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Scaling of sensory information in large
neural populations shows signatures of
information-limiting correlations
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How is information distributed across large neuronal populations within a given brain area?

Information may be distributed roughly evenly across neuronal populations, so that total

information scales linearly with the number of recorded neurons. Alternatively, the neural

code might be highly redundant, meaning that total information saturates. Here we investi-

gate how sensory information about the direction of a moving visual stimulus is distributed

across hundreds of simultaneously recorded neurons in mouse primary visual cortex. We

show that information scales sublinearly due to correlated noise in these populations. We

compartmentalized noise correlations into information-limiting and nonlimiting components,

then extrapolate to predict how information grows with even larger neural populations. We

predict that tens of thousands of neurons encode 95% of the information about visual

stimulus direction, much less than the number of neurons in primary visual cortex. These

findings suggest that the brain uses a widely distributed, but nonetheless redundant code that

supports recovering most sensory information from smaller subpopulations.
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Our brains encode information about sensory features in
the activity of large neural populations. The amount of
encoded information provides an upper bound on

behavioral performance, and so exposes the efficiency and
structure of the computations implemented by the brain. The
format of this encoding reveals how downstream brain areas
ought to access the encoded information for further processing.
For example, the amount of information in visual cortex about
the drift direction of a moving visual stimulus determines how
well one could in principle discriminate different drift directions
if the brain operates at maximum efficiency, and its format tells
us how downstream motion-processing areas ought to “read out”
this information. Therefore, knowing how the brain encodes
sensory information about the world is necessary if we are to
understand the computations it performs. Unfortunately, we still
know little about how sensory information is distributed across
neuronal populations even within a single brain area. Is infor-
mation spread evenly and largely independently across neurons,
or in a way that introduces significant redundancy? In the first
scenario, one would need to record from the whole neuronal
population to get access to all available information, whereas in
the second scenario only a fraction of neurons would be needed.

The amount of information about a stimulus feature that can
be extracted from neural population activity depends on how this
activity changes with a change in the stimulus feature. For
information that can be extracted by a linear decoder, which is
the information we focus on in this work, it depends on the
neurons’ tuning curves, as well as how their activity varies across
repetitions of the same stimulus (i.e., “noise”)1–4. Due to the
variability in neural responses to repetitions of the same stimulus,
each neuron’s response provides limited information about the
stimulus feature5–9. If the noise is independent across neurons, it
can be averaged out by pooling across neurons10, and total
information would on average increase by the same amount with
every neuron added to this pool (Fig. 1a, red). This corresponds
to the first scenario in which information is spread evenly across
neurons. If, however, the trial-to-trial variations in spiking are
shared across neurons—what are referred to as “noise correla-
tions”—the situation is different. In general, depending on their
structure, noise correlations can either improve or limit the

amount of information (Fig. 1b), such that the presence of cor-
related noise alone does not predict its impact. In a theoretical
population with translation-invariant tuning curves (i.e., the
individual neurons’ tuning curves are shifted copies of each other)
and noise correlations that are larger for neurons with similar
tuning, information might quickly saturate with population
size10,11, corresponding to the second scenario (Fig. 1a, black).
Even though such correlation structures, which are traditionally
studied in sensory areas, have been observed across multiple brain
areas10,12–15, neural tuning is commonly more heterogeneous
than assumed by Zohary et al.10. A consequence of this hetero-
geneity is that sensory information might grow without bound
even with noise correlations of the aforementioned structure16.
Overall, it remains an open question if sensory information
saturates in large neural populations of human and animal
brains1.

If information saturates in such populations, then, by the
theory of information-limiting correlations (TILC)17, information
in large populations is limited exclusively by one specific com-
ponent of the noise correlations. This component introduces
noise in the direction of the change of the mean population
activity with stimulus value (e.g., drift direction; black arrow in
Fig. 1b, bottom), thus limiting information about this value.
Measuring this noise correlation component directly in neural
population recordings is difficult, as noise correlations are, in
general, difficult to estimate well18, and the information-limiting
component is usually swamped by other types of correlations that
do not limit information17,19. Fortunately, however, TILC also
predicts how information scales with population size if
information-limiting correlations are present. We thus exploited
this theory to detect the presence of information-limited corre-
lations indirectly by examining how information scales with
population size.

In this work, we search for the presence of information-
limiting correlations, by simultaneously recording the activity of
hundreds of neurons in V1 of awake mice in response to drifting
gratings, with hundreds of repeats of each stimulus. We asked
how these neurons encoded information about the direction of
the moving visual stimulus. We found that noise correlations
reduce information even within the limited neural populations we
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Fig. 1 Information scaling in large neural populations, and the impact of noise correlations on information. a The information that a population of
neurons can encode about some stimulus value is always a non-decreasing function of the population size. Information might on average increase with
every added neuron (unbounded scaling; red) if the information is evenly distributed across all neurons. In contrast, information can rapidly saturate if
information is redundant, and thus it is not strictly limited by population size, but by other factors. In general, it has only been possible to record from a very
small subset of neurons of a particular area (gray shaded), from which it is hard to tell the difference between the two scenarios if the sampled population
size is too small. b The encoded information is modulated by noise correlations. This is illustrated using two neurons with different tunings to the stimulus
value (top). The amount of information to discriminate between two stimulus values (θ1/red and θ2/blue) depends on the difference in mean population
activity (crosses) between stimuli, and the noise correlations (shaded ellipsoids) for either stimulus (bottom, showing joint neural activity of both neurons).
The information is largest when the noise is smallest in the direction of the mean population activity difference (black arrow), which leads to the largest
separation across the optimal discrimination boundary (gray line). In this example, positive correlations boost information (middle), whereas negative
correlations lower it (right), when compared to uncorrelated neurons (left). In general, the impact of noise correlations depends on how they interact with
the population’s tuning curves.
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could record. Applying TILC to compartmentalize information-
limiting correlations from nonlimiting correlations, and to
extrapolate the growth of information to larger neural popula-
tions, we found that on the order of tens of thousands of neurons
would be required to encode 95% of the information about the
direction of the moving stimulus. Given that there are hundreds
of thousands of neurons in this brain region, this means that only
a small fraction of the total population is needed to encode this
information. This is not because only a small fraction of neurons
contains information about the stimulus; rather, we found that
most neurons contain information about the stimulus, but
because information is represented redundantly, only a small
fraction of these neurons is actually needed. Notably, the size of
the required neural population depends only weakly on stimulus
contrast; thus, increasing the amount of information in this brain
area does not substantially increase the number of neurons
required to encode 95% of the information about the stimulus.
Finally, we found that the low-dimensional neural subspace that
captures a large fraction of the noise correlations does not encode
a comparably large fraction of information. Overall, our results
suggest that information in mouse V1 is both highly distributed
and highly redundant, which is true regardless of the total
amount of information encoded.

Results
Neural response to drift direction of moving visual stimuli. To
measure how sensory information scales with population size, we
used two-photon calcium imaging to record neural population
activity from layer 2/3 of V1 in awake mice observing a low-
contrast drifting grating (10% contrast). The drift direction varied
across trials, with each trial drawn pseudorandomly from eight
possible directions, spaced evenly around the circle (Fig. 2a). We
simultaneously recorded 273–386 neurons (329 on average)
across four mice and a total of 16 sessions (Fig. 2b), and analyzed
temporally deconvolved calcium activity, summed up over the
stimulus presentation period as a proxy for their spike counts
within that period. The tuning curves of individual neurons
(Fig. 2c) revealed that, on average, only a small fraction of neu-
rons (5–45% across mice/sessions, 18% average) were tuned to
the grating’s drift direction, while a larger fraction of neurons
(38–60% across mice/sessions, 48% average) were sensitive to the
grating’s orientation, but not its direction of drift. The remaining
neurons had no appreciable tuning (14–52% across mice/sessions,
34% average), but were nonetheless included in the analysis, as
they can contribute to the information that the population
encodes through noise correlations20,21. See Supplementary
Figs.1–3 for more examples of neural responses, tuning curves,
pairwise noise correlations, and raw calcium traces. We found no

significant impact of the drift direction in the previous trial on
neural responses in the current trial (Supplementary Fig. 1b and
Supplementary Table 1). Tuning curves were plotted for the sole
purpose of characterizing individual neural responses, but our fits
had no bearing on any of our further analysis.

Noise correlations limit information. To quantify stimulus
information encoded in the response of neural populations, we
asked how well a linear decoder of the recorded population
activity (i.e., information decodable by a single neural network
layer) would allow us to discriminate between a pair of drift
directions (Fig. 3a). Importantly, our aim was to measure infor-
mation that population activity conveyed about drift direction in
general, without prioritizing specific drift directions over others.
Even though subselecting a limited set of drift directions is
common in animal training, we here focused on discriminating
drift directions in pairs only as a tool to get at information about
drift direction in general, which should be more reflective of real-
world demands. We measured the decoder’s performance by
generalizing linear Fisher information, usually restricted to fine
discriminations, to coarse discrimination (Fig. 3b). This gen-
eralization is closely related to the sensitivity index d′ from signal
detection theory3,22, and has a set of appealing properties (see
“Methods”). In particular, combining the activity of two uncor-
related neural populations causes their associated Fisher infor-
mation to add, so that it does not trivially saturate like other
measures of discrimination performance (Fig. 3c, inset).

We used generalized Fisher information to measure how
information about drift direction scales with the number of
neurons in the recorded population. Because this scaling depends
on the order in which we add particular neurons to the
population (individual neurons might contribute different
amounts of additional information to a population), we measured
average scaling by averaging across a large number of different
random orderings (see “Methods”). Figure 3c shows this average
scaling for one example session for discriminating between drift
directions of 135° and 180° (arbitrary choice; as shown below,
other drift direction combinations resulted in comparable
information scaling). Information increases with population size,
but, on average, additional neurons contribute less additional
information to larger populations than to smaller ones. The
resulting sublinear scaling is expected if noise correlations limit
information. Indeed, trial-shuffling the data to remove pairwise
correlations resulted in information that scaled linearly, with
average information exceeding that of the non-shuffled data for
all population sizes except, trivially, for single neurons, and a
significantly higher total information within the recorded
population (bootstrap, p ≈ 0.0062). Such linear scaling was not
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Fig. 2 Experimental design, population recordings, and neural tuning. aMice passively observed sequences of drifting gratings (white arrows overlaid for
illustration only), interleaved with blank screens. b Example field-of-view with significantly tuned neurons color coded by their preferred orientation tuning.
c Left: example fitted tuning curves of 20 significantly tuned neurons. Right: example tuning curves (dots+ bars: raw tuning, mean ± 25–75% percentiles;
line: fitted) fitted to per-trial neural responses (dots, horizontally jittered) for an untuned (top), orientation-tuned (middle) and direction-tuned (bottom)
neuron.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20722-y ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:473 | https://doi.org/10.1038/s41467-020-20722-y |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


apparent if we measured discrimination performance by the
fraction of correct discriminations (Fig. 3c, inset), illustrating the
point that Fisher information is indeed a better measure to
analyze information scaling. Removing noise correlations resulted
in a significant information increase in all our datasets (Fig. 3d;
paired t63=−17.93, two-sided p ≈ 1.96 × 10−26; statistics com-
puted across all sessions and mice, but only across non-
overlapping δθ= 45° discriminations to avoid duplicate use of
individual drift direction trials; see Supplementary Table 2 for
avg. per-neuron information for all sessions/mice), confirming
that noise correlations indeed limit information in our recorded
populations.

