
the input that is determined by the environmental state, state and input are
used interchangeably. In every state xi ∈ X , an action a out of a finite set A
1 Assuming a finite state space simplifies the presentation. Extending it to a con-

tinuous state space requires considerably more technical work. For examples of
an analysis of reinforcement learning in continuous state spaces see Konda and
Tsitsiklis [132] and Ormoneit and Sen [181].

218 9 Towards Reinforcement Learning with LCS

is performed and causes a state transition to xj . The probability of getting to
state xj after performing action a in state xi is given by the transition function
p(xj |xi,a), which is a probability distribution over X , conditional on X ×A.
Each such transition is meditated by a scalar reward rxixj

(a), defined by the
reward function r : X ×X ×A → R. The positive discount factor γ ∈ R with
0 < γ ≤ 1 determines the preference of immediate reward over future reward.
Therefore, the MDP that describes the problem is defined by the quintuple
{X ,A, p, r, γ}2. The involved variables are illustrated in Fig. 2.1(b), which is
reproduced in Fig. 9.1 for convenience. Previously, γ denoted the step size for
gradient-based incremental methods in Chap. 5. In this chapter, the step size
will be denoted by α to conform to the RL literature [216].

The aim is for every state to choose the action that maximises the reward in
the long run, where future rewards are possibly valued less that immediate re-
wards. A possible solution is represented by a policy µ : X → A, which returns
the chosen action a = µ(x) for any state x ∈ X . With a fixed policy µ, the
MDP is reduced to a Markov chain with transition probabilities pµ(xj |xi) =
p(xj |xi, a = µ(xi)), and rewards rµ

xixj
= rxixj

(µ(xi)). In such cases it is
common to operate with the expected reward rµ

xi
=

∑

j pµ(xj |xi)r
µ
xi,xj

. This
reward is the one expected to be received in state xi when actions are chosen
according to policy µ.

9.1.2 The Value Function, the Action-Value Function and
Bellman’s Equation

The approach taken by dynamic programming (DP) and reinforcement learn-
ing (RL) is to define a value function V : X → R that expresses for each
state how much reward we can expect to receive in the long run. While V was
previously used to denote the mixing weight vectors, those will not be referred
to in this chapter, and hence any ambiguity is avoided. Let µ = {µ0, µ1, . . . }
be a sequence of policies where we use policy µt at time t, starting at time
t = 0. Then, the reward that is accumulated after n steps when starting at
state x, called the n-step return V µ

n for state x, is given by

V µ
n (x) = E

(

γnR(xn) +

n−1
∑

t=0

γtrµt
xtxt+1

|x0 = x

)

, (9.1)

where {x0,x1, . . . } is the sequence of states, and R(xn) denotes the expected
return that will be received when starting from state xn. The return differs
from the reward in that it implicitly considers future reward.

2 The problem definition and with it the solution to the problem changes when the
discount rate γ is changed. Thus, it is important to consider the discount rate γ as
part of the problem rather than a tunable parameter. This fact is ignored in some
LCS research, where the discount rate is modified to make the task seemingly
easier to learn, when, in fact, the task itself is changed.

9.1 Problem Definition 219

In finite horizon cases, where n < ∞, the optimal policy µ is the one that
maximises the expected return for each state x ∈ X , giving the optimal n-step
return V ∗

n (x) = maxµ V µ
n (x). Finite horizon cases can be seen as a special case

of infinite horizon cases with zero-reward absorbing states [18]. For infinite
horizon cases, the expected return when starting at state x is analogously to
(9.1) given by

V µ(x) = lim
n→∞

E

(

n−1
∑

t=0

γtrµt
xixi+1

|x0 = x

)

. (9.2)

The optimal policy is the one that maximises this expected return for each
state x ∈ X , and results in the optimal value function V ∗(x) = maxµ V µ(x).
Therefore, knowing V ∗, we can infer the optimal policy by

µ∗(x) = argmax
a∈A

E (rxx′(a) + γV ∗(x′)|x, a) . (9.3)

Thus, the optimal policy is given by choosing the action that maximises the ex-
pected sum of immediate reward and the discounted expected optimal return
of the next state. This reduces the goal of finding the policy that maximises
the reward in the long run to learning the optimal value function, which is
the approach taken by DP and RL. In fact, Sutton conjectures that

“All efficient methods for solving sequential decision problems deter-
mine (learn or compute) value functions as an intermediate step.”

which he calls the “Value-Function Hypothesis” [213].
In some cases, such as one does not have a model of the transition function,

the expectation in (9.3) cannot be evaluated. Then, it is easier to work with
the action-value function Q : X ×A → R that estimates the expected return
Q(x, a) when taking action a in state x, and is for some policy µ defined by

Qµ(x, a) = lim
n→∞

E

(

rx0x1
(a) + γ

n−1
∑

t=1

γtrµ
xtxt+1

|x0 = x, a

)

= E(rxx′(a) + γV µ(x′)|x, a). (9.4)

V µ is recovered from Qµ by V µ(x) = Qµ(x, µ(x)). Given that the optimal
action-value function Q∗ is known, getting the optimal policy µ∗ is simplified
from (9.3) to

µ∗(x) = argmax
a∈A

Q∗(x, a), (9.5)

that is, by choosing the action a in state x that maximises the expected return
given by Q∗(x, a).

Note that V ∗ and Q∗ are related by V ∗(x) = Q∗(x, µ∗(x)) = maxa∈A Q∗(x, a).
Combining this relation with (9.4) gives us Bellman’s Equation

V ∗(x) = max
a∈A

E(rxx′(a) + γV ∗(x′)|x, a), (9.6)

220 9 Towards Reinforcement Learning with LCS

which relates the optimal values of different states to each other, and to which
finding the solution forms the core of DP. Similarly, Bellman’s equation for a
fixed policy µ is given by

V µ(x) = E(rµ
xx′ + γV µ(x′)|x). (9.7)

An example for a problem that can be described by an MDP, together
with its optimal value function and one of its optimal policies is shown in
Fig. 2.2.

9.1.3 Problem Types

The three basic classes of infinite horizon problems are stochastic shortest path
problems, discounted problems, and average reward per step problems, all of
which are well described by Bertsekas and Tsitsiklis [18]. Here, only discounted
problems and stochastic shortest path problems are considered, where for the
latter only proper policies that are guaranteed to reach the desired terminal
state are assumed. As the analysis of stochastic shortest path problems is
very similar to discounted problems, only discounted problems are considered
explicitly. These are characterised by γ < 1 and a bounded reward function
to make the values V µ(x) well defined.

9.1.4 Matrix Notation

Rather than representing the value function for each state explicitly, it is
convenient to exploit the finiteness of X and collect the values for each state
into a vector, which also simplifies the notation. Let V = (V (x1), . . . , V (xN))T

be the vector of size N that contains the values of the value function V for each
state xn. Let V∗ and Vµ denote the vectors that contain the optimal value
function V ∗ and the value function V µ for policy µ, respectively. Similarly,
let Pµ = (p(xj |xi)) denote the transition matrix of the Markov chain for a
fixed policy µ, and let rµ = (rµ

x1
, . . . , rµ

xN
)T be the vector consisting of the

expected rewards when following this policy. With these definitions, we can
rewrite Bellman’s Equation for a fixed policy (9.7) by

Vµ = rµ + γPµVµ. (9.8)

This notation is used extensively in further developments.

9.2 Dynamic Programming and Reinforcement Learning

Recall that in order to find the optimal policy µ∗, we aim at learning the
optimal value function V ∗ by (9.6), or the optimal action-value function Q∗

for cases where the expectation in (9.6) and (9.3) is hard or impossible to
evaluate.

9.2 Dynamic Programming and Reinforcement Learning 221

In this section, some common RL methods are introduced, that learn these
functions while traversing the state space without building a model of the
transition and reward function. These methods are simulation-based approx-
imations to DP methods, and their stability is determined by the stability
of the corresponding DP method. These DP methods are introduced firstly,
after which RL methods are derived from them.

9.2.1 Dynamic Programming Operators

Bellman’s Equation (9.6) is a set of equations that cannot be solved analyti-
cally. Fortunately, several methods have been developed that make finding its
solution easier, all of which are based on the DP operators T and Tµ.

The operator T is given a value vector V and returns a new value vector
that is based on Bellman’s Equation (9.6). The ith element (TV)i of the
resulting vector TV is given by

(TV)i = max
a∈A

∑

xj∈X

p(xj |xi, a)
(

rxixj
(a) + γVj

)

. (9.9)

Similarly, for a fixed policy µ the operator Tµ is based on (9.7), and is given
by

(TµV)i =
∑

xj∈X

pµ(xj |xi)
(

rµ
xixj

+ γVj

)

, (9.10)

which, in matrix notation, is TµV = rµ + γPµV.
The probably most important property of both T and Tµ is that they

form a contraction mapping to the maximum norm [18]; that is, given two
arbitrary vectors V,V′, we have

‖TV − TV′‖∞ ≤ γ‖V − V′‖∞, and (9.11)

‖TµV − TµV
′‖∞ ≤ γ‖V − V′‖∞, (9.12)

where ‖V‖∞ = maxi |Vi| is the maximum norm of V. Thus, every update
with T or Tµ reduces the maximum distance between V and V′ by at least
the factor γ. Applying them repeatedly will therefore lead us to some fixed
point TV = V or TµV = V, that is, according to the Banach Fixed Point
Theorem [237], unique.

Further properties of the DP operators are that the optimal value vector
V∗ and the value vector Vµ for policy µ are the unique vectors that satisfy
TV∗ = V∗ and TµV

µ = Vµ, respectively, which follows from Bellman’s
Equations (9.6) and (9.7). As these vectors are the fixed points of T and Tµ,
applying the operators repeatedly causes convergence to these vectors, that
is, V∗ = limn→∞ TnV, and Vµ = limn→∞ Tn

µV for an arbitrary V, where Tn

and Tn
µ denote n applications of T and Tµ, respectively. A policy µ is optimal

if and only if TµV
∗ = TV∗. Note that, even though V∗ is unique, there can

be several optimal policies [18].

222 9 Towards Reinforcement Learning with LCS

9.2.2 Value Iteration and Policy Iteration

The method of value iteration is a straightforward application of the con-
traction property of T and is based on applying T repeatedly to an initially
arbitrary value vector V until it converges to the optimal value vector V∗.
Convergence can only be guaranteed after an infinite number of steps, but the
value vector V is usually already close to V∗ after few iterations.

As an alternative to value iteration, policy iteration will converge after a
finite number of policy evaluation and policy improvement steps. Given a fixed
policy µt, policy evaluation finds the value vector for this policy by solving
Tµt

Vµt = Vµt . The policy improvement steps generates a new policy µt+1

based on the current Vµt , such that Tµt+1
Vµt = TVµt . Starting with an

initially random policy µ0, the sequence of policies {µ0, µ1, . . . } generated by
iterating policy evaluation and policy improvement is guaranteed to converge
to the optimal policy within a finite number of iterations [18].

Various variants to these methods exist, such as asynchronous value itera-
tion, that at each application of T only updates a single state of V. Modified
policy iteration performs the policy evaluation step by approximating Vµ by
Tn

µV for some small n. Asynchronous policy iteration mixes asynchronous
value iteration with policy iteration by at each step either i) updating some
states of V by asynchronous value iteration, or ii) improving the policy of some
set of states by policy improvement. Convergence criteria for these variants
are given by Bertsekas and Tsitsiklis [18].

9.2.3 Approximate Dynamic Programming

If N is large, we prefer to approximate the value function rather than repre-
senting the value for each state explicitly. Let Ṽ denote the vector that holds
the value function approximations for each state, as generated by a function
approximation technique as an approximation to V. Approximate value iter-
ation is performed by approximating the value iteration update Vt+1 = TVt

by
Ṽt+1 = ΠTṼt, (9.13)

where Π is the approximation operator that, for the used function approx-
imation technique, returns the value function estimate approximation Ṽt+1

that is closest to Vt+1 = TṼt by Ṽt+1 = argminṼ ‖Ṽ−Vt+1‖. Even though
conceptually simple, approximate value iteration was shown to diverge even
when used in combination with the simplest function approximation tech-
niques [26]. Thus, special care needs to be take when applying this method,
as will be discussed in more detail in Sect. 9.4.

Approximate policy iteration, on the other hand, has less stability prob-
lems, as the operator Tµ used for the policy evaluation step is linear. While
the policy improvement step is performed as for standard policy iteration,
the policy evaluation step is based on an approximation of Vµ. As Tµ is

9.2 Dynamic Programming and Reinforcement Learning 223

linear, there are several possibilities of how to perform the approximation,
which are outlined by Schoknecht [198]. Here, the only approximation that
will be considered is the one most similar to approximation value iteration
and is the temporal-difference solution which aims at finding the fixed point
Ṽ

µ
= ΠTµṼ

µ
by the update Ṽ

µ

t+1 = ΠTµṼ
µ

t [199, 200].

9.2.4 Temporal-Difference Learning

Even thought temporal-difference (TD) learning is an incremental method
for policy evaluation that was initially developed by Sutton [214] as a mod-
ification of the Widrow-Hoff rule [241], we here only concentrate the TD(λ)

operator T(λ)
µ as it forms the basis of SARSA(λ), and gives us some necessary

information about Tµ. For more information on temporal-difference learning,
the interested reader is referred to the work of Bertsekas and Tsitsiklis [18]
and Drugowitsch and Barry [80].

The temporal-difference learning operator T(λ)
µ is parametrised by 0 ≤ λ ≤

1, and, when applied to V results in [222]

(T(λ)
µ V)i = (1 − λ)

∞
∑

m=0

λm
E

(

m
∑

t=0

γtrµ
xtxt+1

+ γm+1Vm+1|x0 = xi

)

, (9.14)

for λ < 1. The definition for λ = 1 is given in [80]. The expectation in the
above expression is equivalent to the n-step return V µ

n (9.1), which shows that
the temporal-difference update is based on mixing returns of various lengths,
where the mixing coefficients are controlled by λ. To implement the above
update incrementally, Sutton uses eligibility traces that propagate current
temporal differences to previously visited states [214].

Its most interesting property for our purpose is that T(λ)
µ forms a contrac-

tion mapping with respect to the weighted norm ‖·‖D, which is defined as given
in Sect. 5.2, and the diagonal weight matrix D is given by the steady-state
distribution of the Markov chain Pµ that corresponds to policy µ [222, 18].
More formally, we have for any V,V′,

‖T(λ)
µ V − T(λ)

µ V′‖D ≤ γ(1 − λ)

1 − γλ
‖V − V′‖D ≤ γ‖V − V′‖D. (9.15)

Note that Tµ ≡ T(0)
µ , and therefore Tµ also forms a contraction mapping with

respect to ‖ · ‖D. This property can be used to analyse both convergence and
stability of the method, as shown in Sect. 9.4.

9.2.5 SARSA(λ)

Coming to the first reinforcement learning algorithm, SARSA stands for State-
Action-Reward-State-Action, as SARSA(0) requires only information on the
current and next state/action pair and the reward that was received for the

224 9 Towards Reinforcement Learning with LCS

transition. Its name was coined by Sutton [215] for an algorithm that was
developed by Rummery and Nirahnja [197] in its approximate form, which is
very similar to Wilson’s ZCS [243], as discussed by Sutton and Barto [216,
Chap. 6.10].

It conceptually performs policy iteration and uses TD(λ) to update its
action-value function Q. More specifically it performs optimistic policy iter-
ation, where in contrast to standard policy iteration the policy improvement
step is based on an incompletely evaluated policy.

Consider being in state xt at time t and performing action at, leading
to the next state xt+1 and reward rt. The current action-value function es-
timates are given by Q̂t. These estimates are to be updated for (xt, at) to
reflect the newly observed reward. The basis of policy iteration, as described
by Tµ (9.10), is to update the estimate of the value function of one particu-
lar state by relating it to all potential next states and the expected reward
for these transitions. In SARSA(0), the actually observed transition replaces
the potential transitions, such that the target value of the estimate Q̂(xt, at)
becomes Q(xt, at) = rxtxt+1

(at) + γQ̂t(xt+1, at+1). Note that the value of the

next state is approximated by the current action-value function estimate Q̂t

and the assumption that current policy is chosen when choosing the action in
the next state, such that V̂ (xt+1) ≈ Q̂t(xt+1, at+1).

Using Q̂t+1(xt, at) = Q(xt, at) would not lead to good results as it makes
the update highly dependent on the quality of the policy that is used to
select at. Instead, the LMS algorithm (see Sect. 5.3.3) is used to minimise the
squared difference between the estimate Q̂t+1 and its target Q, such that the
action-value function estimate is updated by

Q̂t+1(xt, at) = Q̂t(xt, at) + αt

(

rxtxt+1
(at) + γQ̂t(xt+1, at+1) − Q̂t(xt, at)

)

,

(9.16)
where αt denotes the step-size of the LMS algorithm at time t. For all
state/action pairs x 6= xt, a 6= at, the action-value function estimates remain
unchanged, that is Q̂t+1(x, a) = Q̂t(x, a).

The actions can be chosen according to the current action-value function
estimate, such that at = argmaxa Q̂t(xt, at). This causes SARSA(0) to always
perform the action that is assumed to be the reward-maximising one according
to the current estimate. Always following such a policy is not advisable, as it
could cause the method to get stuck in a local optimum by not sufficiently
exploring the whole state space. Thus, a good balance between exploiting
the current knowledge and exploring the state space by performing seemingly
sub-optimal actions is required. This explore/exploit dilemma is fundamental
to RL methods and will hence be discussed in more detail in a later section.
For now let us just note that the update of Q̂ is based on the state trajectory
of the current policy, even when sub-optimal actions are chosen, such that
SARSA is called an on-policy method.

9.2 Dynamic Programming and Reinforcement Learning 225

SARSA(λ) for λ > 0 relies on the operator T(λ)
µ rather than Tµ. A detailed

discussion of the consequences of this change is beyond the scope of this book,
but more details are given by Sutton [214] and Sutton and Barto [216].

9.2.6 Q-Learning

The much-celebrated Q-Learning was developed by Watkins [235] as a re-
sult of combining TD-learning and DP methods. It is similar to SARSA(0),
but rather than using Q(xt, at) = rxtxt+1

(at) + γQ̂t(xt+1, at) as the target

value for Q̂(xt, at), it uses Q(xt, at) = rxtxt+1
(at) + γ maxa Q̂t(xt+1, a), and

thus approximates value iteration rather than policy iteration. SARSA(0)
and Q-Learning are equivalent if both always follow the greedy action at =
argmaxa Q̂t(xt, a), but this would ignore the explore/exploit dilemma. Q-
Learning is called an off-policy method as the value function estimates
V̂ (xt+1) ≈ maxa Q̂t(xt+1, a) are independent of the actions that are actu-
ally performed.