To aid interpretation of the estimated amounts of Fisher
information, we translated them into quantities that are more
frequently measured in experiments. Specifically, we assumed that
the recorded neural population was used to discriminate between
two close-by drift directions in a virtual fine discrimination task
(similar to Fig. 3a). For a given estimate of Fisher information, we
could then determine the expected discrimination threshold at
which the ideal observer could correctly discriminate between two
drift directions in 80% of the trials based solely on neuronal
responses (Fig. 3e). This resulted in a discrimination threshold of

~15.2° for the Fisher information estimated from a 135° vs. 180°
discrimination (Fig. 3f). Previously reported discrimination
threshold of mice, as measured from behavioral performance,
ranged from 6.6°23 over 10–20°24, to 30–40°25. These numbers
provide an orders-of-magnitude comparison, but cannot be
directly compared to our estimate, as neither study exactly
matched the stimuli we used. Moreover, previous work has shown
that attending to a stimulus boosts the information encoded
about this stimulus26,27. As our animals were passive observers
that were not actively engaged in any task, the estimated
threshold likely underestimate discrimination capabilities. Indeed,
higher running speeds, which were previously used as a proxy for
increased attention28, resulted in increased information (as
shown previously by Dadarlat and Stryker29) and lower thresh-
olds (Supplementary Fig. 4). In line with previous findings29, this
information boost was caused by a combination of a change in
population tuning, per-neuron noise variability, and pairwise
noise correlations, rather than either of these factors in isolation
(Supplementary Fig. 5). Overall, the estimated thresholds provide
a reasonable interpretation of the information encoded in the
recorded population. Computing the discrimination threshold for
all drift direction pairs with δθ= 45° resulted in comparable
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thresholds that did not differ significantly (bootstrap, two-sided
p ≈ 0.50 for session shown in Fig. 3f, two-sided p > 0.49 for all
sessions/mice). We found comparable information across all drift
directions, confirming that we recorded from populations that
were homogeneously tuned across all drift directions.

Neural signatures of limited asymptotic information. To
identify neural signatures of limited encoded information, we
relied on the TILC that showed that noise correlations in large
populations can be compartmentalized into information-limiting
and nonlimiting components17. The limiting component is scaled
by the inverse of the asymptotic information I∞, which is where
information asymptotes in the limit of a large number of
neurons17,19. This compartmentalization allowed us to split the
information IN in a population of N neurons into the contribution
of limiting and non-limiting components (see “Methods”),
resulting in

IN ¼ 1
1
cN þ 1

I1

: ð1Þ

This expression assumes that the non-limiting component
contributes c information per neuron on average, irrespective of
the current population size. Model comparison to alternative
non-limiting component scaling models confirmed that this
assumption best fits our data (Supplementary Fig. 6b).

Increasing the population size N in Eq. (1) reveals how
information ought to scale in small populations if it is limited
in large populations (Fig. 1). Information would initially grow
linearly, closely following cN. However, for sufficiently large N, it
would start to level off and slowly approach the asymptotic
information I∞. If we were to record from a small number of
neurons, we might only observe the initial linear growth
and would wrongly conclude that no information limit exists
(Fig. 1). Therefore, simultaneously recording from sufficiently
large populations is important to identify limited asymptotic
information.

To distinguish between a population in which information
does not saturate from one in which it does, we fitted two models
to the measured information scaling. The first assumed that,
within the recorded population, information scales linearly and
without bound. We might observe this information scaling if, on
average, each neuron contributes the same amount of informa-
tion. The second model corresponds to Eq. (1), and assumes that
information asymptotes at I∞. Our fits relied on a large number of
repetitions (at least as many as the number of recorded neurons)
of the same drift direction within each experimental session to
ensure reliable, bias-corrected information estimates30. These
estimates are correlated across different population sizes, as
estimates for larger populations share data with estimates for
smaller populations. Unlike previous work that estimated how
information scales with population size31–33, we accounted for
these correlations by fitting how information increases with each
additional neuron, rather than fitting the total information for
each population size. This information increase turns out to be
statistically independent across population sizes (see “Methods”),
making the fits statistically sound and side-stepping the problem
of fitting correlated data.

Figure 4a illustrates the fit of the limited-information model to
the data of a single session. We fitted the average information
increase with each added neuron (Fig. 4a, top), and from this
predicted the total information for each population size (Fig. 4a,
bottom). Bayesian model comparison to a model that assumed
unbounded information scaling confirmed that a model with
limited asymptotic information was better able to explain the
measured information scaling (Watanabe–Akaike Information

Criterion WAICunlim=−529.25 vs. WAIClim=−531.59; smaller
is better). This was the case for almost all discriminations with
δθ= 45° across sessions and mice (Supplementary Fig. 6a).
Furthermore, the same procedure applied to the shuffled data
resulted in better model fits for the unbounded information
model, confirming that our model comparison was not a priori
biased towards the limited-information model (Supplementary
Fig. 6a). Two sets of simulations with idealized and realistic neural
models further confirmed that this model comparison was able to
recover the correct underlying information scaling (Supplemen-
tary Fig. 7). Therefore, information about drift direction is limited
in the neural population responses within our dataset.

This result of limited drift direction information was
corroborated by a second analysis. We start by observing that
Eq. (1) can be rewritten as 1/IN= a(1/N) + 1/I∞, which is linear
in the inverse population size 1/N with slope a= 1/c. Increasing
the population size, N→∞, causes the inverse information to
approach the asymptotic information, 1/IN→1/I∞. Therefore, we
can distinguish between limited asymptotic information and
unbounded information scaling (i.e., I∞→∞) by plotting 1/IN
against 1/N, and estimating its intercept at 1/N→ 0. A non-zero
intercept confirms limited asymptotic information, whereas a
zero intercept would suggest information to scale without
apparent bounds. When we analyzed the previous single-session
data, we found that the inverse information indeed tightly scales
linearly with the information population size (linear regression,
adjusted R2 ≈ 1), as predicted by the model (Fig. 4b). Further-
more, the intercept at 1/N→ 0 was significantly above zero
(linear regression, β0 ≈ 0.023, two-sided p < 10−6), suggesting that
information saturates with N. We found comparably good linear
fits for all sessions/mice across all δθ= 45° discriminations
(average adjusted R2 ≈ 0.999; Supplementary Fig. 8a), and
intercepts that were all significantly above zero (β0 ≈ 0.023,
t63= 17.95, two-sided p < 10−10 across non-overlapping discri-
minations; Supplementary Fig. 8b), confirming the results of our
model comparison.

In addition to supporting the distinction between information-
limited and unbounded information scaling, TILC also allowed us
to estimate the magnitude at which information would asymptote if
we increased the population size beyond that of our recorded
population. This is a theoretical measure that would be reached
only for infinitely large virtual populations that have the same
statistical structure as the recorded neurons. Despite this limitation,
it gives insight into the order of magnitude of the information that
we could expect to be encoded in the large populations of neurons
present in mammalian cortices. To quantify the uncertainty
associated with extrapolations beyond observed population sizes,
we relied on Bayesian model fits that provide posterior distributions
over our estimates of I∞, as illustrated in Fig. 4c. These posteriors
were comparable across the discrimination of different drift
direction pairs (Fig. 4d). Comparable information estimates across
different drift direction pairs were essential to make these estimates
meaningful, as different estimates would have implied that these
estimates are driven by neural subsets within a heterogeneous
population rather than being a statistical property of the whole
population, as desired. Furthermore, it allowed us to reduce our
uncertainty in the I∞ estimates by pooling the fits across different,
non-overlapping drift direction pairs (Fig. 4d; gray). Indeed,
Bayesian model comparison that accounts for the larger number
of parameters of multiple individual per-discrimination fits
confirmed that those were outperformed by pooled fits for all but
two experimental sessions across all tested drift direction differences
(Supplementary Fig. 9). This provided further evidence that, for a
fixed drift direction difference, the measured information scaling
was statistically indistinguishable across different discriminations
within each session.
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Comparing these pooled estimates across sessions and mice
revealed these estimates to be similar (Fig. 4e). These estimates
dropped with an increase in the angular difference δθ in the
compared drift directions, as is to be expected from a linear
decoder used to discriminate between circular quantities
(Supplementary Fig. 10). Together, these observations strongly
suggest that the recorded populations were part of a larger
population that encoded limited information about the drift
direction of the presented stimuli.

No optimal neural subpopulation across all drift directions.
The recorded population might contain neurons that are not only
untuned to drift direction but also do not contribute information
through being correlated with other neurons in the
population20,21. As our information scaling measures are

averaged across different orderings of how neurons are added to
the population, uninformative neurons would contribute at dif-
ferent population sizes across different orderings. As a result, they
make information scaling curves appear shallower than for
populations that exclude uninformative neurons. These shallower
scaling curves could in turn impact our estimates of asymptotic
information (Fig. 4).

To ensure that uninformative neurons did not significantly
affect our estimates, we asked if we could identify neural
subpopulations within the set of recorded neurons that encode
most of the information. Previous work identified such
subpopulations in auditory cortex34 and lateral prefrontal
cortex20 of monkeys, but we are not aware of any work that
has shown this for V1. To identify highly informative
subpopulations, we ordered the neurons within the recorded
population by incrementally adding the neuron that resulted in

-0.2

0

0.2

0.4
a

5%
25%
50%

75%
95%

mode

0 100 200 300
0

10

20

5%
25%

50%

75%

95%

0 1000 2000 3000 4000 5000 6000
0

50

100

150

c

20

10

6.67b

20°

101

d

mouse 1

45° 90° 135°
100

101

102

103e

mouse 2 mouse 3 mouse 4

F
is

he
r

in
fo

rm
at

io
n 

[r
ad

-2
]F

is
he

r 
in

fo
rm

at
io

n
in

cr
ea

se
 [r

ad
-2
/n

eu
ro

n]

number of neurons 

F
is

he
r 

in
fo

rm
at

io
n 

( 
   

   
 s

ca
le

)

number of neurons    (       scale)

F
is

he
r 

in
fo

rm
at

io
n 

[r
ad

-2
]

number of neurons 
102 103 104

Fisher information [rad-2]

15° 10° 5° 4° 3° 2° 1°

0° vs. 45°
45° vs. 90°

135° vs. 180°
180° vs. 225°
225° vs. 270°
270° vs. 315°

315° vs. 0°
pooled 1
pooled 2

90° vs. 135°

45° 90° 135° 45° 90° 135° 45° 90° 135°as
ym

pt
ot

ic
 in

fo
rm

at
io

n 
[r

ad
-2
]

drift direction difference,

recorded

re
co

rd
ed

135° 180°

?

1000 300 200 100

recorded

offset slope

Fig. 4 Information about drift direction is estimated to asymptote in large neural populations. a Example information scaling fit, showing data (black;
mean estimate ± 1 SD; computed from 135° vs. 180° drift direction trials, as in Fig. 3c) and posterior predictive density for Bayesian fit (green; solid=
percentiles, dashed=mode) for the Fisher information increase (top) and Fisher information (bottom) across different population sizes N. The model is
fitted to the Fisher information increase estimates (top), as these are statistically independent across different population sizes. b Plotting the inverse
Fisher information 1/IN over the inverse population size 1/N (mean estimate ± 1 SD; same data as in a) shows an almost perfect linear scaling, as predicted
by our theory. Fitting a linear model (gray dashed line) reveals a non-zero asymptotic information I∞ (gray dot) with N→∞ c. The fitted model supports
extrapolating the posterior predictive density beyond recorded population sizes (blue shaded area in a–c) up to N→∞. This results in a Bayesian posterior
estimate over the asymptotic information I∞ (right), which we summarize by its median (dot), and its 50% (thick line) and 90% (thin line; truncated at
top) credible intervals. d Estimates of asymptotic information resulting from different drift direction pairs (colors; δθ= 45° for all pairs) results in
comparable posterior densities (colored lines; associated density summaries above densities as in c) across different pairs. Therefore, we pooled the data
across all non-overlapping pairs with the same δθ to achieve a more precise estimate. The pooled estimates were comparable across two different sets of
non-overlapping pairs (gray). The vertical gray lines and numbers indicate the drift direction discrimination thresholds corresponding to different Fisher
information estimates. e The asymptotic Fisher information estimate (density summaries as in c; lines connect posterior medians) is comparable across
sessions (different colors; horizontally shifted to ease comparison) and mice.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20722-y

6 NATURE COMMUNICATIONS |          (2021) 12:473 | https://doi.org/10.1038/s41467-020-20722-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the largest overall information increase20,34. With this ordering,
90% of the information in the recorded population for a
particular discrimination could be recovered from only about
30% of the recorded neurons (Fig. 5a). However, natural behavior
usually requires information about a wide range of different drift
directions rather than the ability to discriminate a specific drift
direction pair. To identify how much information the discovered
subpopulation contains about other drift directions, we asked
how well its population activity supports discriminating another,
close-by drift direction pair (Fig. 5a; left vs. right). We found that
the same subset of neurons was only able to recover about 55% of
the information about this new discrimination. Even a population
ordering that boosted the average information across all drift
direction pairs did not reveal a highly informative subpopulation
within the recorded set of neurons (Fig. 5a; green). To determine
whether there is any advantage to a particular ordering, we
estimated the population size required to capture 90% of
information of the recorded population if we ordered the neurons
according to this objective. Across sessions/mice and discrimina-
tions, the required population size turns out to not differ
significantly compared with a random ordering of the population
(Fig. 5b; t63=−0.215, two-sided p ≈ 0.83; across non-overlapping
δθ= 45° discriminations). Noise correlations contribute to the
observed lack of difference, as this difference becomes significant
for trial-shuffled data (Supplementary Fig. 11). If a significant
fraction of neurons is uninformative across all drift direction
pairs, we would expect these population sizes to differ. Therefore,
it is unlikely that our asymptotic information estimates were
significantly influenced by the presence of uninformative neurons
in the recorded populations.

Finite-population information impacts asymptotic informa-
tion. If estimated asymptotic information mirrors the total
information encoded by the animals’ brains, it should increase if
we increase the amount of information provided by the stimulus
in retinal photoreceptor activity. As has been shown previously,
higher contrast stimuli result in higher decoding performance
from recorded population responses (e.g., see ref. 35). However,
we might observe an information increase in recorded popula-
tions even when the asymptotic information remains unchanged
(Fig. 6c, right). To determine if increasing the stimulus contrast

results in an increase of asymptotic information, we performed a
separate set of experiments in which two mice observed the same
drift directions as before, but with a grating contrast of either 10%
or 25% that was pseudo-randomly chosen across trials. We
hypothesized that the 25% contrast stimuli provide more infor-
mation about the drift direction, and expected a corresponding
increase in asymptotic information.

For most neurons, a contrast increase from 10 to 25% led to a
change in baseline activity and re-scaling of their tuning curves,
but no appreciable change in pairwise noise correlations
(Supplementary Fig. 12). As in correlated populations we cannot
predict changes in information solely from changes in tunings, we
again moved to measuring information by our generalized Fisher
information measure. This revealed that information encoded in
the recorded populations significantly increased for higher
stimulus contrasts (Fig. 6a for single discrimination and session;
Fig. 6b for all sessions/mice, non-overlapping discriminations
with δθ= 45°: paired t27= 2.78, two-sided p ≈ 0.0098). We in
turn applied the same procedure as before (see Fig. 4e) to estimate
asymptotic information, but did so separately for the two
contrasts (Fig. 6d). We then compared these estimates for δθ=
45° within each session between low- and high-contrast trials
(Fig. 6d). In principle, increasing contrast could increase
asymptotic information, or it could leave asymptotic information
unchanged (Fig. 5c). For three out of the four sessions in which
information in the recorded population increased with contrasts
for a majority of discriminations (as shown in Fig. 6b), we also
observed an increase in asymptotic information with contrast
(Fig. 6e, filled dots). This suggests that a more informative
stimulus not only increased information in the recorded neural
populations but also in the larger (unrecorded) neural population.

Tens of thousands of neurons decode most of information.
Information in the brain must saturate, as noisy sensors funda-
mentally limit the sensory information it receives. However, it
remains unclear whether information saturates within the
population size of V1 (Fig. 1). In our information scaling model,
Eq. (1), saturation by definition only occurs in the limit of infinite
neurons. We can nonetheless use the model to estimate saturating
population sizes by asking how large these populations need to be
to encode a large fraction of the asymptotic information (Fig. 7a).
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We will here focus on population sizes N95 that achieve 95% of
asymptotic information, which can be found by setting IN=
0.95I∞ in Eq. (1) and solving for N. The required population sizes
for other fractions of asymptotic information are easily found by
a rescaling of N95 (Supplementary Fig. 13).

To estimate N95, we again relied on the information scaling fits
pooled across non-overlapping pairs of drift directions. The
recovered population sizes were all on the order of tens of
thousands of neurons (Fig. 7b). Our previous analysis (Fig. 5)
makes it unlikely that uninformative neurons within the recorded
population strongly impact our estimated population sizes.
Interestingly, increasing the drift direction difference δθ did not
strongly affect these estimates (mice 1–4 in Fig. 7b), even though
it modulated asymptotic information (Fig. 4d). Increasing
stimulus contrast appeared to increase the estimated population
sizes (mice 5–6 in Fig. 7b, orange vs. green), but not consistently
so. Thus, it was unclear if a change in information resulted in a
global re-scaling of the information scaling curve without
changing its shape (Fig. 7c, top), or in the need for more
neurons to encode this information (Fig. 7c, bottom).

To clarify the relationship between the asymptotic information
I∞ and required population size N95, we did not directly relate
these two quantities, as N95 is derived from the estimate of I∞.
Instead, we relied on the property that N95 is proportional to I∞/c,
where c is the scaling factor associated with the non-limiting

covariance component (see Eq. (1); Methods). Therefore, if N95

remains constant across different estimates of I∞ and c, these two
quantities need to vary in proportion to each other. In a log–log
plot, this implies that the slope describing their relationship
would be one. However, we found a slope of β1 ≈ 0.72, which is
slightly, but significantly below one (Fig. 7d; F-test, F1= 21.49,
p ≈ 1.2 × 10−5). Substituting the measured relationship between c
and I∞ into the expression for N95 results in N95 ≈ 4523.8I∞0.28.
This implies that the population size required to encode 95% of
the asymptotic information increases with I∞, but does so only
weakly. To illustrate this weak increase, let us consider sessions in
which the estimated asymptotic information increased threefold
with an increase in stimulus contrast (Fig. 6e). In this case, a
population of the size required to capture 95% of the asymptotic
information for low-contrast trials could capture 93% of the
asymptotic information for high-contrast trials (see “Methods”).

Information is not aligned with principal noise dimensions.
Previous work has observed that most neural population activity
fluctuations are constrained to a low-dimensional linear subspace
that is embedded in the high-dimensional space of neural activ-
ity36–38. This might suggest that focusing on such a low-
dimensional subspace is sufficient to understand brain function38.
Thus, we asked if we can recover most of the information about
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visual drift direction from such subspaces, defined by the
dimensions where population activity is most variable. The
information encoded in each dimension grows with how well the
signal, f′, is aligned with this dimension, but shrinks with the
magnitude of noise in this dimension (Fig. 8a; see refs. 17,33). This
tradeoff makes it unclear whether the subspace where population
activity is the most variable is indeed the subspace that encodes
the most information.

We found the principal dimensions of the noise covariance
matrix and asked how much information a subset of the most
variable dimensions is able to encode. In our data, 90% of the
total variance was captured by approximately 37.6% ± 12.4pp
(mean % ± 1 SD percentage points across all sessions/mice, δθ=
45° discriminations) of all available dimensions (Fig. 8b/e),
confirming previous reports that relatively few dimensions are
required to capture most noise variance. Furthermore, f′ was
most strongly aligned to the first few of these principal
dimensions33 (Fig. 8c). Using cosine similarity to measure this
alignment, we found that 90% of the cumulative alignment was
reached by approximately 7.4% ± 9.1pp of all available dimen-
sions (Fig. 8c/e). Finally, we asked how many dimensions were
required to capture 90% of the information encoded in the
recorded population. Even though later dimensions were not
well-aligned with f′ (see the shallow cumulative alignment
increase in Fig. 8c), they were also less noisy (Fig. 8b) and so
could contribute significantly to the encoded information. As
evident by the continual information growth in Fig. 8d, this
resulted in information which was fairly evenly spread across all
dimensions, such that, on average, approximately 86.7% ± 2.2pp
of all principal noise dimensions were required to encode 90% of
all of the recorded information. This is significantly higher
than the fraction required to capture 90% of all variance
(difference= 48.7 ± 1.5pp, mean ± 1 SEM, paired t63= 32.53,

two-sided p < 10−6 across non-overlapping discriminations). In
fact, if we restricted ourselves to the subspace that captures 90%
of all noise variance, we could only decode 58.9% ± 5.6pp of
information. Therefore, in our data, relying only on information
encoded in the subspace of most variable principal dimensions
would result in significant information loss.

Discussion
We asked how information about the drift direction of a visual
stimulus is distributed in large neural populations, and addressed
this question by analyzing how information scales with popula-
tion size. We observed that, in recorded populations, information
scaled sublinearly with population size, indicating that noise
correlations limited this information. The information scaled in
line with TILC if information is indeed limited in larger popu-
lations. Based on this theory, we found that we require on the
order of tens of thousands of neurons to encode 95% of the
asymptotic information. When varying input information by
changing stimulus contrast, the required population size appeared
to change. Indeed, we found that more information required
larger populations, but this relationship was extremely weak.
Overall, these findings suggest the presence of information-
limiting correlations that cause sensory information in mouse V1
to saturate with population size, indicating the use of a highly
redundant, distributed neural code within mouse V1.

Previous attempts at measuring how sensory information
scales with population size have frequently found noise correla-
tions to either be beneficial39 or to not affect information
scaling32,33. These studies focused on smaller populations (<200
neurons in ref. 39; <100 neurons in ref. 33) in which sublinear
scaling might be hard to identify (Fig. 1), and in part included
spike timing information39 in addition to the spike counts used
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here. Recent recordings from ~20,000 neurons in mouse
V1 suggest information about visual stimuli does saturate40, but it
appears to do so above the population sizes we estimated. These
recordings used a slower image scan rate (3 Hz vs. the 30 Hz used
for this study), which introduces additional recording noise. This
additional noise makes information saturate more slowly with
population size (see SI, Sec. 2.3), potentially explaining the larger
required population sizes. Recordings from hundreds of neurons
in monkey prefrontal cortex revealed sublinear scaling of motor
information, compatible with the presence of information-
limiting correlations, and resulted in required population size
estimates comparable to ours31. In contrast to our study, this
work measured information about saccade direction rather than
about sensory stimulus features. Furthermore, it relied on data
from two saccade directions only, and so could not assess if a
smaller, selected subpopulation could be used to decode a sig-
nificant fraction of the total information across a wide range of
saccade directions, as we do for drift directions.

Even though information is highly distributed across neurons
in a population, most variability is captured by a low-dimensional
subspace, leading to suggestions that we might only need to
consider the information encoded in this subspace38. As we have
shown, this argument does not consider that information does
not only depend on variability, but also on how the signal aligns
with this variability (Fig. 8a). Once both are taken into account,
the dimensions of largest variability become a poor proxy for the
most informative dimensions (Fig. 8d). This is in line with recent
work showing that the most variable subspace in macaque V1 is
different from the one that most co-varies between V1 and V2
(ref. 37), which presumably transmits information between these

areas. Our work explicitly shows such misalignment, and does so
in larger populations.