For a sequence of states {x1,x2, . . . } and actions {a1, a2, . . . }, the Q-values
are updated by

Qt+1(xt, at) = Qt(xt, at)+αt

(

rxtxt+1
(at) + γ max

a∈A
Qt(xt+1, a) − Qt(xt, at)

)

,

(9.17)
where αt denotes the step size at time t. As before, the explore/exploit
dilemma applies when selecting actions based on the current Q̂.

A variant of Q-Learning, called Q(λ), is an extension that uses eligibility
traces like TD(λ) as long as it performs on-policy actions [236]. As soon as an
off-policy action is chosen, all traces are reset to zero, as the off-policy action
breaks the temporal sequence of predictions. Hence, the performance increase
due to traces depends significantly on the policy that is used, but is usually
marginal. In a study by Drugowitsch and Barry [78] it was shown that, when
used in XCS, it performs even worse than standard Q-Learning.

9.2.7 Approximate Reinforcement Learning

Analogous to approximate DP, RL can handle large state spaces by approxi-
mating the action-value function. Given some estimator Q̂ that approximates
the action-value function, this estimator is, as before, to be updated after
receiving reward rt for a transition from xt to xt+1 when performing action
at. The estimator’s target value is Q(xt, at) = rxtxt+1

(at) + γV̂ (xt+1), where

V̂ (xt+1) is the currently best estimate of the value of state xt+1. Thus, at
time t, the aim is to find the estimator Q̂ that minimises some distance be-
tween itself and all previous target values, which, when assuming the squared
distance, results in minimising

t
∑

m=1

(

Q̂(xm, an) −
(

rxmxm+1
(am) + γV̂t(xm+1)

))2

. (9.18)

226 9 Towards Reinforcement Learning with LCS

As previously shown, Q-Learning uses V̂t(x) = maxa Q̂t(x, a), and SARSA(0)
relies on V̂t(x) = Q̂t(x, a), where in case of the latter, a is the action performed
in state x.

Tabular Q-Learning and SARSA(0) are easily extracted from the above
problem formulation by assuming that each state/action pair is estimated
separately by Q̂(x, a) = θx,a. Under this assumption, applying the LMS algo-
rithm to minimising (9.18) directly results in (9.16) or (9.17), depending on
how V̂t is estimated.

The next section shows from first principles how the same approach can
be applied to performing RL with LCS, that is, when Q̂ is an estimator that
is given by an LCS.

9.3 Reinforcement Learning with LCS

Performing RL with LCS means to use LCS to approximate the action-value
function estimate. RL methods upgrade this estimate incrementally, and we
can only use LCS with RL if the LCS implementation can handle incremental
model parameter updates. Additionally, while approximating the action-value
function is a simple univariate regression task, the function estimate to ap-
proximate is non-stationary due to its sequential update. Thus, in addition
to incremental learning, the LCS implementation needs to be able to handle
non-stationary target functions.

This section demonstrates how to derive Q-Learning with the LCS model
as introduced in Chap. 4, to act as a template for how any LCS model type can
be used for RL. Some of the introduced principles and derivations are specific
to the LCS model with independently trained classifiers, but the underlying
ideas also transfer to other LCS model types. The derivations themselves are
performed from first principles to make explicit the usually implicit design
decisions. Concentrating purely on incremental model parameter learning, the
model structure M is assumed to be constant. In particular, the derivation
focuses on the classifier parameter updates, as these are the most relevant
with respect to RL.

Even though the Bayesian update equations from Chap. 7 protect against
overfitting, this section falls back to maximum likelihood learning that was
the basis for the incremental methods described in Chaps. 5 and 6. The re-
sulting update equations conform exactly to XCS(F), which reveals its design
principles and should clarify some of the recent confusion about how to im-
plement gradient descent in XCS(F). An additional bonus is a more accurate
noise precision update method for XCS(F) based on the methods developed
in Chap. 5.

Firstly, the LCS approximation operator is introduced, that conforms to
the LCS model type of this work. This is followed by discussing how the
principle of independent classifier training relates to how DP and RL update
the value and action-value function estimates, which is essential for the use of

9.3 Reinforcement Learning with LCS 227

this LCS model type to perform RL. As Q-Learning is based on asynchronous
value iteration, it will be firstly shown how LCS can perform asynchronous
value iteration, followed by the derivation of two Q-Learning variants – one
based on LMS, and the other on RLS. Finally, these derivations are related
to the recent controversy about how XCS(F) correctly performs Q-Learning
with gradient descent.

9.3.1 Approximating the Value Function

Given a value vector V, LCS approximates it by a set of K localised models
{V̂k} that are combined to form a global model V̂. The localised models are
provided by the classifiers, and the mixing model is used to combine these to
the global model.

Each classifier k matches a subset of the state space that is determined
by its matching function mk which returns for each state x the probability
mk(x) of matching it. Let us for now assume that we approximate the value
function V rather than the action-value function Q. Then, classifier k provides
the probabilistic model p(V |x,θk) that gives the probability of the expected
return of state x having the value V . Assuming linear classifiers (5.3), this
model is given by

p(V |x,θk) = N (V |wT
k x, τ−1

k), (9.19)

where we assume x to be the vector of size DX that represents the features
of the corresponding input, wk denotes the weight vector of size DX , and
τk is the scalar non-negative noise precision. As shown in (5.10), following
the principle of maximum likelihood results in the estimator of the mean of
p(V |x,θk),

Ṽk = ΠkV, (9.20)

where Πk = X(XT MkX)−1XT Mk is the projection matrix that provides the
matching-weighted maximum likelihood estimate approximation to V, and X
and Mk denote the state matrix by (3.4) and the diagonal matching matrix
Mk = diag(mk(x1), . . . ,mk(x2)), respectively. Thus, Πk can be interpreted
as the approximation operator for classifier k that maps the value function
vector V to its approximation V̂k.

Given the classifier approximations {V̂1, . . . , V̂K}, the mixing model com-
bines them to a global approximation. For a particular state x, the global ap-
proximation is given by Ṽ (x) =

∑

k gk(x)V̂k(x), where the functions {gk} are
determined by the chosen mixing model. Possible mixing models and their
training are discussed in Chap. 6, and we will only assume that the used
mixing model honours matching by gk(x) = 0 if mk(x) = 0, and creates a
weighted average of the local approximations by gk(x) ≥ 0 for all x, k, and
∑

k gk(x) = 1 for all x. Thus, the global approximation V̂ of V is given by

V̂ = ΠV, with ΠV =
∑

k

GkΠkV, (9.21)

228 9 Towards Reinforcement Learning with LCS

where the Gk’s are diagonal N×N matrices that specify the mixing model and
are given by by Gk = diag(gk(x1), . . . , gk(xN)). The approximation operator
Π in (9.21) defines how LCS approximate the value function, given a fixed
model structure.

9.3.2 Bellman’s Equation in the LCS Context

Any DP or RL method is based on relating the expected return estimate for
the current state to the expected return estimate of any potential next state.
This can be seen when inspecting Bellman’s Equation (9.6), where the value
of V∗(x) is related to the values V∗(x′) for all x′ that are reachable from
x. Similarly, Q-Learning (9.17) updates the action-value Q(xt, at) by relating
it to the action-value maxa∈A Q(xt+1, a) of the next state that predicts the
highest expected return.

According to the LCS model as given in Chap. 4, each classifier models
the value function over its matched area in the state space independently of
the other classifiers. Let us consider a single transition from state x to state x′

by performing action a. Given that classifier k matches both states, it could
update its local model of the value function V̂k(x) for x by relating it to its
own local model of the value function V̂k(x′) for x′. However, what happens
if x′ is not matched by classifier k? In such a case we cannot rely on its
approximation V̂k(x′) as the classifier does not aim at modelling the value for
this state. The most reliable model in such a case is in fact given by the global
model Ṽ (x′).

Generally, the global model will be used for all updates, regardless of
whether the classifier matches the next state or not. This is justified by the
observation that the global model is on average more accurate that the local
models, as was established in Chap. 6. Based on this principle, Bellman’s
Equation V∗ = TV∗ can be reformulated for LCS with independent classifiers
to

V̂
∗

k = ΠkTV̂
∗

= ΠkT
∑

k

GkV̂
∗

k, k = 1, . . . ,K, (9.22)

where Πk expresses the approximation operator for classifier k, that does
not necessarily need to describe a linear approximation. By adding

∑

k Gk to
both sides of the first equality of (9.22) and using (9.21), we get the alternative

expression V̂
∗

= ΠTV̂
∗
, which shows that (9.22) is in fact Bellman’s Equation

with LCS approximation. Nonetheless, the relation is preferably expressed by
(9.22), as it shows what the classifiers model rather than what the global
model models. For a fixed model structure M, any method that performs DP
or RL with the here described LCS model type should aim at finding the
solution to (9.22).

9.3 Reinforcement Learning with LCS 229

9.3.3 Asynchronous Value Iteration with LCS

Let us consider approximate value iteration before its asynchronous variant
is derived: as given in Sect. 9.2.3, approximate value iteration is performed
by the iteration Vt+1 = ΠTVt. Therefore, using (9.21), value iteration with
LCS is given by the iteration

Ṽk,t+1 = ΠkVt+1, with Vt+1 = T
∑

k

Gk,tṼk,t, (9.23)

which has to be performed by each classifier separately. The iteration was
split into two components to show that firstly one finds the updated value
vector Vt+1 by applying the T operator to the global model, which is then
approximated by each classifier separately. The subscript ·t is added to the
mixing model to express that it might depend on the current approximation
and might therefore change with each iteration. Note that the fixed point of
(9.23) is the desired Bellman Equation in the LCS context (9.22).

The elements of the updated value vector Vt+1 are based on (9.23) and
(9.9), which results in

Vt+1(xi) = max
a∈A

∑

xj∈X

p(xj |xi, a)

(

rxixj
(a) + γ

∑

k

gk,t(xj)V̂k,t(xj)

)

, (9.24)

where Vt+1(xi) denotes the ith element of Vt+1, and Ṽk,t(xj) denotes the

jth element of Ṽk,t. Subsequently, each classifier is trained by batch learning,
based on Vt+1 and its matching function, as described in Sect. 5.2. This
completes one iteration of LCS approximate value iteration.

The only modification introduced by the asynchronous variant is that
rather than updating the value function for all states at once, a single state is
picked per iteration, and the value function is updated for this state, as already
described in Sect. 9.2.2. Let {xi1 ,xi2 , . . . } be the sequence of states that de-
termine with state is updated at which iteration. Thus in the tth iteration we
compute Vt(xit

) by (9.24), which results in the sequence {V1(xi1), V2(xi2), . . . }
that can be used to incrementally train the classifiers by a method of choice
from Sect. 5.3. For the asynchronous variant we cannot use batch learning
anymore, as not all elements of Vt+1 are available at once.

9.3.4 Q-Learning by Least Mean Squares

So far it was assumed that the transition and reward function of the given
problem are known. To perform model-free RL, the LCS model needs to be
adjusted to handle action-value function estimates rather than value function
estimates by redefining the input state to be the space of all state/action
pairs. Thus, given state x and action a, the matching probability of classifier
k is given by mk(x, a), and the approximation of its action-value by Q̂k(x, a).

230 9 Towards Reinforcement Learning with LCS

Mixing is also based on state and action, where the mixing coefficient for
classifier k is given by gk(x, a). This results in the global approximation of
the action-value for state x and action a to be given by

Q̂(x, a) =
∑

k

gk(x, a)Q̂k(x, a). (9.25)

As describes in Sect. 9.2.7, approximate Q-Learning in based on minimis-
ing (9.18). For independently trained classifiers, each classifier minimises this
cost independently, but with the value function estimate V̂ of the next state
based on the global estimate. Thus the target for Q̂k for the transition from
xt to xt+1 under action at is

Qt+1(xt, at) = rxtxt+1
(at) + γ max

a∈A
Q̂t(xt+1, a), (9.26)

given that classifier k matches (xt, at). Using the linear classifier model
Q̂k(x, a) = wT

k x, each classifier k aims at finding wk that, by (9.18) after
t steps, minimises

T
∑

m=0

mk(xm, am)
(

wT
k x − Qm+1(xm, am)

)2
, (9.27)

where mk(xm, am) was introduced to only consider matched state/action
pairs. This standard linear least squares problem can be handled incremen-
tally with any of the methods discussed in Chap. 5. It cannot be trained by
batch learning as the target function relies on previous updates and is thus
non-stationary.

Using the normalised least mean squared (NLMS) algorithm as described
in Sect. 5.3.4, the weight vector estimate update for classifier k is given by

ŵk,t+1 = ŵk,t + αmk(xt, at)
xt

‖xt‖2

(

Qt+1(xt, at) − ŵT
k xt

)

, (9.28)

where α denotes the step size, and Qt+1(xt, at) is given by (9.26). As discussed
in more detail in Sect. 9.3.6, this is the weight vector update of XCSF.

The noise variance of the model can be estimate by the LMS algorithm,
as described in Sect. 5.3.7. This results in the update equation

τ̂−1
k,t+1 = τ̂−1

k,t + αmk(xt, at)

(

(

ŵT
k,t+1xt − Qt+1(xt, at)

)2

− τ̂−1
k,t

)

, (9.29)

where α is again the scalar step size, and Qt+1(xt, at) is given by (9.26).

9.3.5 Q-Learning by Recursive Least Squares

As shown in Chap. 5, incremental methods based on gradient descent might
suffer from slow convergence rates. Thus, despite their higher computational

9.3 Reinforcement Learning with LCS 231

and space complexity, methods based on directly tracking the least squares
solution are to be preferred. Consequently, rather than using NLSM, this
section shown how to apply recursive least squares (RLS) and direct noise
precision tracking to Q-Learning with LCS.

The non-stationarity of the action-value function estimate needs to be take
into account by using a recency-weighed RLS variant that puts more weight
on recent observation. This was not an issue for the NLMS algorithm, as it
performs recency-weighting implicitly.

Minimising the recency-weighted variant of the sum of squared errors
(9.27), the update equations are according to Sect. 5.3.5 given by

ŵk,t+1 = λmk(xt,at)ŵk,t + mk(xt, at)Λ
−1
k,t+1xt

(

Qt+1(xt, at) − ŵT
k,txt

)

(9.30)

Λ−1
k,t+1 = λ−mk(xt,at)Λ−1

k,t , (9.31)

−mk(xt, at)λ
−mk(xt,at)

Λ−1
k,txtx

T
t Λ−1

k,t

λmk(xt,at) + mk(xt, at)xT
t Λ−1

k,txt

,

where Qt+1(xt, at) is given by (9.26), and ŵk,0 and Λ−1
k,0 are initialised by

ŵk,0 = 0 and Λk,0 = δI, where δ is a large scalar. λ determines the recency
weighting, which is strongest for λ = 0, where only the last observation is
considered, and deactivated when λ = 1.

Using the RLS algorithm to track the least squares approximation of the
action-values for each classifier allows us to directly track the classifier’s model
noise variance, as described in Sect. 5.3.7. More precisely, we track the sum of
squared errors, denoted by sk,t for classifier k at time t, and can the compute
the noise precision by (5.63). By (5.69), the sum of squared errors is updated
by

sk,t+1 = λm(xt,at)sk,t (9.32)

+mk(xt, at)(ŵ
T
k,txt − Qt+1(xt, at))(ŵ

T
k,t+1xt − Qt+1(xt, at)),

starting with sk,0 = 0.
Even though XCS has already been used with RLS by Lanzi et al. [145,

146], they have never applied it to sequential decision tasks. We have already
investigated the incremental noise precision update as given in this chapter
for simple regression tasks [158], but its empirical evaluation when applied to
sequential decision tasks is still pending.

9.3.6 XCS with Gradient Descent

Some recent work by Butz et al. [48, 46] has caused some confusion over
how XCS performs Q-Learning, and how this can be enhanced by the use of
gradient descent [230, 231, 145, 143, 142]. This section clarifies that XCS(F)
in its current form already performs gradient descent and does not need to

232 9 Towards Reinforcement Learning with LCS

be modified, as it updates the classifiers’ weight vectors by (9.28), which is
a gradient-based update algorithm. As XCSF is (besides the MAM update)
equivalent to XCS if DX = 1, the following discussion only considers XCSF.

To show the equivalence between XCSF and (9.28), let us have a closer look
at the weight vector update of XCSF: upon arriving at state xt, XCSF forms
a match set that contains all classifiers for that mk(xt, a) > 0, independent of
the action a. The match set is then partitioned into one subset per possible
action, resulting in |A| subsets. The subset associated with action a contains
all classifiers for that mk(x, a) > 0, and for each of these subsets the action-
value estimate Q̂t(xt, a) =

∑

k gk(xt, a)Q̂k,t(xt, a) is calculated, resulting in

the prediction vector (Q̂t(xt, a1), . . . , Q̂t(xt, a|A|)) that predicts the expected
return for the current state xt and each possible action that can be performed.
Based on this prediction vector, an action at is chosen and performed, lead-
ing to the next state xt+1 and reward rxtxt+1

(at). The subset of the match
set that promoted the chosen action becomes the action set that contains all
classifiers such that mk(xt, at) > 0. At the same time, a new prediction vector
(Q̂t(xt+1, a1), . . . , Q̂t(xt+1, a|A|)) for state xt+1 is formed, and its largest ele-

ment is chosen, giving maxa∈A Q̃t(xt+1, a). Then, all classifiers in the action
set are updated by the modified delta rule (which is equivalent to the NLMS
algorithm) with the target value rxtxt+1

(at) + γ maxa∈A Q̂t(xt+1, a). The up-
date in (9.28) uses exactly this target value, as given by (9.26), and updates
the weight vector of each classifier for which mk(xt, at) > 0, which are the
classifiers in the action set. This shows that (9.28) describes the weight vector
update as it is performed in XCSF, and therefore XCS(F) performs gradient
descent without any additional modification.

9.4 Stability of RL with LCS

An additional challenge when using LCS for sequential decision tasks is that
some combinations of DP and function approximation can lead to instabilities
and divergence, and the same applies to RL. In fact, as RL is based on DP,
convergence of RL with value function approximation is commonly analysed
by showing that the underlying DP method is stable when used with this
function approximation methods, and that the difference between the RL and
the DP methods asymptotically converges to zero (for example, [222, 18, 17,
132]).