To compare our required population size estimates to the total
number of neurons in mouse V1, we conservatively estimated the
need for about 48,000 neurons (see “Methods”) to achieve drift
direction discrimination performance that most likely exceeds
that of the animals23–25. Our use of time-deconvolved calcium
activity as a noisy proxy for spike counts41,42 makes these esti-
mates upper bounds on required population sizes (see SI).
Nonetheless, they compare favorably to the number of neurons in
mouse V1, whose estimates range from 283,000 to 655,500
(refs. 43,44). If we instead compare to the number of neurons in
V1 that correspond to the retinotopic area of the visual stimulus,
using the entire stimulus or only the full-contrast portion as best
and conservative worst-case scenarios, we estimate that the lower
and upper bounds on the responsive number of neurons are the
same to 10 times higher than our required population size esti-
mates (see “Methods”). This confirms that mouse V1 has more
neurons than required to encode most of the estimated asymp-
totic information about the direction of a moving visual stimulus.
Would fewer neurons be required to encode information about
natural scenes, which tend to evoke sparser population responses
than drifting gratings45–47? We do not expect this to be the case,
as the fraction of neurons that respond to individual natural
stimuli are in fact lower than for drifting gratings, but overall
more neurons are required to represent a broad set of natural
stimuli45,47. This implies that, as for drifting gratings (Fig. 5), we
cannot focus on smaller subpopulations that might well dis-
criminate specific image pairs47, but might fail to convey infor-
mation about other natural images.
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If animals are required to perform tasks that rely on the
encoded information we measured (e.g., to discriminate between
different drift directions), each neuron in the population would
ideally contribute to the animal’s choices. Quantified by choice
correlations48,49, an optimal read-out requires the choice corre-
lations of individual neurons to be the fraction of the population’s
discrimination threshold over that of the neuron50. In contrast to
previous work (e.g., refs. 51,52) that found that individual neurons’
thresholds match that of the animal, the neurons’ average
threshold in our data (see information for N= 1 in Fig. 3c) is
exceedingly small when compared to that of the recorded
population (Fig. 3c for full population), and even smaller when
compared to estimated asymptotic information (Fig. 4e). This
mismatch might arise from shorter stimulus presentation, not
tailoring the stimuli to match the neuron’s tuning (as done in
Britten et al.51), recording from lower-level visual areas (V1 vs.
V4 or MT) with smaller receptive fields, as well as increased
recording noise with calcium imaging as compared to electro-
physiological recordings. These lower discrimination thresholds
predict increasingly small choice correlations, in line with recent
reports from area V1 of monkeys, where fewer than 7% of V1
neurons were found to feature significant choice correlations53. In
general, the estimated asymptotic information predicted direction
discrimination thresholds compatible with previous behavioral
reports in mice23–25, but the use of different stimuli in these
experiments precludes a direct quantitative comparison. We
furthermore cannot exclude the possibility that mice used a dif-
ferent read-out than the linear one we assumed, or lacked
motivation to perform the task to their full potential, further
impacting their behavioral performance. A more detailed analysis
of the relation between neural activity and choice would require
training animals to report their percepts, and then relating these
reports to population activity fluctuations.

Multiple factors could have impacted our information mea-
sures, and with them our asymptotic information and dis-
crimination threshold estimates. First, the mouse’s state of
arousal, commonly assessed by their pupil dilation, has been
found to fluctuate during similar experiments28, and such fluc-
tuations could modulate information encoded in V1. Locomotion
is linked to arousal28, and has previously been shown to impact
information29. In our data, periods of increased locomotion also
result in more information in the recorded populations and
increase asymptotic information estimates, but do not sig-
nificantly affect the estimated population sizes required to encode
95% of this asymptotic information (Supplementary Fig. 4).
Second, any eye movement within the stimulus presentation
period will shift the association between the stimulus and the
cells’ receptive fields, and result in a relative drop in information.
Our stimulus was designed to minimize the effect of eye move-
ments occurring between consecutive stimuli (see “Methods”).
Furthermore, eye movement in mice tend to be rare54 and
small54,55 when compared to the V1 neuron receptive field sizes56

and size of our stimulus, such that we expect them to have little
effect on our estimates of information-limiting correlations. This
was confirmed in simulations and theoretical analysis of a simple
eye movement model, which revealed that the assumed eye
movements might result in over-estimating N95, but only in a
minor underestimation of I∞ (Supplementary Fig. 14). Third, we
used calcium imaging to obtain dense sampling from large neural
populations. Although viral expression of GCaMP6s, as we used
here, has been shown to detect nearly all single spikes in some
conditions41, with our imaging conditions, it is likely that we were
unable to detect some single spikes. Furthermore, saturation of
GCaMP responses might have caused a non-linear mapping
between spike counts and measured GCaMP responses, which
would quantitatively lower the measured information, but not

qualitatively impact how information scales with population size
(Supplementary Fig. 15). Also, neuropil fluorescence has the
potential to create shared changes in nearby neurons57. We
expect that neuropil contamination is unlikely to have a major
impact on our information scaling results because such con-
tamination would create redundant signals across neurons and
would thus have little impact on information levels that must
arise from genuine, non-redundant signals in neurons. However,
it is possible that neuropil contamination could have made some
uninformative neurons appear informative, in which case a
smaller fraction of neurons might be genuinely informative than
suggested by Fig. 5. Moreover, residual neuropil fluorescence
could cause the non-recorded neuron’s signal to “leak out” to
recorded neurons, which might result in an underestimation of
N95. In general, only those factors that modulate information-
limiting correlations, which are a small component of the overall
noise correlation matrix, impact our information estimates
(illustrated in Supplementary Fig. 3). Therefore, while we cannot
rule out the presence of such factors, we expect that they did not
qualitatively impact our findings.

A prediction of our findings is that neural information should
continue to scale according to Eq. (1) in larger populations than
those recorded in our experiments. Testing these predictions
involves precise estimates of noise correlations, which require
about the same number of trials in which the same stimulus (e.g.,
drift direction) is presented as there are neurons in the
population17,19. Therefore, even with more powerful recording
techniques, information estimates might be limited by the num-
ber of trials that can be collected within individual sessions. The
use of decoders to estimate information might sidestep these
estimates30,31, with the downside of potentially confounding
decoder biases. A further challenge is to record from a population
that homogeneously encodes the same amount of information
about each stimulus. Such homogeneity ensures that the esti-
mated asymptotic information and population sizes are not
specific to particular stimulus values. The weak spatial organi-
zation of drift direction selectivity in mouse V1 (ref. 58) supports
this, but the same would be harder to achieve in monkeys due to
the much stronger spatial correlations of orientation and direc-
tion selectivity in their visual cortices59. Finally, even if Eq. (1) is
confirmed to match the information in larger populations than
used here, it does not allow us to guarantee that the cortex’s
information is limited by sensory noise and suboptimal compu-
tations. Though unlikely, information might continue to grow
linearly after an initial sublinear growth16. The only way to
conclusively rule out this scenario is to record from all neurons in
the information-encoding population, which, at least in mam-
mals, will likely not be possible in the foreseeable future60.

Although all information entering the brain is limited by
sensory noise6, such that it can never grow without bound, the
information could be so plentiful or broadly distributed across
multiple independent chunks as to not saturate within the
population sizes of mammalian sensory areas. In this case, we
would expect information to grow on average linearly with the
recorded population size, as has been frequently observed in
smaller populations. Our findings suggest this not to be the case.
However, we suspect the main limiting factor not to be noisy
sensors. Instead, most problems that the brain has to deal with
require fundamentally intractable computations that need to be
approximated, resulting in substantial information loss61. Indeed,
suboptimal computations can dominate overall information loss,
and resulting behavioral variability62,63, such that they might be
the main contributor to the information limitations we observe in
our experiments.

If the brain operates in a regime in which information in
sensory areas is limited, all information the brain deals with is
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uncertain. This idea finds support in the large body of work
showing that behavior is well-described by Bayesian decision
theory64–66, which makes effective use of uncertainty. This, in
turn, implies that the brain encodes this uncertainty, but its exact
neural representations remain unclear66,67. A further con-
sequence of limited information is that theories that operate on
trial averages (e.g., refs. 68–70) or assume essentially unlimited
information (e.g., ref. 16) only provide an incomplete picture of
the brain’s operation. Therefore, an important next step is to
refine these theories to account for trial-by-trial variation in the
encoded information to achieve a more complete picture of how
the brain processes information in individual trials, rather than
on average.

Methods
All experimental procedures were approved by the Harvard Medical School
Institutional Animal Care and Use Committee (IACUC).

Animals and surgery. Male C57BL/6J mice were obtained from The Jackson
Laboratory and housed at 65–75 °F with 35–65% humidity and on a 12-h reverse
light/dark cycle. Mice were used for imaging experiments between 4 and 7 months
of age. Prior to imaging, mice underwent surgery to implant a chronic cranial
window and headplate. Mice were injected intraperitoneally with dexamethasone
(3 μg per g body weight) 3–6 h before surgery to reduce brain swelling. During
surgery, mice were stably anesthetized with isoflurane (1–2% in air). A titanium
headplate was attached to the skull using dental cement (C&B Metabond, Parkell).
A ~3.5-mm diameter craniotomy was made over left V1 (stereotaxic coordinates:
2.5 mm lateral, 3.4 mm posterior to bregma). AAV2/1-syn-GCaMP6s (Penn Vector
Core) was diluted into phosphate-buffered saline at a final titer of ~2.5E12 gc/ml
and mixed 10:1 with 0.5% Fast Green FCF dye (Sigma-Aldrich) for visualization.
Virus was injected in a 3 × 3 grid with 350 μm spacing near the center of the
craniotomy at 250 μm below the dura, with ~75 nl at each site. Injections were
made slowly (over 2–5 min) and continuously using beveled glass pipettes and a
custom air pressure injection system. The pipette was left in place for an additional
2–5 min after each injection. Following injections, the dura was removed. A glass
plug consisting of two 3.5-mm coverslips and one 4.5-mm coverslip (#1 thickness,
Warner Instruments) glued together with UV-curable transparent optical adhesive
(Norland Optics, NOA 65) was inserted into the craniotomy and cemented in place
with cyanoacrylate (Insta-Cure, Bob Smith Industries) and metabond mixed with
carbon powder (Sigma-Aldrich) to prevent light contamination from the visual
stimulus. An aluminum ring was then cemented on top of the headplate, which
interfaced with the objective lens of the microscope through black rubber light
shielding to provide additional light-proofing. Data from mouse 1 and 2 were
collected as part of a previously published study71, following a similar surgical
protocol. Imaging datasets were collected at least 2 weeks post-surgery, and data
collection was discontinued once baseline GCaMP levels and expression in nuclei
appeared to be high.

Visual stimuli. Visual stimuli were displayed on a gamma-corrected 27-inch IPS
LCD gaming monitor (ASUS MG279Q). The monitor was positioned at an angle of
30° relative to the animal and such that the closest point to the mouse’s right eye
was ~24 cm away, with visual field coverage ~103° in width and ~71° in height.
Visual stimuli were generated using PsychoPy72 or Psychtoolbox (for mice 1 and 2
only) and consisted of square-wave gratings presented on a gray background to
match average luminance across stimuli. Gratings were windowed outside of a
central circle of radius 20° with a Gaussian of 19° standard deviation, or windowed
with a Gaussian central aperture mask of 44° standard deviation (for mice 1 and 2
only) to prevent monitor edge artifacts. Grating drift directions were pseudo-
randomly sampled from 45° to 360° in 45° increments at 10 or 25% contrast, spatial
frequency of 0.035 cycles per degree, and temporal frequency of 2 Hz. Stimuli were
presented for 500 ms, followed by a 500 ms gray stimulus during the inter-stimulus
interval (1 Hz presentation). Digital triggers from the computer controlling visual
stimuli were recorded simultaneously with the output of the ScanImage frame
clock for offline alignment. The visual stimulus was designed to be minimally
sensitive to the small eye movements typical of mice54,55. In addition to using a full
field grating, the stimulus presentation of 500 ms and temporal frequency of 2 Hz
was chosen so that each trial consisted of exactly one complete cycle. The effect of
fixational eye movements was thus mostly a small shift in phase of the perceived
stimulus, which should have little impact on spike counts summed over the full
stimulus presentation.

Microscope design. Data were collected using a custom-built two-photon micro-
scope. A Ti:Sapphire laser (Coherent Chameleon Vision II) was used to deliver 950
nm excitation light for calcium imaging through a Nikon 16 × 0.8 NA water
immersion objective, with an average power of ~60–70mW at the sample. The scan
head consisted of a resonant-galvonometric scanning mirror pair separated by a

scan lens-based relay. Collection optics were housed in a light-tight aluminum box
to prevent contamination from visual stimuli. Emitted light was filtered (525/50,
Semrock) and collected by a GaAsP photomultiplier tube (Hamamatsu). Micro-
scope hardware was controlled by ScanImage 2018 (Vidrio Technologies). Rotation
of the spherical treadmill along three axes was monitored by a pair of optical sensors
(ADNS-9800) embedded into the treadmill support communicating with a micro-
controller (Teensy, 3.1). The treadmill was mounted on an XYZ translation stage
(Dover Motion) to position the mouse under the objective.

Experimental protocol. Before data acquisition, mice were habituated to handling,
head-fixation on a spherical treadmill73, and visual stimuli for 2–4 days. For each
experiment, a field-of view (FOV) was selected. Multiple experiments conducted in
each animal were performed at different locations within V1 or different depths
within layer 2/3 (120–180 μm below the brain surface). Before each experiment, the
monitor position was adjusted such that a movable flashing stimulus or drifting
grating in the center of the screen drove the strongest responses in the imaged
FOV, as determined by online observation of neural activity. A single experiment
consisted of three blocks of ~45 min each. Once a FOV was chosen, a baseline
image (~680 × 680 μm) was stored and used throughout the entire experiment to
compare with a live image of the current FOV and manually correct for axial and
lateral drift (typically <3 μm between blocks and <10 μm over the full experiment)
by adjusting the stage. Drift and image quality stability were verified post hoc by
examining 1000 × sped-up movies of the entire experiment after motion correction
and temporal downsampling, and experiments that were unstable were discarded
without further analysis. Data from mouse 1 and 2 were from previously published
experiments71, where a small fraction of neurons were photostimulated simulta-
neous to drifting gratings presentation. All photostimulated neurons were excluded
from analysis for this paper.

Data processing. Imaging frames were first motion-corrected using custom
MATLAB code (https://github.com/HarveyLab/Acquisition2P_class) on sub-
frame, full-frame, and long (minutes to hours) timescales. Batches of 1000 frames
were corrected for rigid translation using subpixel image registration, after which
frames were corrected for non-rigid warping on sub-frame timescales using a
Lucas-Kanade method. Non-rigid deformation on long timescales was corrected by
selecting a global alignment reference image (average of a 1000-frame batch) and
aligning other batches by fitting a rigid 2D translation, followed by an affine
transform and then nonlinear warping. After motion correction, due to large
dataset size (~130 GB), imaging frames were temporally downsampled by a factor
of 25 from 30 to 1.2 Hz. Downsampled data were used to find spatial footprints,
using a modified version of the constrained nonnegative matrix factorization
(CNMF) framework74 (https://github.com/Selmaan/NMF-Source-Extraction).
Three unregularized background components (instead of the default number, one)
were used to model spatially and temporally varying neuropil fluorescence, as we
observed that the spatial footprints of neuropil activity were distinct from the
GCaMP baseline fluorescence background component. We modified the procedure
used by CNMF to initialize sources, and instead used an approach to identify
sources independently of their spatial profile by using a procedure to cluster pixels
based on temporal activity correlations71. These sources were then used as initi-
alizations for subsequent iterations of the original CNMF algorithm. The resulting
spatial footprints from CNMF were used to extract full temporal-resolution
fluorescence traces for each source. Traces were deconvolved using the constrained
AR-1 OASIS method75 and individually optimized decay constants. To obtain dF/
F, CNMF traces were divided by the average pixel intensity in the absence of neural
activity (i.e., the sum of background components and inferred baseline fluorescence
from deconvolution of the source’s CNMF trace). Because our modified version of
CNMF returned sources with both cell-shaped and irregular spatial profiles, we
used a convolutional neural network trained on manually annotated labels to
classify sources as cell bodies, axial processes (bright spots), horizontal processes, or
unclassified. Only data from cell bodies were used in this paper.

To assess neural variability in our recordings, we computed the coefficient of
variation (CV; i.e., relative standard deviation) for orientation- and direction-tuned
neurons. We found this CV to be roughly one on average, which compares
favorably to previously reported mouse V1 data. Bennett et al.76, for example,
found in whole-cell patch clamp recordings a CV of between ~1 (moving) to 2
(stationary) in response to drifting sinusoidal gratings. De Vries et al.45 found a
higher CV of ~2.5 from two-photon calcium imaging data in response to drifting
gratings. As fluorescence responses are scaled by some unknown, arbitrary factor
relative to spiking activity, we could not compute the neurons’ Fano factors. This
scaling did not impact our linear Fisher information estimates, as these estimates
are invariant to (invertible) linear transformations of neural activity.

Tuning curve fits. We used three nested models to fit tuning curves for each
neuron. In the direction-tuned model, the average neural response of each neuron
was fitted by a mixture of two Von Mises function given by

f1 θð Þ ¼ aþ b1 exp c cos θ � θpreferred

� �� �
þ b2 exp �c cos θ � θpreferred

� �� �
;

ð2Þ
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where a, b1, b2, c, and θprefered are model parameters, and θ is the stimulus’ drift
direction. In the orientation-tuned model, the average neural response of each
neuron was fitted using a single Von Mises function given by

f2 θð Þ ¼ aþ b exp c cos 2 θ � θpreferred

� �� �� �
; ð3Þ

with parameters a, b, c, and θpreferred. The third and last model is a null model that
assumes neurons are not significantly tuned to drift direction, and fits a constant
value to neural responses, that is f3(θ)= a. We fitted all three models to the
response of neuron across all trials by minimizing the sum of squared residuals
between observed neural response and the tuning function across different stimulus
drift direction (see Supplementary Fig. 1 for the R2’s associated with these fits). We
then compared the nested models by an F-test (with Bonferroni correction for
multiple comparisons) to test whether neurons are direction-tuned, orientation-
tuned or untuned.

Generalized Fisher information. Linear Fisher information17,77,78, which is the
Fisher information that can be recovered by a linear decoder, can for stimulus θ0 be
computed by I θ0ð Þ ¼ f 0 θ0ð ÞTΣ�1 θ0ð Þf 0 θ0ð Þ. Here, f 0 θ0ð Þ is the vector of derivatives
of each neuron’s average response with respect to θ, with the ith element given by
∂fi(θ0)/∂θ= ∂ <ri|θ0>/∂θ, and Σ θ0ð Þ ¼ cov r θ0jð Þ is the noise covariance of the
population activity vector r. Therefore, linear Fisher information is fully deter-
mined by the first two moments of the population activity, irrespective of the

presence of higher-order moments. Furthermore, if bθ ¼ wT r� f θ0ð Þð Þ þ θ0 is the
unbiased minimum-variance locally linear estimate of θ, its variance is given by

var bθ θ0j
� �

¼ 1=I θ0ð Þ79. In practice, f′(θ0) and Σ(θ0) are approximated by their

empirical estimates, f 0 θ0ð Þ � bf θ2ð Þ �bf θ1ð Þ
� �

=δθ, and Σ(θ0) ≈ (cov(r|θ1) + cov(r|

θ2)), where θ1,2= θ0∓ δθ/2. This naïve estimate is biased but a bias-corrected
estimate can be used30.

By definition, Fisher information is a measure of fine discrimination
performance around a specific reference θ0, requiring small δθ. As we show in the
SI, the same measure with f′(θ0) and Σ(θ0) replaced by their empirical estimate can
be used for coarse discrimination for which δθ is larger. Furthermore, this
generalization corresponds to (d′/δθ)2, where d′ is the sensitivity index used in
signal detection theory22, becomes equivalent to Fisher information in the δθ→ 0
limit, and shares many properties with the original Fisher information estimate. In
particular, the same bias correction leads to unbiased estimates. Kanitscheider
et al.30 lack an estimate of the variance of the bias-corrected Fisher information
estimate that can be computed from data, so we provide a derivation thereof in
the SI.

To relate (generalized) Fisher information to discrimination thresholds, we

observe that the variance of the stimulus estimate bθ is 1/I(θ0). Assuming this
estimate to be Gaussian across trials, the difference in estimates across two stimuli
which differ by Δθ is distributed as N(Δθ, 2/I(θ0)). Therefore, the probability of
correctly discriminating these stimuli is Φ Δθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I θ0ð Þ=2p� �

3,80,81, where Φ(·) is the
cumulative function of a standard Gaussian. Setting the desired probability correct
to 80% and solving for Δθ results in the drift direction discrimination threshold
Δθ ¼ Φ�1 0:8ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=I θ0ð Þp
.

Estimating Fisher information from neural data. Our Fisher information esti-
mates have two sources of uncertainty. First, they rely on empirical estimates of f′
(θ0) and Σ(θ0) from a limited number of trials that are thus noisy. Second, we
assume that recorded neurons to be a small, random subsample of the full
population. As we want to estimate the average Fisher information across such
subsamples across different population sizes, observing only a single subsample
introduces additional uncertainty.

We will first focus on the uncertainty due to a limited number of trials. We can
find an unbiased estimate of IN for a population of N neurons by a biased-corrected
estimate bIN . Our aim is to fit models to how bIN changes with N. We can estimate
this change by computingbI1 for a single neuron, and then successively add neurons
to the population to find bI2;bI3; ¼ However, this procedure causes bIN and bINþ1 to
be correlated, as their estimates share the data of the previous N neurons.
Therefore, although previous work did not correct for these correlations when
fitting the information scaling curves31–33, it is important to account for them
when fitting the information estimates across multiple N. Fortunately, the change
in information across successive N, ΔbIN ¼ bIN �bIN�1 is uncorrelated, that is

cov ΔbIN ;ΔbINþ1

� �
¼ 0 (see SI). The intuition underlying this independence is that

the response of each neuron can be decomposed into a component that is collinear
to the remaining population and one that is independent of it. Only the
independent component contributes additional information, making the
information increase due to adding this neuron independent of the information
encoded in the remaining population. Overall, rather than fitting the information
estimates, we will instead fit the information increases across different N.