In this section we investigate whether the LCS approximation architecture
of our LCS model type is stable when used with DP. While value iteration
is certainly the most critical method, as Q-Learning is based on it, the use
of LCS with policy iteration is also discussed. No conclusive answers are
provided, but initial results are presented that can lead to such answers.

Firstly, let us have a closer look at the compatibility of various function
approximation architecture with value iteration and policy iteration, followed
by a short discussion on the issue of stability on learning model parameters

9.4 Stability of RL with LCS 233

and model structure of the LCS model. This is followed by a more detailed
analysis of the compatibility of the LCS model structure with value and policy
iteration, to act as the basis of further investigations of RL with LCS. Note
that in the following, a method that is known not to diverge is automatically
guaranteed to converge. Thus, showing stability of RL with LCS implies that
this combination converges.

9.4.1 Stability of Approximate Dynamic Programming

Approximate value iteration (9.13) is based on the operator conjunction ΠT,
where T is a nonlinear operator. As shown by Boyan and Moore [26], this pro-
cedure might diverge when used with even the most common approximation
architectures, such as linear or quadratic regression, local weighted regression,
or neural networks. Gordon [97] has shown that stability is guaranteed if the
approximation Π is – just like T – a non-expansion to the maximum norm,
that is, if for any two V,V′ we can guarantee ‖ΠV −ΠV′‖∞ ≤ ‖V −V′‖∞.
This is due to the fact that combining a contraction and a non-expansion to
the same norm results in a contraction. The class of averagers satisfy this
requirement, and contain “[. . .] local weighted averaging, k-nearest neigh-
bour, Bézier patches, linear interpolation, bilinear interpolation on a square
(or cubical, etc.) mesh, as well as simpler methods like grids and other state
aggregations.” [97].

Due to the linearity of Tµ, approximate policy iteration has less stability
problems that approximate value iteration. Just as T, Tµ is a contraction with
respect to the maximum norm, and is thus guaranteed to be stable if used in
combination with an approximation Π that is a non-expansion to the same
norm. Also, note that T(λ)

µ forms a contraction mapping with respect to ‖·‖D,

and Tµ ≡ T(0)
µ . Thus, another stable option is for Π to be a non-expansion

with respect to ‖ · ‖D rather than ‖ · ‖∞. This property was used to show that
approximate policy iteration is guaranteed to converge, as long as the states
are sampled according to the steady-state distribution of the Markov chain
Pµ [222]. As long as the states are visited by performing actions according to
µ, such a sampling regime is guaranteed. On the other hand, counterexamples
where sampling of the states does not follow this distribution were shown to
potentially lead to divergence [9, 26, 97, 221].

The same stability issues also apply to the related RL methods: Q-Learning
was shown to diverge in some cases when used with linear approximation
architectures [28], analogous to approximate value iteration. Thus, special
care needs to be taken when Q-Learning is used in LCS.

To summarise, if Π is a non-expansion with respect to ‖ · ‖∞, its use for
approximate value iteration and policy iteration is guaranteed to be stable.
If it is a non-expansion with respect to ‖ · ‖D, then its is stable when used
for approximate policy iteration, but its stability with approximate value it-
eration is not guaranteed. Even if the function approximation method is a
non-expansion to neither of these norms, this does not necessarily mean that

234 9 Towards Reinforcement Learning with LCS

it will diverge when used with approximate DP. However, one needs to re-
sort to other approaches than contraction and non-expansion to analyse its
stability.

9.4.2 Stability on the Structure and the Parameter Learning Level

Approximating the action-value function with LCS requires on one hand to
find a good set of classifiers, and on the other hand to correctly learn the
parameters of that set of classifiers. In other words, we want to find a good
model structure M and the correct model parameter θ for that structure, as
discussed in Chap. 3.

Incremental learning can be performed on the structure level as well as
the parameter level (see Sect. 8.4.2). Similarly, stability of using LCS with
DP can be considered at both of these levels.

Stability on the Structure Learning Level

Divergence of DP with function approximation is expressed by the values
of the value function estimate rapidly growing out of bounds (for example,
[26]). Let us assume that for some fixed LCS model structure, the parameter
learning process diverges when used with DP, and that there exist model
structures for which this is not the case.

Divergence of the parameters usually happens locally, that is, not for all
classifiers at once. Therefore, it can be detected by monitoring the model error
of single classifiers, which, for linear classifier models as given in Chap. 5,
would be the model noise variance. Subsequently, divergent classifiers can be
detected and replaced until the model structure allows the parameter learning
to be compatible with the used DP method.

XCSF uses linear classifier models and Q-Learning, but such combinations
are known to be unstable [26]. However, XCSF has never been reported to
show divergent behaviour. Thus, it is conjectured that it provides stability
on the model structure level by replacing divergent classifiers with potentially
better ones.

Would the classifier set optimality criterion that was introduced in Chap. 7
also provide us with a safeguard against divergence at the model structure
level; that is, would divergent classifiers be detected? In contrast to XCS(F),
the criterion that was presented does not assume a classifier to be a bad local
model as soon as its model error is above a certain threshold. Rather, the
localisation of a classifier is inappropriate if its model is unable to capture the
apparent pattern that is hidden in the noisy data. Therefore, it is not imme-
diately clear if the criterion would detect the divergent model as a pattern
that the classifier cannot model, or if it would assume it to be noise.

In any case, providing stability on the model structure level is to repair
the problem of divergence after it occurred, and relies on the assumption
that changing the model structure does indeed provide us with the required

9.4 Stability of RL with LCS 235

stability. This is not a satisfactory solution, which is why the focus should
be on preventing the problem from occurring at all, as discussed in the next
section.

Stability on the Parameter Learning Level

Given a fixed model structure M, the aim is to provide parameter learning
that is guaranteed to converge when used with DP methods. Recall that both
value iteration and policy iteration are guaranteed to converge if the approx-
imation architecture is a non-expansion with respect to the maximum norm
‖ · ‖∞. It being a non-expansion with respect to the weighted norm ‖ · ‖D, on
the other hand, is sufficient for the convergence of the policy evaluation step
of policy iteration, but not value iteration. In order to guarantee stability of
either method when using LCS, the LCS approximation architecture needs
to provide such a non-expansion.

Observe that having a single classifier that matches all states is a valid
model structure. In order for this model structure to provide a non-expansion,
the classifier model itself must form a non-expansion. Therefore, to ensure that
the LCS model provides the non-expansion property for any model structure,
every classifier model needs to form a non-expansion, and any mixture of a
set of localised classifiers that forms the global LCS model needs to form a
non-expansion as well. Formally, if ‖ ·‖ denotes the norm in question, we need

‖ΠV − ΠV′‖ ≤ ‖V − V′‖ (9.33)

to hold for any two V,V′, where Π is the approximation operator of a given
LCS model structure. If the model structure is formed by a single classifier
that matches all states,

‖ΠkV − ΠkV
′‖ ≤ ‖V − V′‖ (9.34)

needs to hold for any two V,V′, where Πk is the approximation operator of a
single classifier. These requirements are independent of the LCS model type.

Returning to the LCS model structure with independently trained classi-
fiers, the next two sections concentrate on its non-expansion property, firstly
with respect to ‖ · ‖∞, and then with respect to ‖ · ‖D.

9.4.3 Non-expansion with respect to ‖ · ‖∞

In the following, π(x) denotes the sampling probability for state x according to
the steady state distribution of the Markov chain Pµ, and πk(x) = mk(x)π(x)
denotes this distribution augmented by the matching of classifier k. Also,
Mk = diag(mk(x1), . . . ,mk(xN)) is the matching matrix, as in Chap. 5, D =
diag(π(x1), . . . , π(xN)) is the sampling distribution matrix, and Dk = MkD
is the sampling distribution matrix with respect to classifier k. Each classifier

236 9 Towards Reinforcement Learning with LCS

k aims at finding the weight vector wk that minimises ‖Xwk −V‖Dk
, which

is given by ŵk = (XT DkX)−1XT DkV. Thus, a classifier’s approximation

operator is the projection matrix Πk = X(XT DkX)−1XT Dk. such that V̂ =
Xŵ = ΠkV.

It cannot be guaranteed that general linear models form a non-expansion
with respect to ‖ · ‖∞. Gordon, for example, has shown that this is not the
case for straight line models [97]. Averagers, on the other hand, are a form
of linear model, but provide a non-expansion with respect to ‖ · ‖∞ and thus
can be used for both value iteration and policy iteration.

With respect to LCS, each single classifier, as well as the whole set of
classifiers need to conform to the non-expansion property. This rules out the
general use of linear model classifiers. Instead, only averaging classifiers (see
Ex. 5.2) will be discussed, as their model provides a non-expansion with re-
spect to ‖ · ‖:

Lemma 9.1. The model of averaging classifiers forms a non-expansion with
respect to the maximum norm.

Proof. As for averaging classifiers X = (1, . . . , 1)T , their approximation oper-
ator is the same for all states and is given by

(ΠkV)j = Tr(Dk)−1
∑

x∈X

πk(x)V (x). (9.35)

Let V,V′ be two vectors such that V ≤ V′, which implies that the vector
a = V′ − V is non-negative in all its elements. Thus, we have for any i,

(ΠkV)i = Tr(Dk)−1
∑

x∈X

πk(x)V ′(x) − Tr(Dk)−1
∑

x∈X

πk(x)a ≤ (ΠkV)i,

(9.36)
due to the non-negativity of the elements of Dka. Also, for any scalar b and
vector e = (1, . . . , 1)T ,

(Πk(V + be))i = (ΠkV)i + b (9.37)

holds.
Let V,V′ now be two arbitrary vectors, not bound to V ≤ V′, and let

c = ‖V −V′‖∞ = maxi |Vi − V ′
i | be their maximum absolute distance. Thus,

for any i,
Vi − c ≤ V ′

i ≤ Vi + c (9.38)

holds. Applying Πk and using the above properties gives

(ΠkV)i − c ≤ (ΠkV
′)i ≤ (ΠkV)i + c, (9.39)

and thus
|(ΠkV)i − (ΠkV)i| ≤ c. (9.40)

9.4 Stability of RL with LCS 237

As this holds for any i, we have

‖ΠkV − ΠkV
′‖∞ ≤ ‖V − V′‖∞. (9.41)

which completes the proof.

Thus, averaging classifiers themselves are compatible with value iteration
and policy iteration. Does this, however, still hold for a set of classifiers that
provides its prediction by (9.21)? Let us first consider the special case when
the mixing functions are constant:

Lemma 9.2. Let the global model V̂ be given by V̂ =
∑

k GkΠkV, where
Πk is the approximation operator of averaging classifiers, and the Gk’s
are constant diagonal mixing matrices with non-negative elements such that
∑

k Gk = I holds. Then, this model forms a non-expansion with respect to the
maximum norm.

Proof. The method to proof the above statement is similar to the one used
to prove Lemma 9.1: firstly, we show that for any two vectors V,V′ such
that V ≤ V′, an arbitrary scalar b, and e = (1, . . . , 1)T we have ΠV ≤ ΠV′

and Π(V + be) = (ΠV) + be, where Π =
∑

k GkΠk. Then, non-expansion
is shown by applying these properties to the maximum absolute difference
between two arbitrary vectors.

ΠV ≤ ΠV′ follows from observing that for the vector a = V′ − V with
non-negative elements, all elements of

∑

k GkΠka are non-negative due to the
non-negativity of the elements of Gk, and Πka ≥ 0, and thus

ΠV =
∑

k

GkΠkV
′ −

∑

k

GkΠka ≤ ΠV′. (9.42)

Also, as Πk(V + be) = (ΠkV) + be and
∑

k Gk(Vk + be) = be +
∑

k GkVk

for any K vectors { Vk}, we have

Π(V + be) = ΠV + be. (9.43)

Let V,V′ now be to arbitrary vectors, not bound to V ≤ V′, and let c =
‖V − V′‖∞ = maxi |Vi − V ′

i | be their maximum absolute distance. Thus, for
any i,

Vi − c ≤ V ′
i ≤ Vi + c. (9.44)

Given the properties of Π it follows that

(ΠV)i − c ≤ (ΠV′)i ≤ (ΠV)i + c, (9.45)

and therefore
|(ΠV)i − (ΠV′)i| ≤ c, (9.46)

from which follows that

‖ΠV − ΠV′‖∞ ≤ ‖V − V′‖∞, (9.47)

which completes the proof.

238 9 Towards Reinforcement Learning with LCS

This shows that it is save to use LCS with independently trained averaging
classifiers for both value iteration and policy iteration, given that the mixing
weights are fixed. Fixing these weights, however, does not allow them to react
to the quality of a classifier’s approximation. As discussed in Chap. 6, it is
preferable to adjust the mixing weights inversely proportional to the classifier’s
prediction error.

To show that the mixing weights are relevant when investigating the non-
expansion property of the LCS model, consider the following: given two states
X = {x1,x2} that are sampled with equal frequency, π(x1) = π(x2) = 1/2,
and two classifiers of which both match x2, but only the first one matches
x1, we have m1(x1) = m1(x2) = m2(x2) = 1 and m2(x1) = 0. Let the two
target vectors be V = (0, 1)T and V′ = (2, 4). As the classifiers are averaging

classifiers, they will give the estimates V̂1 = 1/2, V̂2 = 1, V̂
′

1 = 3, V̂
′

2 = 4.
For x1 the global prediction is given by classifier 1. For x2, on the other hand,
the predictions of the classifiers are mixed and thus, the global prediction
will be in the range [1/2, 1] for V (x2) and within [3, 4] for V ′(x2). Note that
‖V − V′‖∞ = |V (x2) − V ′(x2)| = 3. Choosing arbitrary mixing weights,
classifier 2 can be assigned full weights for V ′(x2), such that V̂ ′(x2) = 4. As

a results, 3 ≤ ‖V̂ − V̂
′‖∞ ≤ 3.5, depending on how V̂1(x2) and V̂2(x2) are

combined to V̂ (x2). Thus, for a particular set of mixing weights that assign
non-zero weights to V̂1(x2), the non-expansion property is violated, which
shows that mixing weights are relevant when considering this property.

In the above example, the non-expansion property was violated by using
different mixing schemes for V and V′. In the case of V′, the more accurate
Classifier 2 has been assigned full weights. For V, on the other hand, some
weight was assigned to less accurate Classifier 1. Assigning full weight to
Classifier 2 in both cases would have preserved the non-expansion property.
This puts forward the question if using a consistent mixing scheme, like mixing
by inverse prediction error, guarantees a non-expansion with respect to the
maximum norm and thus convergence of the algorithm? More generally, which
are the required properties of the mixing scheme such that non-expansion of
Π can be guaranteed?

The proof of Lemma 9.2 relies on the linearity of Π, based on the constant
mixing model, such that ΠV−ΠV′ = Π(V−V′). Making the mixing model
depend on the classifier predictions violates this linearity and requires the use
of a different method for the analysis of its properties. Besides some conjec-
tures [81, 82], the question of which mixing weights guarantee a non-expansion
with respect to ‖ · ‖∞ is still open and requires further investigation.

9.4.4 Non-expansion with respect to ‖ · ‖D

Recall that the diagonal of D is the sampling distribution π over X with
respect to a particular policy µ, and is given by the steady-state probabilities
of the Markov chain Pµ. Following this Markov chain by performing actions

9.4 Stability of RL with LCS 239

according to µ guarantees that the states are sampled according to π. In the
following, it is assumed that this is the case.

Given the linear approximation ΠD = X(XT DX)−1XT D that returns the

estimate V̂ = ΠDV that minimises the sampling-weighted distance ‖Xw −
V‖D, this approximation operator is a non-expansion with respect to ‖ · ‖D:

Lemma 9.3. The linear approximation operator ΠD = X(XT Dx)−1XT D
defines a non-expansion mapping with respect to the weighted norm ‖ · ‖D.

Proof. Note that D =
√

D
√

D, and thus we have
√

DΠD = Π′
D

√
D, where

Π′
D =

√
DX(XT DX)−1XT

√
D is also a projection matrix. Therefore, for

any two vectors V, V′, using the induced matrix norm ‖A‖ = max{‖Ax‖ :
with ‖x‖ ≤ 1}, and the property ‖Π′

D‖ ≤ 1 of projection matrices,

‖ΠDV − ΠDV′‖D = ‖
√

DΠD(V − V′)‖
= ‖Π′

D

√
D(V − V′)‖

≤ ‖Π′
D‖‖

√
D(V − V′)‖

≤ ‖V − V′‖D, (9.48)

which shows that ΠD is a non-expansion with respect to ‖ · ‖D.

This shows that linear models are compatible with approximate policy
iteration [222]. However, the LCS model discussed here is non-linear due to
the independent training of the classifiers. Also, these classifiers are not trained
according to the sampling distribution π if they do not match all states.
From the point-of-view of classifier k, the states are sampled according to
Tr(Dk)−1πk, where πk needs to be normalised by Tr(Dk)−1 as

∑

x πk(x) ≤ 1
and therefore πk is not guaranteed to be a proper distribution. This implies,
that the approximation operator Πk is a non-expansion mapping with respect
to ‖·‖Dk

rather than ‖·‖D, and ‖Πkz‖Dk
≤ ‖z‖Dk

for any vector z. However,
as

√
Dk =

√
Mk

√
D, we have

‖z‖Dk
= ‖

√

Dkz‖ = ‖
√

Mk

√
Dz‖ ≤ ‖

√

Mk‖‖
√

Dz‖ ≤ ‖z‖D. (9.49)

The second inequality is based on the matrix norm of a diagonal matrix being
given by its largest diagonal element, and thus ‖√Mk‖ = maxx

√

mk(x) ≤ 1.
This implies that, for any two V, V′,

‖ΠkV−ΠkV
′‖D ≥ ‖ΠkV−ΠkV‖Dk

≤ ‖V−V′‖Dk
≤ ‖V−V′‖D. (9.50)

Due to the first inequality having the wrong direction, we cannot state that Πk

is a non-expansion with respect to ‖ · ‖D. In fact, it becomes rather unlikely3.
Nonetheless, to be sure about either outcome, further investigation is required.

3 We have previously stated that Πk is a non-expansion with respect to ‖ · ‖D [80].
While showing this, however, a flawed matrix equality was used, which invalidates
the result.

240 9 Towards Reinforcement Learning with LCS

Not having a clear result for single classifiers, expanding the investigation
to sets of classifiers is superfluous. In any case, it is certain that given stable
classifier models, the non-expansion property of a whole set of classifiers is,
as for ‖ · ‖∞, determined by the properties of the mixing model.