To handle the uncertainty associated with subsampling larger populations, we
assumed that the small recorded population is statistically representative of the full
population. Then, our aim is to simulate random draws of the size of the recorded

population from the full, much larger population. We achieved this simulation by
randomly drawing neurons from the recorded population, without replacement, up
to the full recorded population size, effectively resulting in a random order of
adding recorded neurons to the population. For each such ordering, we estimated
the information increase with each additional neuron. As the information in the
total recorded population is the same, irrespective of this ordering, the information
increases ΔIN and ΔIM for N ≠M will on average be negatively correlated across
different orderings. This is an artifact of re-using the same data to simulate samples
from a larger population. As long as the full population is significantly larger than
the one we recorded from, the probability of re-sampling the same pair of neurons
from the full population is exceedingly small, such that we can ignore these
correlations (see SI). Any negative correlations between information increases,
however small, will reduce the variance of our Fisher information estimates.
Therefore, by ignoring these correlations, we will estimate an upper bound of this
variance, and thus overestimate the uncertainty. In summary, we estimated the
uncertainty associated with subsampling larger populations by estimating the
moments of the Fisher information increase by bootstrap estimates across different
orderings with which neurons are added to the population. As shown in
Supplementary Fig. 16a, this procedure also captures the uncertainty associated
with a limited number of trials, such that no extra correction is needed to account
for this second source of uncertainty.

Overall, we estimated the moments of the Fisher information increase ΔbIN for
the discrimination of θ1 and θ2 as follows. First, we estimated the empirical

moments bf 0 and bΣ using the same number of trials for θ1 and θ2. Second, we chose
a particular random order with which to add neurons to the population. Third, we
used this order to estimate ΔbI1;ΔbI2; ¼ by use of the biased-corrected Fisher

information estimate applied to bf 0 and bΣ. Fourth, we repeated this estimate across
104 different neural ordering to get 104 bootstrap estimates of the Fisher
information increase sequence. Fifth, we used the bootstrap estimate to compute

the moments μN ¼ <ΔbIN> and σ2N ¼ var ΔbIN� �
for each N, which we in turn use

to fit the information scaling curves (see below). As the individual increases are
independent across N, we used its moments to additionally estimate the moments

of bIN ¼ PN
n¼1 ΔbIn , which are given by <bIN> ¼ PN

n¼1 μn and var bIN� �
¼ PN

n¼1 σ
2
n .

We used these moments to plot the Fisher information estimates in Figs. 3a, 4b/d
and 5a.

Fisher information scaling with limited information. Moreno-Bote et al.17 have
shown that for large populations encoding limited asymptotic information I∞, the
noise covariance can be decomposed into Σ ¼ Σ0 þ I�1

1 f 0f 0T, where only the f 0f 0T

component, called differential correlations, limits information. Assuming a popu-
lation size of N neurons, we can apply the Sherman–Morrison formula to the above
noise covariance decomposition17,50 to find I�1

N ¼ I�1
0;N þ I�1

1 , where IN ¼ f 0T Σ�1
N f 0

is the Fisher information in this population, and I0;N ¼ f 0T Σ�1
0 f 0 is the Fisher

information associated with the non-limiting noise covariance component Σ0.
Furthermore, assuming that this non-limiting component contributes average
information c per neuron, that is I0,N= cN, results in Eq. (1) in the main text.
While similar expressions have been suggested before10,11, they were derived from
models that made significantly more restrictive assumptions about neural tuning
and shared variability. We also tested a model in which I0,N initially scaled
supralinearly in N. We found this model by integrating c(1 − e−N/τ) from zero to
N, resulting in I0,N= c(N+ τ(e−N/τ−1)) with parameter τ that controls the extent
of the initial supralinearity. The two models become equivalent with τ→ 0. The
above derivation relies on the traditional Fisher information definition for fine
discrimination. The results remain unchanged when moving to Fisher information
generalized to coarse discrimination.

Fitting information scaling models. We compared three models for how Fisher
information IN scales with population size N. The first unlim model assumes linear
scaling, IN= cN, and has one parameter, ϕ1= {c}. The second lim model, given by
Eq. (1) in the main text, assumes asymptotic information I∞, and that the Fisher
information associated with the non-limiting covariance component increased
linearly, I0,N= cN. This model thus has two parameters, ϕ2= {c, I∞}. The third lim-
exp model assumes an initial supralinear scaling of I0,N, as described above, and has
three parameters, ϕ3= {c, I∞,τ}. The lim-exp model fits the data consistently worse
than the lim model (Supplementary Fig. 6b), such we did not consider it in the
main text.

As the Fisher information estimates in data are correlated across different
population sizes, we did not directly fit these estimates. Instead, we fitted how they
changed when adding additional neurons, as the estimated Fisher information
increase is uncorrelated across different population sizes. That is, we used the

likelihood function p X ϕjð Þ ¼ QN
n¼1 N μn Xð Þ ΔIn;ϕ; σ2n Xð Þ

���� �
, where X is the

recorded data (that is, the recorded population activity in all trials with the drift
directions that are being discriminated, yielding the desired moments μ1,…,μN and
σ21; ¼ ; σ2N), ϕ are the model parameters, ΔIn,ϕ= In,ϕ − In−1,ϕ is the information
increase predicted by that model, and μn and σ2n are the mean and variance of the
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estimated information increase in data X for a particular discrimination when
moving from population size n−1 to n (see further above).

We regularized the fits by weakly informative parameter priors. For c we used p
(c)∝St1(<μn>,100(<μn >+ 0.5)2), which is a Student’s t distribution with mean
<μn>, variance 100(<μn >+0.5)2 and one degree of freedom, and where <μn> is the
average estimated information increase in the recorded population. Thus, the prior
is centered on the empirical estimate for c for the linear scaling model, but has a
wide variance around this estimate. We furthermore limited c to the range c∈[0,∞].

For I∞ we used p I1ð Þ / St1 <bIN>; 100 max 1;<bIN>n o2
� 	

over I∞ ∈ [0,∞], which

is a weak prior centered on the empirical information estimate <bIN> ¼ PN
n¼1 μn

for the recorded population. For τ we used p(τ)∝St1(0, N2) over τ ∈ [0,∞].
Technically, the data should not inform the priors, as it does here. However, this is
not a concern for the extremely weak and uninformative priors used here.

We fitted the different models to data X of individual sessions/mice and
discriminations by sampling the associated parameter posteriors, p(ϕ|X) ∝ p(X|ϕ)p
(ϕ), by slice sampling82. The slice sampling interval widths were set to (<μn >+

0.5)/2 for c, to max 1;<bIN>n o
=5 for I∞, and to 10 for τ. The samplers were initiated

by parameter values found by maximum-likelihood fits for the respective model.
For each fit, we sampled four chains with 105 posterior samples each, after
discarding 100 burn-in samples, and keeping only each 10th sample. We used the
Gelman-Rubin potential scale reduction factor83 to assess MCMC convergence. To
fit the same model to multiple discriminations simultaneously (i.e., our pooled fits),
we sampled from the pooled posterior p ϕ X1:Kjð Þ / p ϕð ÞQK

k¼1 p Xk ϕjð Þ, where Xk

is the data associated with the kth discrimination.
We compared the fit quality of different models by the Watanabe-Akaike

information criterion (WAIC; see ref. 84). This criterion supports comparing
models with different numbers of parameters, as it takes the associated change in
model complexity into account. It is preferable to the Akaike information criterion
or Bayesian information criterion, as it provides a better approximation to the
cross-validated predictive density than other methods85.

We found posterior predictive densities by empirically marginalizing over the
posterior parameter samples, ϕ(1),…,ϕ(J), pooled across all four chains. That is, we
approximated the density of any function f(ϕ) of these parameters by
p f Xjð Þ � J�1

PJ
j¼1 δ f � f ϕ jð Þ� �� �

, where δ(·) is the Dirac delta function. This
approach was used to find the predictive density of the fitted information increase
in Fig. 4a (top), as well as the information in Fig. 4a (bottom) and Fig. 4c. We also
used it to estimate the posterior distribution of the required population size N95 to
capture 95% of the asymptotic information.

Additional data analysis and statistical tests. Except for Figs. 6 and 7, all
statistical tests across sessions/mice were restricted to mice 1–4.

Figure 3. We removed noise correlations in the recorded data by, for each
neuron, randomly permuting the trial order across all trials in which the same drift
direction was presented. We then compared the total information in the recorded
population with (IShuffledN ) and without (IN) trial-shuffling by a bootstrap test
(Fig. 3d). To do so, we estimated mean and variance of that total recorded
information as described above, and then computed the probability of the null
hypotheses (IShuffledN ≤ IN ) by p ¼ pr IShuffledN � IN < 0

� �
, where we assumed Gaussian

information estimates. We compared IShuffledN to IN across sessions/mice by a paired
t-test across all non-overlapping discriminations with δθ= 45° (Fig. 3d). We
focused exclusively on discriminations that did not share any drift directions, to
avoid comparing estimates that rely on the same underlying set of trials. Unless
otherwise noted, all non-overlapping discriminations with δθ= 45° were
performed on the 0° vs. 45°, 90° vs. 135°, 180° vs. 225°, and 270° vs. 315°
discriminations. To test for significant differences in the drift direction
discrimination thresholds (Fig. 3f) across multiple discriminations with the same
difference in drift directions, θ, we relied on the one-to-one mapping between
information and discrimination threshold, and performed the test directly on the
estimated information. For K discriminations (in our case K= 4 for non-
overlapping discriminations), let IN,k, k= 1,…, K denote the information in the

recorded population for discrimination k, IN; k � N μN; k; σ
2
N;K

� �
. To test the null

hypothesis that all IN,k share the same mean, we drew 105 bootstrap samples each

from TSH1
¼ PK

k¼1 IN;k � μN;k

� �2
and TSH0

¼ PK
k¼1 IN;k � μN

� �2
with μN ¼

K�1 PK
k¼1 μN;k , and then computed the probability that TSH0

is larger than TSH1 by
p= pr(TSH1

− TSH0
< 0).

Figure 4. To test how 1/IN scales with 1/N (Fig. 4b), we found the moments of 1/
IN by <1/IN>≈1/<IN> and var 1=INð Þ � var INð Þ=I4N . To fit <1=IN> over 1/N, we
performed weighted linear regression with weights 1/var(1/IN ) for each N. The
pooling across different discriminations in Fig. 4d was performed over 45° vs. 90°,
135° vs. 180°, 225° vs. 270°, and 0° vs. 315° for pooled 1, and 0° vs. 45°, 90° vs. 135°,
180° vs. 225°, and 270° vs. 315° for pooled 2. All other pooled estimates (Figs. 4e, 6d
and e, and 7b) were pooled across 45° vs. 90°, 135° vs. 180°, 225° vs. 270°, and 0° vs.
315° for δθ= 45°, across 45° vs. 135°, 90° vs. 180°, 225° vs. 315°, and 0° vs. 270° for
δθ= 90°, and across 45° vs. 180°, 90° vs. 315°, and 0° vs. 225° for δθ= 135°. Note
that the estimate IN’s are correlated across different N’s, and we did not correct for

these correlations. Such a correction might lower the reported R2 values. Therefore,
the Bayesian model comparison across different information scaling models, as
reported in the main text, provides a statistically sounder confirmation of limited
asymptotic information.

Figure 5. The shaded error regions in Fig. 5a relied on parametric bootstrap
estimates. For information scaling for a fixed ordering, we computed the estimate
and variance of I1, I2,… by the Fisher information and the variance of this
estimator (see SI), and used these estimates to compute mean and variance of the
information increase associated with adding individual neurons to the population.
We then re-sampled these information increases from Gaussian distributions with
the found moments, and summed the individual samples to find different samples
for the whole information scaling curve. These samples were in turn used to
estimate mean and variance of the information scaling for a fixed order with which
neurons were added to the population. This procedure was chosen, as the increase
in Fisher information is independent across added neurons, whereas the total
Fisher information is not. A similar procedure was used to find the estimates for
random orderings, for which we additionally shuffled the order of neurons across
different samples of the information scaling curve. The above procedures yielded
103 bootstrap samples for each information scaling curve, which we in turn used to
find samples for the population sizes required to capture 90% of the total
information (Fig. 5a, b). In neither case did we apply bias correction of the Fisher
information estimate. This bias correction would have been stronger for larger
population sizes, which would have led to a seeming (but not real) drop of
information with population size, resulting from a lower number of trials per
neuron in the population, and an associated stronger bias correction.

Figure 6. To identify for individual discriminations if increasing the stimulus
contrast increased information in the recorded population (Fig. 6a, b), we
estimated information in the recorded population by the bias-corrected Fisher
information estimate30, and its variance by our analytical expression for this
estimate’s variance (see SI). We assumed the estimate for low and high contrast,
ILON and IHI

N , to be Gaussian, and found the probability of no information increase
by pr IHI

N ≤ ILON
� �

, using the aforementioned moments. The paired t-test across
sessions/mice (Fig. 6b) did not take into account the information estimates’
variance. For Fig. 6e, higher contrast was considered to significantly increase the
information in the recorded population (filled dots in Fig. 6e), if it did so for at least
five out of eight possible discriminations with δθ= 45°.

Figure 7. To test the relationship between c and I∞ in Fig. 7d, we performed the
linear regression log10(c)= β0 + β1log10(I∞). The relationship between N95 and I∞
was found by substituting c ¼ 10β0 Iβ11 into the expression for N95, resulting in

N95 ¼ 0:95I1�β11 = 0:05 ´ 10β0
� �

. To find the information loss for using a smaller
population size than required, we assumed Ihi1 ¼ αI lo1 and computed the fraction
IhiN =I

hi
1 at N ¼ N lo

95, which is the population size that captures 95% of Ilo1 .
Substituting the found relationships between I∞, c, and N95 results in this fraction
to be given by 0.95/(0.95+ 0.05α1− β1 ), which, for α= 3, equals 0.93. Interestingly,
this fraction depends only the relationship between I lo1 and Ihi1 , as quantified by α,
but not on their individual values.

Figure 8. All estimates in Fig. 8 are averages across 10 random splits of the recorded
data. For each split, half of the trials were used to compute the principal dimensions,
Qtrain, using the spectral decomposition Σtrain ¼ QtrainDtrainQ

T
train, where Dtrain is

diagonal,Qtrain is the matrix of unit eigenvectors, and we denote the nth column vector
of Qtrain by qn,train. The second half of trials was used to find f'test and Σtest, from which
we computed the shown estimates as follows. The noise variance associated with the
nth principal dimension was found by qTn;trainΣtestqn;train. The f′ alignment to the nth

principal dimension was found by cos2 αnð Þ ¼ qTn;trainf
0
test

� �2
=f 0 T

test f 0test . The

information encoded in the first n principal dimensions was found by In ¼ f 0 T
test

Q1:n;train QT
1:n;trainΣtestQ1:n;train

� ��1
QT

1:n;trainf
0
test , where Q1:n,train is the matrix formed by

the first n columns of Qtrain.

Additional analyses in discussion. To compare the estimated population sizes to the
number of neurons in V1, we asked for the number of neurons required to encode
95% of the asymptotic information associated with a direction discrimination
threshold of 1°. This threshold most likely exceeds the behavioral performance that
mice can reach even for high contrast stimuli23,25 and thus provides an upper
bound on the required population size. Achieving such a low threshold requires an
asymptotic information of 4651 rad−2 (Fig. 3e), and approximately 48,000 neurons
are necessary to encode 95% of this information (Fig. 7d). Current estimates of the
neural density of mouse V1 range from 92,400 to 214,000 neurons per mm3

(refs. 43,44). For area V1 with an approximate size of 3.063 mm3 (ref. 43), this
amounts to 283,000 to 655,500 neurons44. Therefore, our estimated population
sizes are well within those available in V1 of mice. In addition to comparing our
estimates to the total number of neurons in V1, we also considered best and worst-
case scenarios for the number of neurons in V1 that correspond to the retinotopic
area of the visual stimulus (103° azimuth, 71° elevation). To convert between
degrees of visual space and mm of cortical space, we used the conversion factors
63°/mm in azimuth and 40°/mm in elevation86. In the best-case scenario, the entire
visual stimulus corresponds to ~1.65 × 1.78 mm, or 2.95 mm2 in the cortex. Rela-
tive to the total area of V1, estimated as ~3.25–4 mm2 (refs. 87,88), 75–90% of V1
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neurons would be activated by the stimulus. Using the range above for total
neurons in V1, this is on the order of ~10× our estimates for the number of
neurons encoding 95% of asymptotic information. For a conservative worst-case
scenario, we consider only the full-contrast portion of the stimulus (circle with
radius 20°), for which the retinotopic area covered is ~0.5 mm2, or ~12.5–15% of
V1 neurons. This conservative estimate of a lower bound on the number of
responsive neurons is ~1× our required population size estimates. Thus, mouse V1
has more neurons than required to encode most of the estimated asymptotic
information about the direction of a moving visual stimulus.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during this study are available in the Figshare
repository, https://doi.org/10.6084/m9.figshare.13274951. Source data are provided with
this paper.

Code availability
MATLAB code performing the described analyzes and generating the resulting figures is
available at https://doi.org/10.5281/zenodo.4291863.

Received: 10 February 2020; Accepted: 16 December 2020;

References
1. Kohn, A., Coen-cagli, R., Kanitscheider, I. & Pouget, A. Correlations and

neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).
2. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population

coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).
3. Nogueira, R. et al. The effects of population tuning and trial-by-trial variability

on information encoding and behavior. J. Neurosci. 40, 1066–1083 (2020).
4. Shamir, M. Emerging principles of population coding: in search for the neural

code. Curr. Opin. Neurobiol. 25, 140–148 (2014).
5. Carandini, M. Amplification of trial-to-trial response variability by neurons in

visual cortex. PLoS Biol. 2, e264 (2004).
6. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat.

Rev. Neurosci. 9, 292–303 (2008).
7. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons:

implications for connectivity, computation, and information coding. J.
Neurosci. 18, 3870–3896 (1998).

8. Softky, W. & Koch, C. The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J. Neurosci. 13,
334–350 (1993).

9. Tolhurst, D. J., Movshon, J. A. & Dean, A. F. The statistical reliability of
signals in single neurons in cat and monkey visual cortex. Vis. Res. 23,
775–785 (1983).

10. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge
rate and its implications for psychophysical performance. Nature 370,
140–143 (1994).

11. Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of
a population code. Neural Comput. 11, 91–101 (1999).

12. Adibi, M., McDonald, J. S., Clifford, C. W. G. & Arabzadeh, E. Adaptation
improves neural coding efficiency despite increasing correlations in variability.
J. Neurosci. 33, 2108–2120 (2013).

13. Gu, Y. et al. Perceptual learning reduces interneuronal correlations in
macaque visual cortex. Neuron 71, 750–761 (2011).

14. Maynard, E. M. et al. Neuronal interactions improve cortical population
coding of movement direction. J. Neurosci. 19, 8083–8093 (1999).

15. Averbeck, B. B. & Lee, D. Neural noise and movement-related codes in the
macaque supplementary motor area. J. Neurosci. 23, 7630–7641 (2003).

16. Ecker, A. S., Berens, P., Tolias, A. S. & Bethge, M. The effect of noise
correlations in populations of diversely tuned neurons. J. Neurosci. 31,
14272–14283 (2011).

17. Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci.
https://doi.org/10.1038/nn.3807 (2014).

18. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations.
Nat. Neurosci. 14, 811–819 (2011).

19. Kanitscheider, I., Coen-Cagli, R., & Pouget, A. Origin of information-limiting
noise correlations. Proc. Natl Acad. Sci. USA 112, E6973-82 (2015).

20. Leavitt, M. L., Pieper, F., Sachs, A. J., & Martinez-Trujillo, J. C. Correlated
variability modifies working memory fidelity in primate prefrontal neuronal
ensembles. Proc. Natl Acad. Sci. USA 114, E2494–E2503 (2017).

21. Pruszynski, J. A. & Zylberberg, J. The language of the brain: real-world neural
population codes. Curr. Opin. Neurobiol. 58, 30–36 (2019).

22. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley,
New York, 1966).

23. Glickfeld, L. L., Histed, M. H. & Maunsell, J. H. R. Mouse primary visual
cortex is used to detect both orientation and contrast changes. J. Neurosci. 33,
19416–19422 (2013).

24. Andermann, M. L. Chronic cellular imaging of mouse visual cortex during
operant behavior and passive viewing. Front. Cell. Neurosci. 4, 1–16 (2010).

25. Abdolrahmani, M., Lyamzin, D. R., Aoki, R. & Benucci, A. Cognitive
modulation of interacting corollary discharges in the visual cortex. Preprint at
https://www.biorxiv.org/content/10.1101/615229v1 (2019).

26. Ni, A. M., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning
and attention reveal a general relationship between population activity and
behavior. Science 359, 463–465 (2018).

27. Otazu, G. H., Tai, L.-H., Yang, Y. & Zador, A. M. Engaging in an auditory task
suppresses responses in auditory cortex. Nat. Neurosci. 12, 646–654 (2009).

28. McGinley, M. J. et al. Waking state: rapid variations modulate neural and
behavioral responses. Neuron 87, 1143–1161 (2015).

29. Dadarlat, M. C. & Stryker, M. P. Locomotion enhances neural encoding of
visual stimuli in mouse V1. J. Neurosci. 37, 3764–3775 (2017).

30. Kanitscheider, I., Coen-Cagli, R., Kohn, A. & Pouget, A. Measuring Fisher
information accurately in correlated neural populations. PLoS Comput. Biol.
11, 1–27 (2015).

31. Bartolo, R., Saunders, R. C., Mitz, A. R. & Averbeck, B. B. Information limiting
correlations in large neural populations. J. Neurosci. https://doi.org/10.1523/
JNEUROSCI.2072-19.2019 (2020).

32. Cotton, R. J. et al. Accuracy of sensory information does not saturate for large
neuronal populations. 2018 Neuroscience Meeting Planner, 219.02/BB10
(Society for Neuroscience: San Diego, CA, 2018).

33. Mendels, O. P. & Shamir, M. Relating the structure of noise correlations in
Macaque primary visual cortex to decoder performance. Front. Comput.
Neurosci. https://doi.org/10.3389/fncom.2018.00012 (2018).

34. Ince, R. A. A., Panzeri, S. & Kayser, C. Neural codes formed by small and
temporally precise populations in auditory cortex. J. Neurosci. 33,
18277–18287 (2013).

35. Busse, L. et al. The detection of visual contrast in the behaving mouse. J.
Neurosci. 31, 11351–11361 (2011).

36. Engel, T. A. & Steinmetz, N. A. New perspectives on dimensionality and
variability from large-scale cortical dynamics. Curr. Opin. Neurobiol. 58,
181–190 (2019).

37. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A.
Cortical areas interact through a communication subspace. Neuron 102, 1–11
(2019).

38. Williamson, R. C. et al. Scaling properties of dimensionality reduction for neural
populations and network models. PLoS Comput. Biol. 12, e1005141 (2016).

39. Denman, D. J. & Reid, R. C. Synergistic population encoding and precise
coordinated variability across interlaminar ensembles in the early visual
system. Preprint at https://www.biorxiv.org/content/10.1101/812859v1 (2019).

40. Stringer, C., Michaelos, M. & Pachitariu, M. High precision coding in mouse
visual cortex. Preprint at https://www.biorxiv.org/content/10.1101/679324v1
(2019).

41. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal
activity. Nature 499, 295–300 (2013).

42. Ledochowitsch, P. et al On the correspondence of electrical and optical
physiology in in vivo population-scale two-photon calcium imaging. Preprint
at https://www.biorxiv.org/content/10.1101/800102v1 (2019).