9.4.5 Consequences for XCS and XCSF

Both XCS and XCSF use Q-Learning as their reinforcement learning compo-
nent. To show that this combination is stable, the first step to take is to show
the stability of value iteration with the model structure underlying XCS and
XCSF.

XCS uses averaging classifiers, which were shown to be stable with value
iteration. Stability at the global model level is very likely, but depends on the
mixing model, and definite results are still pending.

XCSF in its initial implementation [247, 248], on the other hand, uses
classifiers that model straight lines, and such models are known to be unstable
with value iteration. Thus, XCSF does not even guarantee stability at the
classifier level, and therefore neither at the global model level. As previously
mentioned, it is conjectured that XCSF provides its stability at the structure
learning level instead, which is not considered as being a satisfactory solution.
Instead, one should aim at replacing the classifier models such that stability
at the parameter level can be guaranteed. Averaging RL seems to be a good
starting point, but how exactly this can be done still needs to be investigated.

9.5 Further Issues

Besides the stability concerns when using LCS to perform RL, there are still
some further issues to consider, two of which will be discussed in this sec-
tion: the learning of long paths, and how to best handle the explore/exploit
dilemma.

9.5.1 Long Path Learning

The problem of long path learning is to find the optimal policy in sequential
decision tasks when the solution requires learning of action sequences of sub-
stantial length. As identified by Barry [12, 13], XCS struggles with such tasks
due to the generalisation method that it uses.

While a solution was proposed to handle this problem [13], it was only
designed to work for a particular problem class, as will be shown after dis-
cussing how XCS fails at long path learning. The classifier set optimality
criterion from Chap. 7 might provide better results, but in general, long path
learning remains an open problem.

Long path learning is not only an issue for LCS, but for approximate DP
and RL in general. It arises from the used approximation glossing over small

9.5 Further Issues 241

differences in the value or action-value function, which causes the policy that
is derived from this function to become sub-optimal. This effect is amplified by
weak discounting (that is, for γ close to 1) which causes the expected return
to differ less between adjacent states.

XCS and Long Path Learning

Consider the problem that is shown in Fig. 9.2. The aim is to find the policy
that reaches the terminal state x6 from the initial state x1a in the shortest
number of steps. In RL terms, this aim is described by giving a reward of 1
upon reaching the terminal state, and a reward of 0 for all other transitions4.
The optimal policy is to alternately choose actions 0 and 1, starting with
action 1 in state x1a.

x1a

x1b

x2a

x2b

x3a

x3b

x4a

x4b

x5a

x5b

x6

0

1

0, 1 1

0

0, 1 0

1

0, 1 1

0

0, 1 0

1

0, 1

Fig. 9.2. A 5-step corridor finite state world. The circles represent the states of
the problem, and the arrows the possible state transitions. The numbers next to the
arrows are the actions that cause the transitions, showing that the only available
actions are 0 and 1. The state x1a is the initial state in which the task starts, and
the square state x6 is the terminal state in which the task ends

The optimal value function V ∗ over the number of steps to the terminal
state is for a 15-step corridor finite state world shown in Fig. 9.3(a). As can be
seen, the difference of the values of V ∗ between two adjacent states decreases
with the distance from the terminal state.

Recall that, as described in Sect. 7.1.1, XCS seeks for classifiers that feature
the mean absolute error ǫ0, where ǫ0 is the same for all classifiers. Thus, with
increasing ǫ0, XCS will start generalising over states that are further away
from the terminal state, as due to their similar value they can be modelled
by a single classifier while keeping its approximation error below ǫ0. On the
other hand, ǫ0 cannot be set too small, as otherwise the non-stationarity of
the function to model would make all classifiers seem inaccurate. Generalising
over states xia for different i’s, however, causes the policy in these areas to

4 More precisely, the reward 1 that is received upon reaching the terminal state was
modelled by adding a transition that, independent of the chosen action, leads from
the terminal state to an absorbing state and is rewarded by 1. Each transition
from the absorbing state leads to itself, with a reward of 0.

242 9 Towards Reinforcement Learning with LCS

be sub-optimal, as choosing the same action in two subsequent steps in the
corridor finite state world causes at least one sidestep to one of the xib states5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

O
pt

im
al

 V

Steps from Terminal State

Optimal V for Single Reward 1 at Terminal State

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12 14

O
pt

im
al

 V

Steps from Terminal State

Optimal V for Reward -1 for Each Action

(a) (b)

Fig. 9.3. Plots showing the optimal value function for the 15-step corridor finite
state world for γ = 0.9. The value function in (a) results from describing the task
by giving a single reward 1 upon reaching the terminal state, and a reward of 0 for
all other transitions. In (b) the values are based on a task description that gives a
reward of −1 for all transitions. Note that in both cases the optimal policy is the
same, but in (a) all values are positive, and in (b) they are negative

To summarise, XCS struggles in learning the optimal policy for tasks where
the difference in value function between two successive states is very small and
might be modelled by the same classifier, and where choosing the same action
for both states leads to a sub-optimal policy. The problem was identified by
Barry [12, 13], and demonstrated by means of different-length corridor finite
state worlds in. Due to the same classifier accuracy criterion, XCSF can be
expected to suffer from the same problem, even though that remains to be
shown empirically.

Using the Relative Error

Barry proposed two preliminary approaches to handle the problem in long
path learning in XCS, both based on making the error calculation of a classifier
relative to its prediction of the value function [13]. The first approach is to
estimate the distance of the matched states to the terminal state and scale the
error accordingly, but this approach suffers from the inaccuracy of predicting
this distance.

A second, more promising alternative proposed in his study is to scale the
measured prediction error by the inverse absolute magnitude of the prediction.

5 It should be noted that while the classifiers in standard implementations of
XCS(F) can match several states, they always match and thus promote a sin-
gle action.

9.5 Further Issues 243

The underlying assumption is that the difference in optimal values between
two successive states is proportional to the absolute magnitude of these values,
as can be see in Fig. 9.3(a). Consequently, the relative error is larger for states
that are further away from the terminal state, and overly general classifiers are
identified as such. This modification allows XCS to find the optimal policy
in the 15-step corridor finite state world, which it fails to do without the
modification.

Where it Fails

The problem of finding the shortest path to the terminal state can also be
defined differently: rather than giving a single reward of 1 upon reaching the
terminal state, one can alternatively punish each transition with a reward of
−1. As the reward is to be maximised, the number of transitions is minimised,
and therefore the optimal policy is the same as before. Fig. 9.3(b) shows the
optimal value function for the modified problem definition.

Observe that, in contrast to Fig. 9.3(a), all values of V ∗ are negative or
zero, and their absolute magnitude grows with the distance from the terminal
state. The difference in magnitude between two successive state, on the other
hand, still decreases with the distance from the terminal state. This clearly
violates the assumption that this difference is proportional to the absolute
magnitude of the values, as the modified problem definition causes exactly
the opposite pattern. Hence, the relative error approach will certainly fail, as
it was not designed to handle such cases.

To create a task where the relative error measure fails, the problem had
to be redefined such that the value function takes exclusively negative values.
While it might be possible to do the opposite and redefine each problem such
that it conforms to the assumption that the relative error measure is based
on, an alternative that does not require modification of the problem definition
is preferable.

A Possible Alternative?

It was shown in Sect. 8.3.4 that the optimality criterion that was introduced in
Chap. 7 is able to handle problem where the noise differs in different areas of
the input space. Given that it is possible to use this criterion in an incremental
implementation, will such an implementation be able to perform long path
learning?

As previously discussed (see Sect. 5.1.2 and 7.2.2), a linear classifier model
attributes all observed deviation from its linear model to measurement noise
(implicitly including the stochasticity of the data-generating process). In re-
inforcement learning, and additional component of stochasticity is introduced
by updating the value function estimates which makes them non-stationary.
Thus, in order for the LCS model to provide a good representation of the
value function estimate, it needs to be able to handle both the measurement

244 9 Towards Reinforcement Learning with LCS

noise and the update noise – a differentiation that is absent Barry’s work
[12, 13].

Let us assume that the optimality criterion causes the size of the area
of the input space that is matched by a classifier to be proportional to the
level of noise in the data, such that the model is refined in areas where the
observations are known to accurately represent the data-generating process.
Considering only measurement noise, when applied to value function approx-
imation this would lead to having more specific classifiers in states where the
difference in magnitude of the value function for successive states is low, as in
such areas this noise is deemed to be low. Therefore, the optimality criterion
should provide an adequate value function approximation of the optimal value
function, even in cases where long action sequences need to be represented.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25 30

N
oi

se
 V

ar
ia

nc
e

State

Update Noise for Single Reward 1 at Terminal State

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

N
oi

se
 V

ar
ia

nc
e

State

Update Nosie for Reward -1 for Each Action

(a) (b)

Fig. 9.4. Update noise variance for value iteration performed on 15-step corridor
finite state world. Plot (a) shows the variance when a reward of 1 is given upon
reaching the terminal state, and 0 for all other transitions. Plot (b) shows the same
when rewarding each transition with −1. The states are enumerated in the order
x1a, x1b, x2a, . . . , x15b, x16. The noise variance is determined by initialising the value
vector to 0 for each state, and storing the value vector after each iteration of value
iteration, until convergence. The noise variance is the variance of the values of each
state over all iterations. It clearly shows that this variance is higher for states which
have a larger absolute optimal value. The optimal values are shown in Fig. 9.3

Also considering update noise, its magnitude is related to the magnitude of
the optimal value function, as demonstrated in Fig. 9.4. Therefore, the noise
appears to be largest where the magnitude of the optimal value function is
large. Due to this noise, the model in such areas will most likely be coarse.
With respect to the corridor finite state world, for which the optimal value
function is shown in Fig. 9.3(b), this would have the effect of providing an
overly coarse model for states that are distant from the terminal state, and
thus might cause the policy to be sub-optimal, just as in XCS. However,
this depends heavily on the dynamic interaction between the RL method and

9.5 Further Issues 245

the incremental LCS implementation. Thus, definite statements needs to be
postponed until such an implementation is available.

Overall, the introduced optimality criterion seems to be a promising ap-
proach to handle long path learning in LCS, when considering only measure-
ment noise. Given the additional update noise, however, the criterion might
suffer from the same problems as the approach based on the relative error.
The significance of its influence cannot be evaluated before an incremental
implementation is available. Alternatively, it might be possible to seek for RL
approaches that allow for the differentiation between measurement and up-
date noise, which makes it possible for the model itself to only concentrate
on the measurement noise. If such an approach is feasible still needs to be
investigated.

9.5.2 Exploration and Exploitation

Maintaining the balance between exploiting current knowledge to guide action
selection and exploring the state space to gain new knowledge is an essential
problem for reinforcement learning. Too much exploration implies the fre-
quent selection of sub-optimal actions and causes the accumulated reward to
decrease. Too much emphasis on exploitation of current knowledge, on the
other hand, might cause the agent to settle on a sub-optimal policy due to
insufficient knowledge of the reward distribution [235, 216]. Keeping a good
balance is important as it has a significant impact on the performance of RL
methods.

There are several approaches to handling exploration and exploitation:
one can choose a sub-optimal action every now and then, independent of
the certainty of the available knowledge, or one can take this certainty into
account to choose actions that increase it. A variant of the latter is to use
Bayesian statistics to model this uncertainty, which seems the most elegant
solution but is unfortunately also the least tractable. All of these variants and
their applicability to RL with LCS are discussed below.

Undirected Exploration

A certain degree of exploration can be achieved by selecting a sub-optimal
action every now and then. This form of exploration is called undirected as
it does not take into account the certainty about the current value or action-
value function estimate. The probably most popular instances of this explo-
ration type are the ε-greedy policy and softmax action selection.

The greedy policy is the one the chooses the action that is to the current
knowledge optimal at each step, as is thus given by µ(x) = maxa Q̂(x, a).
In contrast, the ε-greedy policy selects a random sub-optimal action with
probability ε, and the greedy action otherwise. Its stochastic policy is given
by

246 9 Towards Reinforcement Learning with LCS

µ(a|x) =

{

1 − ε if a = argmaxa∈A Q̂(x, a),
ε/(|A| − 1) otherwise.

, (9.51)

where µ(a|x) denotes the probability of choosing action a in state x.
ε-greedy does not consider the magnitude of the action-value function

when choosing the action and thus does not differentiate between actions that
are only slightly sub-optimal and ones that are significantly. This is accounted
for by softmax action selection, where actions are chosen in proportion to the
magnitude of the estimate of their associated expected return. One possible
implementation is to sample actions from the Boltzmann distribution, given
by

µ(a|x) =
exp(Q̂(x, a)/T)

∑

a′∈A exp(Q̂(x, a′)/T)
, (9.52)

where T is the temperature that allows regulating the strength with which the
magnitude of the expected return is taken into account. A low temperature
T → 0 causes greedy action selection. Raising the temperature T → ∞, on
the other hand, makes the stochastic policy choose all actions with equal
probability.

XCS(F) also uses indirect exploration, but with neither of the above poli-
cies. Instead, it alternates between exploration and exploitation trials, where
a single trial is a sequence of transitions until a goal state is reached or the
maximum number of steps is exceeded. Exploration trials feature a uniform
random action selection, without considering the action-value estimates. In
exploitation trials, on the other hand, all actions are chosen greedily. This
causes significant exploration of the search space, which facilitates learning
of the optimal policy. A drawback of this approach is that on average, the
received reward is lower than if a more reward-oriented policy, like ε-greedy
or softmax action selection, is used. In any case, undirected policies should
only be used, if directed exploration is too costly to implement.

Directed Exploration

Directed exploration is significantly more efficient than undirected exploration
by taking into account the uncertainty of the action-value function estimate.
This allows it to perform sub-optimal actions in order to reduce this uncer-
tainty, until it is certain that no further exploration is required to find the
optimal policy. The result is less, but more intelligent exploration.

This strategy is implemented by several methods, both model-based and
model-free (for example, [129, 29, 210]). In fact, some of them have shown
to be very efficient in the Probably Approximately Correct (PAC) sense (for
example, [210]). These, however, require a model of the reward and transi-
tion function, and thus they have a larger space complexity than model-free
RL methods [211]. Nonetheless, methods that perform intelligent exploration
currently outperform all other RL methods [152]. Recently, also a model-free
method with intelligent exploration became available [211], but according to

9.5 Further Issues 247

Littman [152], it performs “really slow” when compared to model-based alter-
natives. None of the methods will be discussed in detail, but they all share the
same concept of performing actions such that the certainty of the action-value
function estimate is increased.

A recent LCS approach aimed at providing such intelligent exploration
[170], but without considering the RL techniques that are available. These
techniques could be used in LCS even without having models of the transition
and reward function by proceeding in a manner similar to [70], and building
a model at the same time as using it to learn the optimal policy. Anticipatory
LCS [208, 49, 41, 92, 91] are already used to model at least the transition
function, and can easily be modified to include the reward function. An LCS

that does both has already been developed to perform model-based RL [93,
90], but as it uses heuristics rather than evolutionary computation techniques
for model structure search, some LCS workers did not consider it as being
an LCS. In any case, having such a model opens the path towards using new
exploration control methods to improve their efficiency and performance.

Bayesian Reinforcement Learning

The intelligent exploration methods discussed above either consider the cer-
tainty of the estimate only implicitly, or maintain it by some form of confi-
dence interval. A more elegant approach is to facilitate Bayesian statistics and
maintain complete distributions over each of the estimates.

For model-free RL, this means to model the action-value function esti-
mates by probability distributions for each state/action pair. Unfortunately,
this approach is not analytically tractable, as the distributions are strongly
correlated due to the state transitions. This leads to complex posterior dis-
tributions that cannot be expressed analytically. A workaround is to use var-
ious assumptions and approximations that make the method less accurate
but analytically and computationally tractable. This workaround was used
to develop Bayesian Q-Learning [69] that, amongst other things, assumes the
independence of all action-value function estimates, and uses an action selec-
tion scheme that maximises the information gain. Its performance increase
when compared to methods based on confidence intervals is noticeable but
moderate.

Bayesian model-based RL is more popular as it provides cleaner implemen-
tations. It is based on modelling the transition and reward function estimates
by probability distributions that are updated with new information. This re-
sults in a problem that can be cast as a POMDP, and can be solved with
the same methods [85]. Unfortunately, this implies that it comes with the
same complexity, which makes it unsuitable for application to large problems.
Nonetheless, some implementations have been devices (for example, [190]),
and research in Bayesian RL is still very active. It is to hope that its com-
plexity can be reduced by the use of approximation, but without losing too

248 9 Towards Reinforcement Learning with LCS

much accuracy and maintaining full distributions that are the advantage of
the Bayesian approach.

So far, the only form of Bayesian RL that has been used with LCS is
Bayesian Q-Learning by using Bayesian classifier models within a standard
XCS(F), with the result of more effective and stable action selection, when
compared to XCS(F) [1]. This approach could be extended to use the full
Bayesian model that was introduced here, once an incremental implementation
is available. The use of model-based Bayesian RL requires anticipatory LCS,
but is immediate contribution is questionable due to the high complexity of
the RL method itself.

9.6 Summary

Despite sequential decision tasks being the prime motivator for LCS, they
are still the ones which LCS handle least successfully. This chapter provides
a primer on how to use dynamic programming and reinforcement learning to
handle such tasks, and on how LCS can be combined with either approach
from first principles. Also, some important issues regarding such combinations,
as stability, long path learning, and the exploration/exploitation dilemma were
discussed.

An essential part of the LCS type discussed in this book is that classifiers
are trained independently. This is not completely true when using LCS with
reinforcement learning, as the target values that the classifiers are trained
on are based on the global prediction, which is formed by all matching clas-
sifiers in combination. In that sense, classifiers interact when forming their
action-value function estimates. Still, besides combining classifier predictions
to form the target values, independent classifier training still forms the basis
of this model type, even when used in combination with RL. Thus, the up-
date equations developed in Chap. 5 can be used, and result in weight vector
updates that resemble those of XCS(F). On the side, this also demonstrates
that XCS(F) performs gradient descent without the need to be modified.

Regarding stability, it has been discussed which properties the approxima-
tion operator provided by LCS has to satisfy in order to guarantee conver-
gence with approximate value iteration and policy iteration. These properties
are all based on a non-expansion to some norm, where the norm determines
which method can be applied. An initial analysis has been provided, but no
conclusive answers have been given, pending further research.

Related to stability is also the issue of learning long action sequences, which
was shown to cause problems in XCS due to its accuracy definition. While a
preliminary modification to XCS solves this issue for particular problem types
[13], it is not universally applicable. The introduced optimality criterion seems
more promising with this respect, but definite results have to wait until an
incremental LCS implementation is available that satisfies this criterion.

9.6 Summary 249

Overall, using LCS to approximate the value or action-value function in
RL is appealing as LCS dynamically adjust to the form of this function and
thus might provide a better approximation than standard function approxi-
mation techniques. It should be noted, however, that the field of RL is moving
quickly, and that Q-Learning is by far not the best method that is currently
available. Hence, in order for LCS to be a competitive approach to sequen-
tial decision tasks, they also need to keep track with new developments in
RL, some of which were discussed when detailing the exploration/exploitation
dilemma that is an essential component of RL.

In summary, it is obvious that there is still plenty of work to be done until
LCS can provide the same formal development as RL currently does. Nonethe-
less, the initial formal basis is provided in this chapter, upon which other
research can build further analysis and improvements to how LCS handles
sequential decision tasks effectively, competitively, and with high reliability.

10

Concluding Remarks

Reflecting back on the aim, let us recall that it was to “develop a formal
framework for LCS that lets us design, analyse, and interpret LCS” (see
Section 1.3). Defining LCS in terms of the model structure that they use
to model the data clearly provides a new interpretation to what LCS are.
Their design is to be understood in terms of the algorithms that result from
the application of machine learning methods to train this model in the light
of the available data. Their analysis arises “for free” from the application of
those methods and the knowledge of their theoretical properties.

Regarding the theoretical basis of LCS, most of the existing theory builds
on a facet-wise approach that investigates the properties of sub-components
of existing LCS algorithms by means of representing these components by
simplified models (see Section 2.4). The underlying assumption is that one
can gain knowledge about the operation of an algorithm by understanding
its components. While one could question if such an approach is also able
to adequately capture the interaction between these components, its main
limitation seems to be the focus on the analysis of existing algorithms, which
are always just a means to an end.

Here, the focus is on the end itself, which is the solution to the problems
that LCS want to solve, and the design of algorithms around it, guided by
how LCS were characterised by previous theoretical investigations. The main
novelty of this work is the methodology of taking a model-centred view to
specifying the structure of LCS and their training. All the rest follows from
this approach.

The model-centred view is characterised by first formalising a probabilistic
model that represents a set of classifiers, and then using standard machine
learning methods to find the model that explains the given data best. This
results in a probabilistic model that represents a set of classifiers and makes
explicit the usually implicit assumptions that are made about the data. It also
provides a definition for the optimal set of classifiers that is general in the sense
that it is independent of the representation, suitable for continuous input and
output spaces and hardly dependent on any system parameters, given that the

252 10 Concluding Remarks

priors are sufficiently uninformative. In addition, it bridges the gap between
LCS and machine learning by using the latter to train LCS, and facilitates
the good understanding of machine learning to improve the understanding of
LCS. Overall, approaching LCS from a different perspective has given us a
clearer view of the problems that need to be solved and which tools can be
used to solve them.

This approach still leaves high degrees of freedom in how the LCS model
itself is formulated. The one provided in this work is inspired by XCS(F) and
results in a similar algorithm to update its parameters. One can think of a
wide range of other model types that can be considered as LCS but are quite
different from the one that was used here, one example being the linear LCS

model that might result in algorithms that are similar to ZCS. One thing,
however, that is shared by all of these models is what makes them an LCS: a
global model that is formed by a combination of replaceable localised models,
namely the classifiers.

The model structure search itself might not have received the same atten-
tion as common to LCS research. This was on one hand deliberate to empha-
sise that, as defined here, finding the optimal classifier set is nothing else than
an optimisation problem that can be solved with any global optimiser. On the
other hand, however, it was only dealt with on the side due to the complex-
ity of the problem itself: most influential LCS research is contributed to the
analysis and improvement of the search for good sets of classifiers. Applying
a genetic algorithm to the optimisation problem results in a Pittsburgh-style
LCS, as in Chap. 8. Designing a Michigan-style LCS is a quite different prob-
lem that cannot simply be handled by the application of an existing machine
learning algorithm. So far, such LCS never had a clearly defined optimal set
of classifier as the basis of their design. Such a definition is now available,
and it remains a challenge to further research how Michigan-style LCS can
be designed on the basis of this definition.

It needs to be emphasised that the model-centred approach taken in this
work is holistic in the sense that rather than handling each LCS component
separately, it allows us to deal with function approximation, reinforcement
learning and classifier replacement from the same starting point, which is the
model.

Is taking this approach really so much better than the ad-hoc approach;
that is, does it result in better methods? This question can only be answered
by evaluating the performance of a resulting LCS, and needs to be postpones
until such an LCS becomes available. Nonetheless, even the model-based per-
spective by itself provides a new view on LCS. Also, considering that most
popular machine learning methods started ad-hoc and were later improved
by reformulating them from a model-centred perspective, applying the same
methodology to reformulating LCS is very likely to be profitable in the long
run.

Another question is whether theoretical advances in a field really help im-
prove its methods. It seems like that founding the theoretical understanding of

10 Concluding Remarks 253

a method is a sign of its maturity. The method does not necessarily need to be
initially developed from the formal perspective, as Support Vector Machines
(SVMs) were [226]. Still, providing a theoretical foundation that explains what
a method is doing adds significantly to its understanding, if not also to its
performance. An example where the understanding was improved is the in-
terpretation of weight decay in neural networks as Gaussian priors on their
weights (see Ex. 3.4). The significant performance increase of reinforcement
learning through intelligent exploration can almost exclusively be attributed
to advances in their theoretical understanding [129, 29, 210]. Correspondingly,
while further improvement of the already competitive performance of LCS in
supervised learning tasks cannot be guaranteed through advances from the
theoretical side, such advances unquestionably increase their understanding
and provide a different perspective.

Of course, the presented methodology is by no means supposed to be the
ultimate and only approach to design LCS. It is not the aim to stifle the
innovation in this field. Rather, its uptake is promoted for well-defined tasks
such as regression and classification tasks, due to the obvious advantages that
this approach promises. Also, given that Sutton’s value-function hypothesis
[213] is correct, and value function learning is the only efficient way to handle
sequential decision tasks, then these tasks are most likely best approached
by taking the model-centred view as well. On the other hand, given that
the task does not fall into these categories (for example, [202]), then an ad-
hoc approach without strong formal foundations might still be the preferred
choice for designing LCS. However, even following the outlined route leaves
significant space for design variations in how to formulate the model, and in
particular which method to develop or apply to search the space of possible
model structures.

Overall, with the presented perspective, the answer to “What is a Learning
Classifier System?” is: a family of models that are defined by a global model
being formed by a set of localised models known as classifiers, an approach for
comparing competing model with respect to their suitability in representing
the data, and a method to search the space of sets of classifiers to provide
a good model for the problem at hand. Thus, the model was added to the
method.

A

Notation

The notation used in this work is very similar to the machine learning standard
(for example, [20]). The subscript k always refers to the kth classifier, and the
subscript n refers to the nth observation. The only exception is Chapter 5 that
discusses a single classifier, which makes the use of k superfluous. Composite
objects, like sets, vectors and matrices, are usually written in bold. Vectors
are usually column vectors and are denoted by a lowercase symbol; matrices
are denoted by an uppercase symbol. ·T is the transpose of a vector/matrix.
·̂ is an estimate. ·∗ in Chapter 7 denotes the parameters of the variational
posterior, and the posterior itself, and in Chapter 9 indicates optimality.

The tables in the next pages give the used symbol in the first column, a
brief explanation of its meaning in the second column, and — where appropri-
ate — the section number that is best to consult with respect to this symbol
in the third column.

256 A Notation

Sets, Functions and Distributions

∅ empty set
R set of real numbers
N set of natural numbers

EX(X,Y) expectation of X,Y with respect to X
var(X) variance of X

cov(X,Y) covariance between X and Y
Tr(A) trace of matrix A
〈x,y〉 inner product of x and y 5.2
〈x,y〉A inner product of x and y, weighted by matrix A 5.2
‖x‖A norm of x associated with inner product space

〈·, ·〉A
5.2

‖x‖ Euclidean norm of x, ‖x‖ ≡ ‖x‖I 5.2
‖x‖∞ maximum norm of x 9.2.1
⊗,⊘ multiplication and division operator for element-

wise matrix and vector multiplication/division
8.1

L loss function, L : X × X → R
+ 3.1.1

l log-likelihood function 4.1.2
N (x|µ,Σ) normal distribution with mean vector µ and co-

variance matrix Σ
4.2.1

Gam(x|a, b) gamma distribution with shape a, scale b 7.2.3
St(x|µ,Λ, a) Student’s t distribution with mean vector µ, pre-

cision matrix Λ, and a degrees of freedom
7.4

Dir(x|α) Dirichlet distribution with parameter vector α 7.5
p probability mass/density
q variational probability mass/density 7.3.1
q∗ variational posterior 7.3
Γ gamma function 7.2.3
ψ digamma function 7.3.7

KL(q‖p) Kullback-Leibler divergence between q and p 7.3.1
L(q) variational bound of q 7.3.1
U set of hidden variables 7.2.6

A Notation 257

Data and Model

X input space 3.1
Y output space 3.1

DX dimensionality of X 3.1.2
DY dimensionality of Y 3.1.2
N number of observations 3.1
n index referring to the nth observation 3.1
X set/matrix of inputs 3.1, 3.1.2
Y set/matrix of outputs 3.1, 3.1.2
x input, x ∈ X , 3.1
y output, y ∈ Y 3.1
υ random variable for output y 5.1.1
D data/training set, D = {X,Y} 3.1
f target function, mean of data-generating

process,
f : X → Y

3.1.1

ǫ zero-mean random variable, modelling stochas-
ticity of data-generating process and measure-
ment noise

3.1.1

M model structure, M = {M,K} 3.1.1, 3.2.5
θ model parameters 3.2.1

f̂M hypothesis for data-generating process of model
with structure M, f̂M : X → Y

3.1.1

K number of classifiers 3.2.2
k index referring to classifier k 3.2.3

258 A Notation

Classifier Model

Xk input space of classifier k, Xk ⊆ X 3.2.3
mnk binary matching random variable of classifier k

for observation n
4.3.1

mk matching function of classifier k, mk : X → [0, 1] 3.2.3
M set of matching functions, M = {mk} 3.2.5
Mk matching matrix of classifier k 5.2.1
M matching matrix for all classifiers 8.1
θk parameters of model of kth classifier 9.1.1
wk weight vector of classifier k, wk ∈ R

DX 4.2.1
ωk random vector for weight vector of classifier k 5.1.1
Wk weight matrix of classifier k, W ∈ R

DY×DX 7.2
τk noise precision of classifier k, τk ∈ R 4.2.1
αk weight shrinkage prior 7.2

aτ , bτ shape, scale parameters of prior on noise preci-
sion

7.2

aτk
, bτk

shape, scale parameters of posterior on noise pre-
cision of classifier k

7.3.2

aα, bα shape, scale parameters of hyperprior on weight
shrinkage priors

7.2

aαk
, bαk

shape, scale parameters of hyperposterior on
weight shrinkage prior of classifier k

7.3.3

W set of weight matrices, W = {Wk} 7.2
τ set of noise precisions, τ = {τk} 7.2
α set of weight shrinkage priors, α = {αk} 7.2
ǫk zero-mean Gaussian noise for classifier k 5.1.1
ck match count of classifier k 5.2.2

Λ−1
k input covariance matrix (for RLS, input correla-

tion matrix) of classifier k
5.3.5

γ step size for gradient-based algorithms 5.3
λmin / λmax smallest / largest eigenvalue of input correlation

matrix c−1
k XT MkX

5.3

T time constant 5.3
λ ridge complexity 5.3.5
λ decay factor for recency-weighting 5.3.5
ζ Kalman gain 5.3.6

A Notation 259

Gating Network / Mixing Model

znk binary latent variable, associating observation n
to classifier k

4.1

rnk responsibility of classifier k for observation n,
rnk = E(znk)

4.1.3, 7.3.2

vk gating/mixing vector, associated with classifier
k, vk ∈ R

DV

4.1.2

βk mixing weight shrinkage prior, associated with
classifier k

7.2

aβ , bβ shape, scale parameters for hyperprior on mixing
weight shrinkage priors

7.2

aβk
, bβk

shape, scale parameters for hyperposterior on
mixing weight shrinkage priors, associated with
classifier k

7.3.5

Z set of latent variables, Z = {znk} 4.1
V set/vector of gating/mixing vectors 4.1.2
β set of mixing weight shrinkage priors, β = {βk} 7.2

DV dimensionality of gating/mixing space 6.1
gk gating/mixing function (softmax function in Sec-

tion 4.1.2, any mixing function in Chapter 6, oth-
erwise generalised softmax function), gk : X →
[0, 1]

4.1.2, 4.3.1

φ transfer function, φ : X → R
DV 6.1

Φ mixing feature matrix, Φ ∈ R
N×DV 8.1

H Hessian matrix, H ∈ R
KDV ×KDV 6.1.1

E error function of mixing model, E : R
KDV → R 6.1.1

γk function returning quality metric for model of
classifier k for state x, γk : X → R

+
6.2

260 A Notation

Dynamic Programming and Reinforcement Learning

X set of states 9.1.1
x state, x ∈ X 9.1.1
N number of states 9.1.1
A set of actions 9.1.1
a action, a ∈ A 9.1.1

rxx′(a) reward function, r : X × X ×A → R 9.1.1
rµ
xx′ reward function for policy µ 9.1.1
rµ
x reward function for expected rewards and policy

µ
9.1.1

rµ reward vector of expected rewards for policy µ,
rµ ∈ R

N
9.1.1

pµ transition function for policy µ 9.1.1
Pµ transition matrix for policy µ, Pµ ∈ [0, 1]N×N 9.1.4
γ discount rate, 0 < γ ≤ 1 9.1.1
µ policy, µ : X → A 9.1.1
V value function, V : X → R, V ∗ optimal, V µ for

policy µ, Ṽ approximated
9.1.2

V value vector, V ∈ R
N , V∗ optimal, Vµ for policy

µ, Ṽ approximated
9.1.4

Ṽk value vector approximated by classifier k 9.3.1
Q action-value function, Q : X × A → R, Q∗ op-

tional, Qµ for policy µ, Q̃ approximated
9.1.2

Q̃k action-value function approximated by classifier
k

9.3.4

T dynamic programming operator 9.2.1
Tµ dynamic programming operator for policy µ 9.2.1

T(λ)
µ temporal-difference learning operator for policy

µ
9.2.4

Π approximation operator 9.2.3
Πk approximation operator of classifier k 9.3.1
π steady-state distribution of Markov chain Pµ 9.4.3
πk matching-augmented stead-state distribution for

classifier k
9.4.3

D diagonal state sampling matrix 9.4.3
Dk matching-augmented diagonal state sampling

matrix for classifier k
9.4.3

α step-size for gradient-based incremental algo-
rithms

9.2.6

B

XCS and XCSF

As frequently referred to throughout this work, a short account of the func-
tionality of XCS [244, 245] and XCSF [247, 248] is given here from the model-
based perspective. The interested reader is referred to Butz and Wilson [58]
for a full description of its algorithmic implementation. The description given
here focuses on XCSF and only considers XCS explicitly in cases where it
differs from XCSF.

Even though XCSF is trained incrementally and is designed to handle
sequential decision tasks, it is described here as if it would perform batch
learning and univariate regression to relate it more easily to the methods that
are described in this work. More information on how XCSF handles sequential
decision tasks is given in Section 9.3.

We assume a univariate regression setup as described in Sect. 3.1.2 with
N given observations. The description concentrates firstly on the classifier
and mixing models, and how to find the model parameters for a fixed model
structure M, and then focuses on how the model structure search in XCSF
searches for better model structures.

B.1 Classifier Model and Mixing Model

Let us assume a model structure M = {K,M} with K classifiers and their
matching functions M = {mk : X → [0, 1]}. The classifier models are univari-
ate regression models that are trained independently by maximum likelihood
and thus aim at finding weight vectors wk that minimise

N
∑

n=1

mk(xn)
(

wT
k xn − yn

)2
, k = 1, . . . ,K, (B.1)

as described in more detail in Chap. 5. In addition to the weight vector, each
classifier maintains its match count ck, called experience, and estimates its
mean absolute prediction error ǫk, simply called error, by

262 B XCS and XCSF

ǫk = ck−1

N
∑

n=1

m(xn)
∣

∣yn − wT
k xn

∣

∣ . (B.2)

A classifier’s accuracy is some inverse function κ(ǫk) of the classifier error. It
was initially given by an exponential [244], but was later [245, 58] redefined
to

κ(ǫ) =

{

1 if ǫ < ǫ0,

α
(

ǫ
ǫ0

)−ν

otherwise,
(B.3)

where the constant scalar ǫ0 is the minimum error, the constant α is the
scaling factor, and the constant ν is a mixing power factor [58]. The accuracy
is constantly 1 up to the error ǫ0 and then drops off steeply, with the shape of
the drop determined by α and ν. The relative accuracy is a classifier’s accuracy
for a single input normalised by the sum of the accuracies of all classifiers
matching that input. The fitness is the relative accuracy of a classifier averaged
over all inputs that it matches, that is

Fk = c−1
k

N
∑

n=1

mk(xn)κ(ǫk)
∑K

j=1 mj(xn)κ(ǫj)
(B.4)

Each classifier additionally maintains an estimate of the action set size ask,
which is the average number of classifiers that match the classifier’s matched
inputs, and is given by

ask = c−1
k

N
∑

n=1

mk(xn)

K
∑

j=1

mj(xn). (B.5)

The error, fitness, and action set size are incrementally updated by the LMS
algorithm (see Sect. 5.3.3), using the MAM update (see Sect. 5.4.1). The
weight vector is in XCSF updated by the NLMS algorithm (see Sect. 5.3.4),
and in XCS updated by the LMS algorithm and the MAM update with xn = 1
for all n.

The mixing model is the fitness-weighted average of all matching classifiers
(see also Sect. 6.2.5), and is formally specified by the mixing function

gk(x) =
mk(xn)Fk

∑K
j=1 mj(xn)Fj

. (B.6)

For both classifier and mixing model training, XCSF aims at minimising
the empirical risk rather than the expected risk, regardless of the risk of
overfitting that come with this approach. Overfitting is handled at the model
structure search level, as will be described in the following section.

B.2 Model Structure Search 263

B.2 Model Structure Search

The model structure search incrementally improves the model structure by
promoting classifiers whose error is close to but not above ǫ0 (that is, classifiers
that are most general but still accurate), and a set of classifiers that is non-
overlapping in the input space.

The search is performed by a Michigan-style niche GA that interprets a
single classifier as an individual in a population, formed by the current set of
classifiers. The set of classifiers that matches the current input is called the
match set, and its subset that promotes the performed action is called the
action set1. In regression tasks, these two sets are equivalent, as the actions
are irrelevant.

Reproduction of classifiers is invoked at regular intervals, based on the
time since the last invocation, averaged over the classifiers in the current
action set. Upon reproduction, two classifiers from the current action set are
selected with probabilities proportional to their fitnesses2, are then copied, and
– after performing crossover and mutation on their condition which represents
their matching function – are injected back into the current population. If
the number of classifiers in the population reaches a certain preset limit on
the population size, deletion occurs. Classifier deletion is not limited to the
current action set but, in general3, classifiers are selected with a probability
proportional to their estimated action set size ask. If unmatched inputs are
observed, XCSF induces classifiers into the population that match that input,
called covering, and additionally deletes other classifiers if the population size
grows out of bounds.

As reproduction is performed in the action sets, classifiers which are more
general and thus participate in more action sets are more likely to reproduce.
Deletion, on the other hand, does not depend on the classifiers’ generality but
mainly on their action set size estimates. In combination, this causes a pref-
erence for more general classifiers that are still considered as being accurate,
a GA pressure called the set pressure in [54]. Note that due to the fitness
pressure, classifiers with ǫ > ǫ0 will have a very low fitness and are therefore
very unlikely to be selected for reproduction. The deletion pressure refers to
deletion being proportional to the action set size estimates, and causes an
even distribution of resources over all inputs. The mutation pressure depends
on the mutation operator and in general pushes the classifiers towards more
generality up to a certain threshold.

1 Initially, XCS as described in [244] performed GA reproduction in the match set,
but was later modified to act on the action set [245]. The description given here
conforms to the latter version.

2 Selection for reproduction does not need to be with probabilities proportional to
classifier fitness. As an alternative, tournament selection has been used [57].

3 Various variations to the described deletion scheme have been proposed and in-
vestigated [244, 134, 139].

264 B XCS and XCSF

In combination, these pressures cause XCSF to evolve classifiers that fea-
ture an error ǫ as close to ǫ0 as possible. Thus, generality of the classifiers is
controlled by the parameter ǫ0. Therefore, overfitting is avoided by the ex-
plicit tendency of classifiers to feature some (small) deliberate error. XCSF
additionally prefers non-overlapping sets of classifiers, as overlapping classi-
fiers compete for selection within the same action set until either of them
dominates. For a further discussion of the set of classifiers that XCSF tends
to evolve, see Sect. 7.1.1.

Index

action, 193
action set, 207
action-value function, 195
ad-hoc design, 3
adaptive filter theory, 63
attributes, 31

basis functions, 65
batch learning, 28, 32–34, 67, 99
Bayesian model averaging, 224
Bayesian model selection, 9, 122
Bayesian Ying-Yang, see BYY
Bellman’s Equation, 195, 202
bucket brigade

implicit, 18, 19
building blocks, 15, 176
BYY, 155

CCS, 122
class labels, 31
classification, 6, 31, 225
classifier, 16, 37

accuracy, 63, 108
action, 16
averaging, 65, 68
condition, 16

fitness, 108
independent training, 57, 58, 148,

160
localisation, 20, 37, 49, 53
model, 57, 128
overgeneral, 18, 19
overlapping, 222
parameters, 50, 63
parasitic, 19
prediction, 20, 83, 106
representation, 20, 37, 177
strength, 61

clustering, 3
condition, see classifier condition
confidence intervals, 150
conflict resolution subsystem, 16, 17
conjugate prior, 129
contraction mapping, 196
credit allocation subsystem, 17, 17,

40
cross-entropy, 100
crossover, 172, 176, 227

data, 28, 127
complete, 47
incomplete, 47

265

266 INDEX

likelihood, 123, 128
data-generating process, 28

non-stationary, 33
stationary, 32
stochasticity, 29, 50, 65

default hierarchies, 223
discount factor, 193
DP, 2, 32, 196

operators, 196
dynamic programming, see DP

eligibility traces, 199, 200
EM, 5, 47
empirical risk, 29, 63
ensemble learning, 21, 62, 224
expectation-maximisation, see EM
expected risk, 29
explore/exploit, 218

facet-wise approach, 23
feature, 15
fitness sharing, 19, 61

GA, 17, 23, 172
niche, 19

gating network, 45, 59
generalisation, 52

genetic algorithm, see GA
global model, 97
gradient noise, 73
gradient noise amplification, 74

Hessian matrix, 100, 139, 167
horizon, 194

incremental learning, 28, 32–34, 69,
101, 229

inner product space, 67
input, 21, 37

matrix, 30
space, 28

IRLS, 48, 99, 139, 165
Iteratively Re-weighted Least

Squares, see IRLS

Jensen’s Inequality, 104

K-means, 3
Kalman filter, 79

covariance form, 80
inverse covariance form, 81

Kalman-Bucy system model, 79
Kullback-Leibler divergence, 133, 165

Laplace approximation, 139
latent variable, 44
LCS, 5, 13

accuracy-based, 6, 19
Anticipatory, 218
Bayesian model, 126
early, 15
Michigan-style, 22, 34, 229
model, 36, 43–62
Pittsburgh-style, 22, 34, 173
strength-based, 6, 18

Learning Classifier Systems, see LCS
Least Mean Squared, see LMS
Lipschitz continuous, 71
LMS, 61, 72
local maxima, 49, 56, 57, 59
long path learning, 213
loss function, 29

machine learning, 1, 13
MAM update, 78, 90
Markov Chain Monte Carlo, see

MCMC
Markov Decision Process, see MDP
match count, 68
match set, 206
matching, 16, 37, 51, 83

function, 37, 177, 180
matrix, 67, 158

Matrix Inversion Lemma, 76
maximum likelihood, 44, 63
MCMC, 173
MDL, 153
MDP, 193
mean squared error, see MSE
measurement noise, 29, 50, 65, 79
Metropolis-Hastings algorithm, 174

INDEX 267

Minimum Description Length, see
MDL

minimum error, 121
minimum model error, 82
misadjustment, 73
mixing feature matrix, 159
mixing model, 60, 97, 131

training, 162
Mixtures-of-Experts, see MoE
ML, see machine learning
model

evidence, 123, 132, 159
global, 38
linear, 50, 64
localised, 21, 37
parameter priors, 126
parameters, 4, 36, 47
parametric, 36
probability, 159
selection, 8, 30, 122, 153

Bayesian, see Bayesian model
selection

structure, 36, 38, 58, 128
search, 39, 62, 171, 226

training, 35
model-based design, 4, 26
MoE, 43

complete-data log-likelihood, 47
log-likelihood, 46

MSE, 73, 113
multi-step tasks, 24

Newton-Raphson method, 99
NLMS, 74, 205
noise precision, 50, 66

incremental estimation, 84
non-expansion, 198, 211
normal equation, 75
Normalised Least Mean Squared, see

NLMS

observation, 28
off-policy, 199
on-policy, 199
output, 21

matrix, 30
space, 28

overfitting, 30, 35, 63, 98

PAC, 24, 218
payoff, see reward
performance subsystem, 16, 17
policy, 31, 193

evaluation, 197
improvement, 197
iteration, 197

approximate, 198
optimal, 194

precision matrix, 80
prediction vector, 206
predictive distribution, 150
prior probability, 124
projection matrix, 68, 201

Q-Learning, 199, 204

randomised ANOVA, 91
recency-weighting, 33, 77, 102, 233
Recursive Least Squares, see RLS
regression, 6, 30
regularisation, 125
reinforcement learning, see RL
replicator dynamics, 230
responsibility, 48, 99, 135, 164
return, 194
reward, 14, 31

function, 193
ridge complexity, 76
ridge regression, 76
RL, 2, 25, 32, 196, 232

Bayesian, 219
stability, 25, 209

RLS, 75, 82, 205
recency-weighted, 77

rule induction subsystem, 17, 17, 40

SARSA, 199
sequential decision task, 2, 31, 191
Sherman-Morrison formula, 76
shrinkage prior, 125
single-step tasks, 23

268 INDEX

softmax function, 45
generalised, 52, 99, 130

SRM, 154
state, 15, 193

space, 31, 193
steepest gradient descent, 70
step size, 71
Structural Risk Minimisation, see

SRM
supervised learning, 2
system state, 79

TD learning, 198
temporal-difference learning, see TD

learning
time constant, 71
training set, see data
transfer function, 51, 54
transition

function, 193
matrix, 196

UCS, 62
underfitting, 30, 35
unsupervised learning, 2

value
function, 31, 194

approximation, 198, 201
update noise, 216

function hypothesis, 194
iteration, 197

approximate, 198, 203
vector, 195

variational Bayesian inference, 132
variational bound, 133, 144, 168

weighted average, 103
weighted least squares, 66, 100

XCS, 19, 60, 78, 107, 121, 212
XCSF, 20, 206, 212

YCS, 121

ZCS, 19, 61

References

1. Davide Aliprandi, Alix Mancastroppa, and Matteo Matteucci. A Bayesian
Approach to Learning Classifier Systems in Uncertain Environments. In Keijzer
et al. [131], pages 1537–1544.

2. Brian D. O. Anderson and John B. Moore. Optimal Filtering. Information and
System Sciences Series. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

3. G. Armano. NXCS Experts for Financial Time Series Forecasting. In Bull [33],
pages 68–91.

4. A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.
5. Arik Azran. Data Dependent Risk Bounds and Algorithms for Hierarchical

Mixture of Experts Classifiers. Master’s thesis, Israel Institute of Technology,
Haifa, Israel, June 2004.

6. Arik Azran and Ron Meir. Data Dependent Risk Bounds for Hierarchical Mix-
ture of Experts Classifiers. In John Shawe-Taylor and Yoram Singer, editors,
Learning Theory, 17th Annual Conference on Learning Theory, COLT 2004,
Banff, Canada, July 1-4, 2004, Proceedings, volume 3120 of Lecture Notes in
Computer Science, pages 427–441. Springer, 2004.

7. Jaume Bacardit and Josep M. Garrell Guiu. Bloat control and generaliza-
tion pressure using the minimum description length principle for a Pittsburgh
approach Learning Classifier System. In Kovacs et al. [140], pages 59–79.

8. Jaume Bacardit, Michael Stout, Jonathan D. Hirst, Kumara Sastry, Xavier
Llorá, and Natalio Krasnogor. Automated Alphabet Reduction Method with
Evolutionary Algorithms for Protein Structure Prediction. In Thierens et al.
[219], pages 346–353.

9. Leemon C. Baird. Residual Algorithms: Reinforcement Learning with Function
Approximation. In International Conference on Machine Learning, pages 30–
37, 1995.

10. Wolfgang Banzhaf, Jason M. Daida, A. E. Eiben, Max H. Garzon, Vasant
Honavar, Mark J. Jakiela, and Robert E. Smith, editors. Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 1999), San Fran-
cisco, CA, USA, 13-17 July 1999. Morgan Kaufmann.

11. Alwyn Barry. XCS Performance and Population Structure within Multiple-Step
Environments. PhD thesis, Queens University Belfast, 2000.

12. Alwyn M. Barry. The Stability of Long Action Chains in XCS. In Bull et al.
[38], pages 183–199.

270 References

13. Alwyn M. Barry. Limits in Long Path Learning with XCS. In Cantú-Paz et al.
[60], pages 1832–1843.

14. Peter L. Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selection
and error estimation. Machine Learning, 48:85–113, 2002.

15. Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian com-
plexities: Risk bounds and structural results. Journal of Machine Learning
Research, 3:462–482, 2002.

16. José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. Wiley, 1994.
17. Dimitri P. Bertsekas, Vivek S. Borkas, and Angelia Nedić. Improved Temporal

Difference Methods with Linear Function Approximation. In Jennie Si, An-
drew G. Barto, Warren Buckler Powell, and Don Wunsch, editors, Handbook of
Learning and Approximate Dynamic Programming, chapter 9, pages 235–260.
Wiley Publishers, August 2004.

18. Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

19. H.-G. Beyer, U.-M. O’Reilly, D.V. Arnold, W. Banzhaf, C. Blum, E.W.
Bonabeau, E. Cant Paz, D. Dasgupta, K. Deb, J.A. Foster, E.D. de Jong,
H. Lipson, X. Llora, S. Mancoridis, M. Pelikan, G.R. Raidl, T. Soule, A. Tyrrell,
J.-P. Watson, and E. Zitzler, editors. Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO-2005, volume 2, New York, NY, USA,
2005. ACM Press.

20. Christopher M. Bishop. Pattern Recognition and Machine Learning. Informa-
tion Science and Statistics. Springer, 2006.

21. Christopher M. Bishop and Markus Svensén. Bayesian Hierarchical Mixtures
of Experts. In Proceedings of the 19th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-03), pages 57–64, San Francisco, CA, 2003. Morgan
Kaufmann.

22. Lashon B. Booker. Triggered rule discovery in classifier systems. In J. David
Schaffer, editor, Proceedings of the 3rd International Conference on Genetic
Algorithms (ICGA89), pages 265–274, George Mason University, June 1989.
Morgan Kaufmann.

23. Lashon B. Booker. Do We Really Need to Estimate Rule Utilities in Classifier
Systems? In Lanzi et al. [148], pages 125–142.

24. Lashon B. Booker. Approximating value function in classifier systems. In Bull
and Kovacs [37].

25. Lashon B. Booker, May 2006. Personal Communication.
26. Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement learn-

ing: Safely approximating the value function. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neural Information Processing Systems
7, pages 369–376, Cambridge, MA, 1995. The MIT Press.

27. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

28. Steven J. Bradtke. Reinforcement Learning Applied to Linear Quadratic Reg-
ulation. In Advances in Neural Information Processing Systems, volume 5.
Morgan Kaufmann Publishers, 1993.

29. R. I. Brafman and M. Tennenholtz. R-max: a General Polynomial Time Al-
gorithm for Near-optimal Reinforcement Learning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence, pages 953–958, 2001.

30. Gavin Brown, Tim Kovacs, and James Marshall. UCSPv: Principled Voting in
UCS Rule Populations. In Thierens et al. [219], pages 1774–1782.

References 271

31. Larry Bull. Simple Markov Models of the Genetic Algorithm in Classifier
Systems: Multi-step Tasks. In Lanzi et al. [151].

32. Larry Bull. On accuracy-based fitness. Journal of Soft Computing, 6(3–4):154–
161, 2002.

33. Larry Bull, editor. Applications of Learning Classifier Systems, volume 150 of
Studies in Fuzziness and Soft Computing. Springer, 2004.

34. Larry Bull. Two Simple Learning Classifier Systems. In Bull and Kovacs [37],
pages 63–90. YCS part also in TR UWELCSG03–005.

35. Larry Bull and Jacob Hurst. ZCS redux. Evolutionary Computation, 10(2):185–
205, 2002.

36. Larry Bull and Jacob Hurst. A Neural Learning Classifier System with Self-
Adaptive Constructivism. In Proceedings of the 2003 IEEE Congress on Evo-
lutionary Computation, volume 2, pages 991–997. IEEE Press, 2003. Also TR
UWELCSG03-003.

37. Larry Bull and Tim Kovacs, editors. Foundations of Learning Classifier Sys-
tems, volume 183 of Studies in Fuzziness and Soft Computing. Springer Verlag,
Berlin, 2005.

38. Larry Bull, Pier Luca Lanzi, and Wolfgang Stolzmann, editors. Journal of Soft
Computing, volume 6. Elsevir Science Publishers, 2002.

39. Larry Bull and Toby O’Hara. A Neural Rule Representation for Learning
Classifier Systems. In Lanzi et al. [149].

40. Larry Bull, J. Sha’Aban, Andy Tomlinson, J. D. Addison, and B.G. Heydecker.
Towards Distributed Adaptive Control for Road Traffic Junction Signals using
Learning Classifier Systems. In Bull [33], pages 279–299.

41. Martin V. Butz. An Algorithmic Description of ACS2. In Lanzi et al. [149],
pages 211–229.

42. Martin V. Butz. Kernel-based, Ellipsoidal Conditions in the Real-Valued XCS
Classifier System. In Beyer et al. [19], pages 1835–1842.

43. Martin V. Butz. Rule-Based Evolutionary Online Learning Systems: A Princi-
pled Approach to LCS Analysis and Design, volume 191 of Studies in Fuzziness
and Soft Computing. Springer, 2006.

44. Martin V. Butz, July 2007. Personal Communication.
45. Martin V. Butz and David E. Goldberg. Bounding the population size in XCS

to ensure reproductive opportunities. In Cantú-Paz et al. [60], pages 1844–
1856.

46. Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Gradient Descent
Methods in Learning Classifier Systems: Improving XCS Performance in Mul-
tistep Problems. Technical Report 2003028, Illinois Genetic Algorithms Labo-
ratory, December 2003.

47. Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Bounding Learning
Time in XCS. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-
Georg Beyer, Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario
Floreano, James A. Foster, Mark Harman, Owen Holland, Pier Luca Lanzi,
Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andrew M. Tyrrell, ed-
itors, Genetic and Evolutionary Computation - GECCO 2004, Genetic and
Evolutionary Computation Conference, Seattle, WA, USA, June 26-30, 2004,
Proceedings, volume 3102 of Lecture Notes in Computer Science. Springer Ver-
lag, 2004.

272 References

48. Martin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Gradient Descent
Methods in Learning Classifier Systems: Improving XCS Performance in Mul-
tistep Problems. IEEE Transactions on Evolutionary Computation, 9(5):452–
473, October 2005. Also IlliGAl TR No. 2003028.

49. Martin V. Butz, David E. Goldberg, and Wolfgang Stolzmann. Introducing a
Genetic Generalization Pressure to the Anticipatory Classifier System Part I:
Theoretical Approach. In Proceedings of the 2000 Genetic and Evolutionary
Computation Conference (GECCO 2000), pages 34–41, 2000.

50. Martin V. Butz, David E. Goldberg, and Kurian Tharakunnel. Analysis and
Improvement of Fitness Exploitation in XCS: Bounding Models, Tournament
Selection and Bilateral Accuracy. Evolutionary Computation, 11:239–277, 2003.

51. Martin V. Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart Wilson. Toward a
Theory of Generalization and Learning in XCS. IEEE Transaction on Evolu-
tionary Computation, 8:28–46, 2004.

52. Martin V. Butz, Tim Kovacs, Pier Luca Lanzi, and Stewart W. Wilson. How
XCS Evolves Accurate Classifiers. In Spector et al. [206], pages 927–934.

53. Martin V. Butz, Pier Luca Lanzi, and Stewart W. Wilson. Hyper-ellipsoidal
conditions in XCS: Rotation, linear approximation, and solution structure. In
Keijzer et al. [131], pages 1457–1464.

54. Martin V. Butz and Martin Pelikan. Analyzing the Evolutionary Pressures in
XCS. In Spector et al. [206], pages 935–942.

55. Martin V. Butz and Martin Pelikan. Studying XCS/BOA learning in Boolean
functions: structure encoding and random Boolean functions. In Keijzer et al.
[131], pages 1449–1456.

56. Martin V. Butz, Martin Pelikan, Xavier Llorá, and David E. Goldberg. Auto-
mated global structure extraction for effective local building block processing
in XCS. Evolutionary Computation, 14(3), September 2006.

57. Martin V. Butz, Kumara Sastry, and David E. Goldberg. Tournament selec-
tion: Stable fitness pressure in XCS. In Cantú-Paz et al. [60], pages 1857–1869.

58. Martin V. Butz and Stewart W. Wilson. An Algorithmic Descriprion of XCS.
In Bull et al. [38], pages 144–153.

59. Matrin V. Butz, David E. Goldberg, and Pier Luca Lanzi. Computational
Complexity of the XCS Classifier System. In Bull and Kovacs [37].

60. Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis, Rajku-
mar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K. Standish, Graham
Kendall, Stewart W. Wilson, Mark Harman, Joachim Wegener, Dipankar Das-
gupta, Mitchell A. Potter, Alan C. Schultz, Kathryn A. Dowsland, Natasa
Jonoska, and Julian F. Miller, editors. Genetic and Evolutionary Computation
- GECCO 2003, Genetic and Evolutionary Computation Conference, Chicago,
IL, USA, July 12-16, 2003. Proceedings, volume 2723 of Lecture Notes in Com-
puter Science. Springer, 2003.

61. Jorge Casillas, Brian Carse, and Larry Bull. Fuzzy-XCS: A Michigan Genetic
Fuzzy System. IEEE Transactions on Furrz Systems, 15(4), August 2007.

62. Keith Chalk and George D. Smith. Multi-Agent Classifier Systems and the Iter-
ated Prisoner’s Dilemma. In George D. Smith, Nigel C. Steele, and Rudolf F.
Albrecht, editors, Artificial Neural Networks and Genetic Algorithms, pages
615–618. Springer, 1997.

63. Hugh Chipman, Edward I. George, and Robert E. McCulloch. Bayesian Treed
Models. Machine Learning, 48(1–3):299–320, July 2002.

References 273

64. Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. Bayesian
CART Model Search. Journal of the American Statistical Association,
93(443):935–948, September 1998.

65. David Corne, Zbigniew Michalewicz, Marco Dorigo, Gusz Eiben, David Fogel,
Carlos Fonseca, Garrison Greenwood, Tan Kay Chen, Guenther Raidl, Ali Za-
lzala, Simon Lucas, Ben Paechter, Jennifier Willies, Juan J. Merelo Guervos,
Eugene Eberbach, Bob McKay, Alastair Channon, Ashutosh Tiwari, L. Gwenn
Volkert, Dan Ashlock, and Marc Schoenauer, editors. Proceedings of the 2005
IEEE Congress on Evolutionary Computation, volume 3. IEEE Press, 2005.

66. David Corne, Zbigniew Michalewicz, Marco Dorigo, Gusz Eiben, David Fogel,
Carlos Fonseca, Garrison Greenwood, Tan Kay Chen, Guenther Raidl, Ali Za-
lzala, Simon Lucas, Ben Paechter, Jennifier Willies, Juan J. Merelo Guervos,
Eugene Eberbach, Bob McKay, Alastair Channon, Ashutosh Tiwari, L. Gwenn
Volkert, Dan Ashlock, and Marc Schoenauer, editors. Proceedings of the 2005
IEEE Congress on Evolutionary Computation, volume 1. IEEE Press, 2005.

67. Don Coursey and Hans Nyquist. On Least Absolute Error Estimation of Linear
Regression Models with Dependent Stable Residuals. The Review of Economics
and Statistics, 65(4):687–692, November 1983.

68. Hai H. Dam, Hussien A. Abbass, and Chris Lokan. BCS: Bayesian Learn-
ing Classifier System. Technical Report TR-ALAR-200604005, The Artificial
Life and Adaptic Robotics Laboratory, School of Information Technology and
Electrical Engineering, University of New South Wales, 2006.

69. R. Dearden, N. Friedman, and S. Russel. Bayesian Q-Learning. In Proceedings
of the 15th National Conference on Artificial Intelligens, Menlo Park, CA,
USA, 1998.

70. T. Degris, O. Sigaud P.-H., and Wuillemin. Learning the Structure of Factored
Markov Decision Processes in Reinforcement Learning Problems. In Proceed-
ings of the 23rd International Conference on Machine Learning (ICML’2006),
pages 257–264, CMU, Pennsylvania, USA, 2006.

71. Morris H. DeGroot. Lindley’s Paradox: Comment. Journal of the American
Statistical Association, 77(378):337–339, June 1982.

72. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society
B, 39:1–38, 1977.

73. David G. T. Denison, Christopher C. Holmes, Bani K. Mallick, and Adrian
F. M. Smith. Bayesian Methods for Nonlinear Classification and Regression.
Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., 2002.

74. David L. Donoho and Iain M. Johnstone. Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81:425–455, 1994.

75. Marco Dorigo and Hugues Bersini. A Comparison of Q-Learning and Classifier
Systems. In Dave Cliff, Philip Husbands, Jean-Arcady Meyer, and Stewart W.
Wilson, editors, From Animals to Animats 3. Proceedings of the Third In-
ternational Conference on Simulation of Adaptive Behavior (SAB94), pages
248–255. A Bradford Book. MIT Press, 1994.

76. Marco Dorigo and U. Schnepf. Genetic-based Machine Learning and Behaviour
Based Robotics: A New Synthesis. IEEE Transactions on Systems, Man and
Cybernetics, 23(1), 1993.

77. Scott C. Douglas. A Family of Normalized LMS Algorithms. IEEE Signal
Processing Letters, SPL-1(3):49–51, March 1994.

274 References

78. Jan Drugowitsch and Alwyn M. Barry. XCS with Eligibility Traces. In Beyer
et al. [19], pages 1851–1858.

79. Jan Drugowitsch and Alwyn M. Barry. A Formal Framework and Extensions
for Function Approximation in Learning Classifier Systems. Technical Report
2006–01, University of Bath, U.K., January 2006.

80. Jan Drugowitsch and Alwyn M. Barry. A Formal Framework for Reinforce-
ment Learning with Function Approximation in Learning Classifier Systems.
Technical Report 2006–02, University of Bath, U.K., January 2006.

81. Jan Drugowitsch and Alwyn M. Barry. Towards Convergence of Learning
Classifier Systems Value Iteration. Technical Report 2006–03, University of
Bath, U.K., April 2006.

82. Jan Drugowitsch and Alwyn M. Barry. Towards Convergence of Learning
Classifier Systems Value Iteration. In Proceedings of the 9th International
Workshop on Learning Classifier Systems, pages 16–20, 2006.

83. Jan Drugowitsch and Alwyn M. Barry. Generalised Mixtures of Experts, Inde-
pendent Expert Training, and Learning Classifier Systems. Technical Report
2007–02, University of Bath, April 2007.

84. Jan Drugowitsch and Alwyn M. Barry. Mixing independent classifiers. In
Thierens et al. [219], pages 1596–1603. Also TR CSBU-2006-13.

85. Michael Duff. Optimal learning: Computational procedures for Bayes-adaptive
Markov decision processes. PhD thesis, University of Massachusetts Amherst,
2002.

86. Mohammed Odeh Faten Kharbat, Larry Bull. Revisiting genetic selection in
the XCS learning classifier system. In Corne et al. [65], pages 2061–2068.

87. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annual
Eugenics, 7(2):179–188, 1963.

88. Terence C. Fogarty, Larry Bull, and Brian Carse. Evolving Multi-Agent Sys-
tems. In J. Periaux and G. Winter, editors, Genetic Algorithms in Engineering
and Computer Science, pages 3–22. John Wiley & Sons, 1995.

89. Stephanie Forrest and John H. Miller. Emergent behavior in classifier systems.
In Stephanie Forrest, editor, Emergent Computation. Proceedings of the Ninth
Annual International Conference of the Center for Nonlinear Studies on Self-
organizing, Collective, and Cooperative Phenomena in Natural and Artificial
Computing Networks. A special issue of Physica D. Stephanie Forrest (Ed.),
volume 42, pages 213–217. Elsevier Science Publishers, 1990.

90. P. Gérard, J.-A. Meyer, and O. Sigaud. Combining Latent Learning with
Dynamic Programming in MACS. European Journal of Operational Research,
160:614–637, 2005.

91. P. Gérard and O. Sigaud. Adding a Generalization Mechanism to YACS. In
Spector et al. [206], pages 951–957.

92. P. Gérard and O. Sigaud. YACS : Combining Anticipation and Dynamic Pro-
gramming in Classifier Systems. In Lanzi et al. [151], pages 52–69.

93. P. Gérard and O. Sigaud. Designing Efficient Exploration with MACS: Modules
and Function Approximation. In Cantú-Paz et al. [60], pages 1882–1893.

94. Mark N. Gibbs. Bayesian Gaussian Processes for Regression and Classification.
PhD thesis, University of Cambridge, 1997.

95. Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization Theory
and Neural Networks Architectures. Neural Computation, 7:219–269, 1995.

96. David E. Goldberg. Genetic Algorithms in Search, Optimisation, and Machine
Learning. Addison-Wesley, MA, 1989.

References 275

97. Geoffrey J. Gordon. Stable Function Approximation in Dynamic Programming.
In Armand Prieditis and Stuart Russell, editors, Proceedings of the Twelfth
International Conference on Machine Learning, pages 261–268, San Francisco,
CA, USA, 1995. Morgan Kaufmann.

98. Franklin A. Graybill. An Introduction to Linear Statistical Models, volume 1.
McGraw-Hill Education, 1961.

99. A. Greenyer. The use of a learning classifier system JXCS. In P. van der Putten
and M. van Someren, editors, CoIL Challenge 2000: The Insurance Company
Case. Leiden Institute of Advanced Computer Science, June 2000. Technical
report 2000-09.

100. John J. Grefenstette, editor. Proceedings of the 2nd International Conference
on Genetic Algorithms (ICGA87), Cambridge, MA, July 1987. Lawrence Erl-
baum Associates.

101. John J. Grefenstette. Evolutionary Algorithms in Robotics. In M. Jamshedi
and C. Nguyen, editors, Robotics and Manufacturing: Recent Trends in Re-
search, Education and Applications, v5. Proc. Fifth Intl. Symposium on
Robotics and Manufacturing, ISRAM 94, pages 65–72. ASME Press: New York,
1994. http://www.ib3.gmu.edu/gref/.

102. Peter D. Grünwald. A tutorial introduction to the minimum description length.
In Peter Grünwald, Jae Myung, and Mark A. Pitt, editors, Advances in Min-
imum Description Length Theory and Applications, Neural Information Pro-
cessing Series, chapter 1 & 2, pages 3–79. MIT Press, Cambridge, MA, USA,
2005.

103. D. Harrison and D. L. Rubinfeld. Hedonic Prices and the Demand for Clean
Air. Journal of Environmental Economic and Management, 5:81–102, 1978.

104. Sherif Hashem. Optimal Linear Combination of Neural Networks. PhD thesis,
Purdue University, December 1993.

105. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer Series
in Statistics. Springer, 2001.

106. W. K. Hastings. Monte Carlo sampling using Markov chains and their appli-
cations. Biometrika, 57:97–109, 1970.

107. Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
International, Upper Saddle River, NJ, 2nd edition, 1999.

108. Simon Haykin. Adaptive Filter Theory. Information and System Sciences
Series. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2002.

109. John A. Hertz and Richard G. Palmer. Introduction to the Theory of Neural
Computation. Westview Press, 1991.

110. Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volin-
sky. Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4):382–417,
1999.

111. Joseph Hofbauer and Karl Sigmund. Evolutionary Games and Replicator Dy-
namics. Cambridge University Press, 1998.

112. John H. Holland. Hierachical descriptions of universal spaces and adaptive sys-
tems. Technical Report ORA Projects 01252 and 08226, University of Michi-
gan, 1968.

113. John H. Holland. Processing and processors for schemata. In E. L. Jacks, edi-
tor, Associative Information Processing, pages 127–146. New York: American
Elsevier, 1971.

276 References

114. John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975. Republished by the MIT press, 1992.

115. John H. Holland. Properties of the bucket brigade. In John J. Grefenstette,
editor, Proceedings of the 1st International Conference on Genetic Algorithms
and their Applications (ICGA85), pages 1–7. Lawrence Erlbaum Associates:
Pittsburgh, PA, July 1985.

116. John H. Holland. A Mathematical Framework for Studying Learning in Clas-
sifier Systems. Physica D, 22:307–317, 1986.

117. John H. Holland. Escaping Brittleness: The Possibilities of General-Purpose
Learning Algorithms Applied to Parallel Rule-Based Systems. In Mitchell,
Michalski, and Carbonell, editors, Machine Learning, an Artificial Intelligence
Approach. Volume II, chapter 20, pages 593–623. Morgan Kaufmann, 1986.

118. John H. Holland, Lashon B. Booker, Marco Colombetti, Marco Dorigo,
David E. Goldberg, Stephanie Forrest, Rick L. Riolo, Robert E. Smith,
Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson. What is a
Learning Classifier System? In Lanzi et al. [148], pages 3–32.

119. John H. Holland and J. S. Reitman. Cognitive systems based on adaptive
algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-directed
Inference Systems. New York: Academic Press, 1978. Reprinted in: Evolution-
ary Computation. The Fossil Record. David B. Fogel (Ed.) IEEE Press, 1998.
ISBN: 0-7803-3481-7.

120. Rob J. Hyndman. Computing and graphing highest density regions. The
American Statistician, 50(2):120–126, May 1996.

121. Tommi S. Jaakkola. Tutorial on variational approximation methods. In Man-
fred Opper and David Saad, editors, Advanced Mean Field Methods, pages
129–160. MIT Press, 2001.

122. Tommi S. Jaakkola and Michael I. Jordan. Bayesian parameter estimation via
variational methods. Statistics and Computing, 10(1):25–37, 2000.

123. R. A. Jacobs, M. I. Jordan, S. Nowlan, and G. E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3:1–12, 1991.

124. M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6:181–214, 1994.

125. Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and Acting in Partially Observable Stochastic Domains. Artificial Intel-
ligence, 101:99–134, 1998.

126. Rudolph Emil Kalman. A New Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

127. Rudolph Emil Kalman and R. S. Bucy. New results in linear filtering and
prediction theory. Transactions ASME, Part D (J. Basic Engineering), 83:95–
108, 1961.

128. Michael J. Kearns, Yishay Mansour, Andrew Y. Ng, and Dana Ron. An ex-
perimental and theoretical comparison of model selection methods. Machine
Learning, 27:7–50, 1997.

129. Michael J. Kearns and S. Singh. Near-optimal Reinforcement Learning in Poly-
nomial Time. In Proceedings of the 15th International Conference on Machine
Learning, pages 260–268, San Francisco, CA, USA, 1998. Morgan Kaufmann.

130. Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, Cambridge, MA, USA, 1994.

References 277

131. Maarten Keijzer, Mike Cattolico, Dirk Arnold, Vladan Babovic, Christian
Blum, Peter Bosman, Martin V. Butz, Carlos Coello Coello, Dipankar Das-
gupta, Sevan G. Ficici, James Foster, Arturo Hernandez-Aguirre, Greg Hornby,
Hod Lipson, Phil McMinn, Jason Moore, Guenther Raidl, Franz Rothlauf,
Conor Ryan, and Dirk Thierens, editors. GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, Seattle, Wash-
ington, USA, 8–12 JulyJuly 2006. ACM Press.

132. Vijay R. Konda and John N. Tsitsiklis. On actor-critic algorithms. SIAM
Journal on Control and Optimization, 42(4):1143–1166, 2003.

133. Tim Kovacs. Evolving Optimal Populations with XCS Classifier Systems. Mas-
ter’s thesis, School of Computer Science, University of Birmingham, Birm-
ingham, U.K., 1996. Also technical report CSR-96-17 and CSRP-96-17
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-17.ps.gz.

134. Tim Kovacs. Deletion schemes for classifier systems. In Banzhaf et al. [10],
pages 329–336. Also TR CSRP-99-08, School of Computer Science, University
of Birmingham.

135. Tim Kovacs. Strength or accuracy? A comparison of two approaches to fitness
calculation in learning classifier systems. In Annie S. Wu, editor, Proceed-
ings of the 1999 Genetic and Evolutionary Computation Conference Workshop
Program, pages 258–265, 1999.

136. Tim Kovacs. A Comparison and Strength and Accuracy-based Fitness in Learn-
ing Classifier Systems. PhD thesis, University of Birmingham, 2002.

137. Tim Kovacs. Two views of classifier systems. In Lanzi et al. [149], pages 74–87.
138. Tim Kovacs. What should a classifier systems learn and how should we measure

it? In Bull et al. [38], pages 171–182.
139. Tim Kovacs and Larry Bull. Towards a better understanding of rule initiali-

sation and deletion. In Thierens et al. [219], pages 2777–2780.
140. Tim Kovacs, Xavier Llorá, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolz-

mann, and Stewart W. Wilson, editors. Learning Classifier Systems: Interna-
tional Workshops, IWLCS 2003–2005, Revised Selected Papers, volume 4399
of LNAI. Springer, 2007.

141. Pier Luca Lanzi. Learning Classifier Systems from a Reinforcement Learning
Perspective. In Bull et al. [38], pages 162–170.

142. Pier Luca Lanzi, Martin V. Butz, and David E. Goldberg. Empirical Analysis
of Generalization and Learning in XCS with Gradient Descent. In Thierens
et al. [219], pages 1814–1821.

143. Pier Luca Lanzi and Daniele Loiacono. Standard and averaging reinforcement
learning in XCS. In Keijzer et al. [131], pages 1489–1496.

144. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Extending XCSF Beyond Linear Approximation. In Beyer et al. [19], pages
1827–1834.

145. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Generalization in the XCSF Classifier Systems: Analysis, Improvement, and
Extenstion. Technical Report 2005012, Illinois Genetic Algorithms Laboratory,
March 2005.

146. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Generalization in the XCSF Classifier System: Analysis, Improvement, and
Extension. Evolutionary Computation, 15(2):133–168, 2007.

278 References

147. Pier Luca Lanzi and Alessandro Perrucci. Extending the Representation of
Classifier Conditions Part II: From Messy Coding to S-Expressions. In Banzhaf
et al. [10], pages 345–253.

148. Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. Learn-
ing Classifier Systems. From Foundations to Applications, volume 1813 of
LNAI. Springer-Verlag, Berlin, 2000.

149. Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors. IWLCS
’01: Revised Papers from the 4th International Workshop on Advances in
Learning Classifier Systems, volume 2321 of LNAI. Springer-Verlag, London,
UK, 2002.

150. Pier Luca Lanzi and Stewart W. Wilson. Using convex hulls to represent
classifier conditions. In Keijzer et al. [131], pages 1481–1488.

151. Pier Luca Lanzi, W. Wolfgang Stolzmann, and Stewart W. Wilson, editors.
Advances in Learning Classifier Systems, volume 1996 of LNAI. Springer-
Verlag, Berlin, 2001.

152. Michael Littman, September 2006. Personal Communication.
153. Xavier Llorá, July 2007. Personal Communication.
154. Xavier Llorá and Josep M. Garrell. Knowledge-Independent Data Mining with

Fine-Grained Parallel Evolutionary Algorithms. In Spector et al. [206], pages
461–468.

155. Xavier Llorá, Rohith Reddy, Brian Matesic, and Rohit Bhargava. Towards
Better than Human Capability in Diagnosing Prostate Cancer Using Infrared
Spectroscopic Imaging. In Thierens et al. [219], pages 2098–2105.

156. Xavier Llorá, Kumara Sastry, and David E. Goldberg. The Compact Classifier
System: Motivation, Analysis and First Results. In Corne et al. [66], pages
596–603. Also IlliGAl TR No. 2005019.

157. Xavier Llorá, Kumara Sastry, David E. Goldberg, and Luis de la Ossa. The χ-
ary Extended Compact Classifier System: Linkage Learning in Pittsburgh LCS.
In Proceedings of the International Workshop on Learning Classifier Systems
(IWLCS-2006), to appear. Also IlliGAl TR No. 2006015.

158. Daniele Loiacono, Jan Drugowitsch, Alwyn M. Barry, and Pier Luca Lanzi.
Improving Classifier Error Estimate in XCSF. In Proceedings of the 9th Inter-
national Workshop on Learning Classifier Systems, 2006.

159. Daniele Loiacono and Pier Luca Lanzi. Neural Networks for Classifier Pre-
diction in XCSF. In Stefano Cagnoni, Pierre Collet, Giuseppe Nicosia, and
Leonardo Vanneschi, editors, Proceeding of the Workshop on Evolutionary
Computation (EC)2AI), pages 36–40, August 2006.

160. Daniele Loiacono, Andrea Marelli, and Pier Luca Lanzi. Support Vector Re-
gression for Classifier Prediction. In Thierens et al. [219], pages 1806–1813.

161. Sean Luke and Liviu Panait. A comparison of bloat control methods for genetic
programming. Evolutionary Computation, 14(3):309–344, 2006.

162. David J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–
447, May 1992.

163. J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297. University of Claifornia
Press, 1967.

164. Ester Bernadó Mansilla and Josep M. Garrell Guiu. Accuracy-based learn-
ing classifier systems: Models, analysis and applications to classification tasks.
Evolutionary Computation, 11(3):209–238, 2003.

References 279

165. Ester Bernadó Mansilla, Xavier Llorá, and Josep M. Garrell Guiu. XCS and
GALE: A Comparative Study of Two Learning Classifier Systems on Data
Mining. In Lanzi et al. [149], pages 115–132.

166. James A. R. Marshall, Gavin Brown, and Tim Kovacs. Bayesian estimation
of rule accuracy in UCS. In GECCO ’07: Proceedings of the 2007 GECCO
conference companion on Genetic and evolutionary computation, pages 2831–
2834, New York, NY, USA, 2007. ACM Press.

167. James A. R. Marshall and Tim Kovacs. A representational ecology for learning
classifier systems. In Keijzer et al. [131], pages 1529–1536.

168. Peter S. Maybeck. Stochastic Models, Estimation, and Control. Volume 1,
volume 141 of Mathematics in Science and Engineering. Academic Press, Inc.,
New York, 1979.

169. P. McCullach and J. A. Nelder. Generalized Linear Models. Monographs on
Statistics and Applied Probability. Chapman and Hall, 1983.

170. Alex McMahon, Dan Scott, and Will Browne. An autonomous explore/exploit
strategy. In GECCO ’05: Proceedings of the 2005 workshops on Genetic and
evolutionary computation, pages 103–108, New York, NY, USA, 2005. ACM
Press.

171. Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, February
1998.

172. Tom Mitchell. Machine Learning. McGraw Hill, 1997.
173. Johann Mitlöhner. Classifier systems and economic modelling. In APL ’96.

Proceedings of the APL 96 Conference on Designing the Future, volume 26 (4),
pages 77–86, 1996.

174. D. J. Mook and J. L. Junkins. Minimum Model Error Estimation for Poorly
Modeled Dynamic Systems. Journal of Guidance, Control and Dynamics,
11(3):256–261, May–June 1988.

175. Alberto Moraglio, November 2006. Personal Communication.
176. David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. Evolution-

ary Algorithms for Reinforcement Learning. Journal of Artificial Intelligence
Research, 11:199–229, 1999. http://www.ib3.gmu.edu/gref/papers/moriarty-
jair99.html.

177. Ian T. Nabney. Netlab: Algorithms for Pattern Recognition. Springer, 2002.
178. Radford Neal and Geoffrey E. Hinton. A View of the EM Algorithm that

Justifies Incremental, Sparse, and other Variants. In Michael I. Jordan, editor,
Learning in Graphical Models, pages 355–368. MIT Press, Cambridge, MA,
USA, 1999.

179. Toby O’Hara and Larry Bull. A Memetic Accuracy-based Neural Learning
Classifier System. In Corne et al. [65], pages 2040–2045.

180. Toby O’Hara and Larry Bull. Backpropagation in Accuracy-based Neural
Learning Classifier Systems. In Kovacs et al. [140], pages 26–40.

181. Dirk Ormoneit and Saunak Sen. Kernel-Based Reinforcement Learning. Ma-
chine Learning, 49(2-3):161–178, 2002.

182. Albert Orriols-Puig and Ester Bernadó-Mansilla. Class Imbalance Problem in
the UCS Classifier System: Fitness Adaptation. In Corne et al. [66], pages
604–611.

183. Albert Orriols-Puig and Ester Bernadó-Mansilla. Bounding XCS’s Parameters
for Unbalanced Datasets. In Keijzer et al. [131], pages 1561–1568.

280 References

184. Albert Orriols-Puig, David E. Goldberg, Kumara Sastry, and Ester Bernadó
Mansilla. Modeling XCS in Class Imbalances: Population Size and Parameter
Settings. In Thierens et al. [219], pages 1838–1846.

185. Albert Orriols-Puig, Kumara Satary, Pier Luca Lanzi, David E. Goldberg, and
Ester Bernadó Mansilla. Modeling Selection Pressure in XCS for Proportionate
and Tournament Selection. In Thierens et al. [219], pages 1846–1854.

186. Martin Pelikan. Hierarchical Bayesian Optimization Algorithm: Toward a New
Generation of Evolutionary Algorithms. Studies in Fuzziness and Soft Com-
puting. Springer, 2005.

187. Martin Pelikan, Kumara Sastry, and Erick Cantu-Paz, editors. Scalable Opti-
mization via Probabilistic Modeling: From Algorithms to Applications. Studies
in Computational Intelligence. Springer, 2006.

188. Michael Peter Perrone. Improving Regression Estimation: Averaging Methods
for Variance Reduction with Extensions to General Convex Measure Optimiza-
tion. PhD thesis, Brown University, May 1993.

189. Justus H. Piater, Paul R. Cohen, Xiaoqin Zhang, and Michael Atighetchi.
A Randomized ANOVA Procedure for Comparing Performance Curves. In
ICML ’98: Proceedings of the Fifteenth International Conference on Machine
Learning, pages 430–438, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

190. Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic so-
lution to discrete Bayesian reinforcement learning. In Proceeding of the 23rd
international conference on machine learning, volume 148 of ACM Interna-
tional Conference Proceeding Series, pages 697–704, 2006.

191. Rick L. Riolo. Bucket Brigade Performance: I. Long Sequences of Classifiers.
In Grefenstette [100], pages 184–195.

192. Rick L. Riolo. Bucket Brigade Performance: II. Default Hierarchies. In Grefen-
stette [100], pages 196–201.

193. Jorma Rissanen. Modeling by the shortest data description. Automatica,
14:465–471, 1978.

194. Jorma Rissanen. A universal prior for integers and estimation by minimum
description length. Annals of Statistics, 11:416–431, 1983.

195. Jorma Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific,
Singapore, 1989.

196. Jorma Rissanen. Fisher information and stochastic complexity. IEEE Trans-
actions on Information Theory, 42(1):40–47, 1996.

197. Gavin Rummery and Mahesan Niranja. On-line Q-Learning using Connec-
tionist Systems. Technical Report 166, Engineering Department, University of
Cambridge, 1994.

198. Ralf Schoknecht. Optimality of Reinforcement Learning Algorithms with Lin-
ear Function Approximation. In Proceedings of the 15th Neural Information
Processing Systems conference, pages 1555–1562, 2002.

199. Ralf Schoknecht and Artur Merke. Convergent Combinations of Reinforcement
Learning with Linear Function Approximation. In Proceedings of the 15th
Neural Information Processing Systems conference, pages 1579–1586, 2002.

200. Ralf Schoknecht and Artur Merke. TD(0) Converges Provably Faster than
the Residual Gradient Algorithm. In ICML ’03: Proceedings of the twentieth
international conference on Machine Learning, pages 680–687, 2003.

201. Robert E. Smith. Memory Exploitation in Learning Classifier Systems. Evo-
lutionary Computation, 2(3):199–220, 1994.

References 281

202. Robert E. Smith, B. A. Dike, B. Ravichandran, A. El-Fallah, and R. K. Mehra.
The Fighter Aircraft LCS: A Case of Different LCS Goals and Techniques. In
Lanzi et al. [148], pages 283–300.

203. S. F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD
thesis, University of Pittsburgh, 1980.

204. S. F. Smith. Flexible Learning of Problem Solving Heuristics through Adap-
tive Search. In Proceedings Eight International Joint Conference on Artificial
Intelligence, pages 422–425, 1983.

205. S. F. Smith. Adaptive learning systems. In R. Forsyth, editor, Expert Systems:
Principles and Case Studies, pages 169–189. Chapman and Hall, 1984.

206. Lee Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H Gar-
zon, and Edmund Burke, editors. GECCO-2001: Proceedings of the Genetic
and Evolutionary Computation Conference, San Francisco, CA, USA, 7-11 July
2001. Morgan Kaufmann.

207. Statlib dataset archive. From StatLib – Data, Software and News from the
Statistics Community. http://lib.stat.cmu.edu/.

208. Wolfgang Stolzmann. Anticipatory Classifier Systems. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon,
D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming, pages
658–664. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 1998.

209. Christopher Stone and Larry Bull. For real! XCS with continuous-valued
inputs. Evolutionary Computation, 11(3):299–336, 2003. Also UWE TR
UWELCSG02-007.

210. Alexander L. Strehl. Model-Based Reinforcement Learning in Factored MDPs.
In IEEE Symposium on Approximate Dynamic Programming, pages 103–110,
2007.

211. Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L.
Littman. PAC Model-Free Reinforcement Learning. In Proceedings of the 23rd
International Conference on Machine Learning (ICML 2006), pages 881–888,
Pittsburgh, PA, USA, 2006.

212. Malcolm J. A. Strens. A Bayesian Framework for Reinforcement Learning.
In ICML ’00: Proceedings of the Seventeenth International Conference on Ma-
chine Learning, pages 943–950, San Francisco, CA, USA, 2000. Morgan Kauf-
mann Publishers Inc.

213. Richard S. Sutton. Value-function hypothesis. From
Reinforcement Learning and Artificial Intelligence.
http://rlai.cs.ualberta.ca/RLAI/valuefunctionhypothesis.html.

214. Richard S. Sutton. Learning to predict by the method of temporal differences.
Machine Learning, 3:9–44, 1988.

215. Richard S. Sutton. Generalization in Reinforcement Learning: Successful Ex-
amples Using Sparse Coarse Coding. In David S. Touretzky, Michael C. Mozer,
and Michael E. Hasselmo, editors, Advances in Neural Information Processing
Systems, volume 8, pages 1038–1044, Cambridge, MA, USA, 1996. MIT Press.

216. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, USA, 1998.

217. Gilbert Syswerda. Uniform Crossover in Genetic Algorithms. In Proceedings
of the 3rd International Conference on Genetic Algorithms, pages 2–9, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

282 References

218. Kreangsak Tamee, Larry Bull, and Ouen Pinngern. Towards Clustering with
XCS. In Thierens et al. [219], pages 1854–1860.

219. Dirk Thierens, Hans-Georg Beyer, Mauro Birattari, Josh Bongard, Jürgen
Branke, John Andrew Clark, Dave Cliff, Clares Bates Congdon, Kalzanmoy
Deb, Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason
Moore, Frank Neumann, Martin Pelikan, Riccardo Poli, Kumara Sastry, Ken-
neth Owen Stanley, Thomas Stützle, Richard A. Watson, and Ingo Wegener,
editors. GECCO-2007: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation Congerece 2007, volume 2. ACM Press, July
2007.

220. A.N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. Winston,
1977.

221. John Tsitsiklis and Benjamin Van Roy. Feature-Based Methods for Large Scale
Dynamic Programming. Machine Learning, 22:59–94, 1996.

222. John Tsitsiklis and Benjamin Van Roy. An Analysis of Temporal-Difference
Learning with Function Approximation. IEEE Transactions on Automatic
Control, 42(5):674–690, May 1997.

223. Naonori Ueda and Zoubin Ghahramani. Bayesian model search for mixture
models based on optimizing variational bounds. Neural Networks, 15:1223–
1241, 2002.

224. P. J. van Laarhoven and E. H. Aarts. Simulated Annealing: Theory and Ap-
plications. Springer, June 1987.

225. Vladimir N. Vapnik. An Overview of Statistical Learning Theory. IEEE Trans-
actions on Neural Networks, 10(5):988–999, September 1999.

226. Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer,
1999.

227. G. Venturini. Apprentissage Adaptatif et Apprentissage Supervisé par Algo-
rithme Génétique. PhD thesis, Université de Paris-Sud, 1994.

228. Nickolas Vriend. Self-Organization of Markets: An Example of a Computa-
tional Approach. Computational Economics, 8(3):205–231, 1995.

229. Atsushi Wada, Keiki Takadama, and Katsunori Shimohara. Counter Example
for Q-Bucket-Brigade under Prediction Problema. In Kovacs et al. [140], pages
130–145.

230. Atsushi Wada, Keiki Takadama, Katsunori Shimohara, and Osamu Katai. Is
Gradient Descent Method Effective for XCS? Analysis of Reinforcement Pro-
cess in XCSG. In Wolfgang Stolzmann et al., editor, Proceedings of the Seventh
International Workshop on Learning Classifier Systems, 2004, LNAI, Seattle,
WA, June 2004. Springer Verlag.

231. Atsushi Wada, Keiki Takadama, Katsunori Shimohara, and Osamu Katai.
Learning Classifier System with Convergence and Generalisation. In Bull and
Kovacs [37].

232. M. Wainwright, T. Jaakkola, , and A. Willsky. A new class of upper bounds
on the log partition function. IEEE Transactions on Information Theory,
51:2313–2335, 2005.

233. Steve Waterhouse. Classification and Regression using Mixtures of Experts.
PhD thesis, Department of Engineering, University of Cambridge, 1997.

234. Steve Waterhouse, David MacKay, and Tony Robinson. Bayesian Methods for
Mixtures of Experts. In David S. Touretzky, Michael C. Mozer, and Michael E.
Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages
351–357. MIT Press, 1996.

References 283

235. Christopher J.C.H. Watkins. Learning from delayed rewards. PhD thesis,
University of Cambridge, Psychology Department, 1989.

236. Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, 1992.

237. Eric W. Weisstein. Banach fixed point theorem,
1999. From Mathworld – a Wolfram Web Resource.
http://mathworld.wolfram.com/BanachFixedPointTheorem.html.

238. Eric W. Weisstein. Jensen’s inequality, 1999. From Mathworld – a Wolfram
Web Resource. http://mathworld.wolfram.com/JensensInequality.html.

239. Eric W. Weisstein. Relative entropy, 1999. From Mathworld – a Wolfram Web
Resource. http://mathworld.wolfram.com/RelativeEntropy.html.

240. Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. Technical
Report TR 95-401, University of North Carolina at Chapel Hill, Department
of Computer Science, April 2004.

241. Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In IRE
WESCON Convention Revord Part IV, pages 96–104, 1960.

242. R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong. An Empirical
Analysis of Collaboration Methods in Cooperative Coevolutionary Algorithms.
In Spector et al. [206], pages 1235–1242.

243. Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Com-
putation, 2(1):1–18, 1994.

244. Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Com-
putation, 3(2):149–175, 1995. http://prediction-dynamics.com/.

245. Stewart W. Wilson. Generalization in the XCS classifier system. In John R.
Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick
Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference, pages 665–674. Morgan Kaufmann, 1998. http://prediction-
dynamics.com/.

246. Stewart W. Wilson. Get real! XCS with continuous-values inputs. In Lanzi
et al. [148], pages 209–222.

247. Stewart W. Wilson. Function Approximation with a Classifier System. In
Spector et al. [206], pages 974–981.

248. Stewart W. Wilson. Classifiers that Approximate Functions. Neural Comput-
ing, 1(2-3):211–234, 2002.

249. Lei Xu. BYY harmony learning, structural RPCL, and topological self-
organizing on mixture models. Neural Networks, 15:1125–1151, 2002.

250. Lei Xu. Fundamentals, Challenges, and Advances of Statistical Learning for
Knowledge Discovery and Problem Solving: A BYY Harmony Perspective. In
Proceedings of International Converence on Neural Networks and Brain, vol-
ume 1, pages 24–55. Publishing House of Electronics Industry, Beijing, China,
October 2005.