43. Herculano-Houzel, S., Watson, C. & Paxinos, G. Distribution of neurons in
functional areas of the mouse cerebral cortex reveals quantitatively different
cortical zones. Front. Neuroanat. 7, 1–14 (2013).

44. Keller, D., Erö, C., & Markram, H. Cell densities in the mouse brain: a systematic
review. Front. Neuroanat. https://doi.org/10.3389/fnana.2018.00083 (2018).

45. de Vries, S. E. J. et al. A large-scale standardized physiological survey reveals
functional organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151
(2020).

46. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual
cortex during natural vision. Science 287, 1273–1276 (2000).

47. Yoshida, T. & Ohki, K. Natural images are reliably represented by sparse and
variable populations of neurons in visual cortex. Nat. Commun. 11, 872
(2020).

48. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A.
A relationship between behavioral choice and the visual responses of neurons
in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

49. Haefner, R. M., Gerwinn, S., Macke, J. H. & Bethge, M. Inferring decoding
strategies from choice probabilities in the presence of correlated variability.
Nat. Neurosci. 16, 235–242 (2013).

50. Pitkow, X., Liu, S., Angelaki, D. E., DeAngelis, G. C. & Pouget, A. How can
single sensory neurons predict behavior? Neuron 87, 411–424 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20722-y ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:473 | https://doi.org/10.1038/s41467-020-20722-y |www.nature.com/naturecommunications 15

https://doi.org/10.6084/m9.figshare.13274951
https://doi.org/10.5281/zenodo.4291863
https://doi.org/10.1038/nn.3807
https://www.biorxiv.org/content/10.1101/615229v1
https://doi.org/10.1523/JNEUROSCI.2072-19.2019
https://doi.org/10.1523/JNEUROSCI.2072-19.2019
https://doi.org/10.3389/fncom.2018.00012
https://www.biorxiv.org/content/10.1101/812859v1
https://www.biorxiv.org/content/10.1101/679324v1
https://www.biorxiv.org/content/10.1101/800102v1
https://doi.org/10.3389/fnana.2018.00083
www.nature.com/naturecommunications
www.nature.com/naturecommunications


51. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis
of visual motion: a comparison of neuronal and psychophysical performance.
J. Neurosci. 12, 4745–4765 (1992).

52. Nienborg, H. & Cumming, B. G. Macaque V2 neurons, but not V1 neurons,
show choice-related activity. J. Neurosci. 26, 9567–9578 (2006).

53. Jasper, A. I., Tanabe, S. & Kohn, A. Predicting perceptual decisions using
visual cortical population responses and choice history. J. Neurosci. 39,
6714–6727 (2019).

54. Keller, G. B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch signals in
primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).

55. Ayaz, A., Saleem, A. B., Schölvinck, M. L. & Carandini, M. Locomotion
controls spatial integration in mouse visual cortex. Curr. Biol. 23, 890–894
(2013).

56. Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual
cortex. J. Neurosci. 28, 7520–7536 (2008).

57. Lee, S., Meyer, J. F., Park, J. & Smirnakis, S. M. Visually driven neuropil
activity and information encoding in mouse primary visual cortex. Front.
Neural Circuits 11, 1–18 (2017).

58. Ringach, D. L. et al. Spatial clustering of tuning in mouse primary visual
cortex. Nat. Commun. 7, 12270 (2016).

59. Dow, B. M. Orientation and color columns in monkey visual cortex. Cereb.
Cortex 12, 1005–1015 (2002).

60. Mott, M. C., Gordon, J. A. & Koroshetz, W. J. The NIH BRAIN Initiative:
advancing neurotechnologies, integrating disciplines. PLoS Biol. 16, e3000066
(2018).

61. Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not noisy, just
wrong: the role of suboptimal inference in behavioral variability. Neuron 74,
30–39 (2012).

62. Drugowitsch, J., Wyart, V., Devauchelle, A.-D. & Koechlin, E. Computational
precision of mental inference as critical source of human choice suboptimality.
Neuron 92, 1–14 (2016).

63. Acerbi, L., Vijayakumar, S. & Wolpert, D. M. On the origins of suboptimality
in human probabilistic inference. PLoS Comput. Biol. 10, e1003661 (2014).

64. Doya, K., Ishii, S., Pouget, A., & Rao, R. P. N. Bayesian Brain: Probabilistic
Approaches to Neural Coding (MIT Press, 2006).

65. Moreno-Bote, R., Knill, D. C. & Pouget, A. Bayesian sampling in visual
perception. Proc. Natl Acad. Sci. USA 108, 12491–12496 (2011).

66. Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns
and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

67. Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. Statistically optimal perception
and learning: from behavior to neural representations. Trends Cogn. Sci. 14,
119–130 (2010).

68. Gao, P. & Ganguli, S. On simplicity and complexity in the brave new world of
large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015).

69. Gao, P. et al. A theory of multineuronal dimensionality, dynamics and
measurement. Preprint at https://www.biorxiv.org/content/10.1101/214262v2
(2017).

70. Kobak, D. et al. Demixed principal component analysis of neural population
data. ELife 5, 1–36 (2016).

71. Chettih, S. N. & Harvey, C. D. Single-neuron perturbations reveal feature-
specific competition in V1. Nature 567, 334–340 (2019).

72. Peirce, J. W. PsychoPy—Psychophysics software in Python. J. Neurosci.
Methods 162, 8–13 (2007).

73. Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal
cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

74. Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and
demixing of calcium imaging data. Neuron 89, 285–299 (2016).

75. Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium
imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

76. Bennett, C., Arroyo, S. & Hestrin, S. Subthreshold mechanisms underlying
state-dependent modulation of visual responses. Neuron 80, 350–357 (2013).

77. Ganguli, D. & Simoncelli, E. P. Efficient sensory encoding and bayesian
inference with heterogeneous neural populations. Neural Comput. 26,
2103–2134 (2014).

78. Seriès, P., Latham, P. E. & Pouget, A. Tuning curve sharpening for orientation
selectivity: coding efficiency and the impact of correlations. Nat. Neurosci. 7,
1129–1135 (2004).

79. Cover, T. M. & Thomas, J. A. Elements of Information Theory 2nd edn.
(Wiley, 2006).

80. Chen, Y., Geisler, W. S. & Seidemann, E. Optimal decoding of correlated
neural population responses in the primate visual cortex. Nat. Neurosci. 9,
1412–1420 (2006).

81. Averbeck, B. B. & Lee, D. Effects of noise correlations on information
encoding and decoding. J. Neurophysiol. 95, 3633–3644 (2006).

82. Neal, R. M. Slice sampling. Annals of Statistics 31, 705–767 (2003)
83. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple

sequences. Stat. Sci. 7, 457–472 (1992).
84. Watanabe, S. A widely applicable Bayesian information criterion. J. Mach.

Learn. Res. 14, 867–897 (2013).
85. Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information

criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).
86. Kalatsky, V. A. & Stryker, M. P. New paradigm for optical imaging: temporally

encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).
87. Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography

and areal organization of mouse visual cortex. J. Neurosci. 34, 12587–12600
(2014).

88. Waters, J. et al. Biological variation in the sizes, shapes and locations of visual
cortical areas in the mouse. PLoS ONE 14, e0213924 (2019).

Acknowledgements
We would like to thank Alexandre Pouget, Peter Latham, and members of the HMS
Neurobiology Department for useful discussions and feedback on the work, and Rachel
Wilson and Richard Born for comments on early versions of the manuscript. The work
was supported by a scholar award from the James S. McDonnell Foundation (grant#
220020462 to J.D.), grants from the NIH (R01MH115554 to J.D.; R01MH107620 to C.D.
H.; R01NS089521 to C.D.H.; R01NS108410 to C.D.H.; F31EY031562 to A.W.J.), the
NSF’s NeuroNex program (DBI-1707398. to R.N.), MINECO (Spain; BFU2017-85936-P
to R.M.-B.), the Howard Hughes Medical Institute (HHMI, ref 55008742 to R.M.-B.), the
ICREA Academia (2016 to R.M.-B.), the Government of Aragon (Spain; ISAAC lab, cod
T33 17D to I.A.-R.), the Spanish Ministry of Economy and Competitiveness (TIN2016-
80347-R to I.A.-R.), the Gatsby Charitable Foundation (to R.N.), and an NSF Graduate
Research Fellowship (to A.W.J.).

Author contributions
All authors designed the research and wrote the paper; A.W.J. and S.N.C. performed
the experiments; M.K., R.N., I.A.-R., R.M.-B., and J.D. developed the theory; and M.K.,
A.W.J., S.N.C., and J.D. analyzed the data.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-20722-y.

Correspondence and requests for materials should be addressed to J.D.

Peer review information Nature Communications thanks Joel Zylberberg and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
review reports are available.0202F

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20722-y

16 NATURE COMMUNICATIONS |          (2021) 12:473 | https://doi.org/10.1038/s41467-020-20722-y | www.nature.com/naturecommunications

https://www.biorxiv.org/content/10.1101/214262v2
https://doi.org/10.1038/s41467-020-20722-y
https://doi.org/10.1038/s41467-020-20722-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


Scaling of sensory information in large neural populations
shows signatures of information-limiting correlations

Supplementary Information
MohammadMehdi Kafashan, Anna W. Jaffe, Selmaan N. Chettih, Ramon Nogueira,

Iñigo Arandia-Romero, Christopher D. Harvey, Rubén Moreno-Bote, and Jan Drugowitsch

Contents

1 Generalized Fisher information 2
1.1 Definition and properties of linear Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Generalizing Fisher information beyond fine discrimination . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Bias-corrected generalized Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Variance of bias-corrected generalized Fisher information . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Covariance of bias-corrected generalized Fisher information . . . . . . . . . . . . . . . . . . . . . . 8

2 Information scaling models 11
2.1 Linear non-limiting information scaling for large N . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Models for I0,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Impact of measurement noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Impact of eye movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Impact on population activity moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Impact on information scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Estimating the information scaling moments from neural data 16
3.1 Generative model and desired moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Simulating samples from a large, unobserved population . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Estimating the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Estimating the variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Estimating the covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Population activity models 20
4.1 A Gaussian population activity model with limited information . . . . . . . . . . . . . . . . . . . . 20
4.2 A visual hierarchy population activity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Supplementary Tables 22

6 Supplementary Figures 24

1



Scaling of information, Supplementary Information Kafashan et al.

Supplementary Note 1. Generalized Fisher information
Fisher information quantifies howmuch neural activity r tells us about a stimulus θ around a particular reference
θ0. As such, it is a measure of fine discrimination performance. Here, we show how linear Fisher information
relates to Fisher information in general, show how it can be generalized beyond fine discrimination, and describe
some properties of this generalization.

1.1 Definition and properties of linear Fisher information
We can derive linear Fisher information in two ways [1, 2]. The first is to assume that p(r|θ) is a member of the
exponential family with linear sufficient statistics. The second is to show that it is the Fisher information that
can be extracted with a minimum-variance unbiased linear decoder. We will provide both derivations in turn.

Let us first assume that neural activity r in response to a stimulus θ follows an exponential family distribution
with linear sufficient statistics,

p(r|θ) = g(θ)Φ(r) exp(h(θ)T r), (1)
where

g(θ) =
1∫

Φ(r) exp(h(θ)T r)dr
, (2)

in which g(θ), Φ(r), and h(θ) are known functions.
The partial derivative with respect to θ of the log-likelihood function, ∂

∂θ log p(r|θ), is called the "score" which
is given by

∂

∂θ
log p(r|θ) = h′T (θ)(r(θ)− f(θ)), (3)

where f(θ) = E (r(θ)) is the population activity vector. Note that the first moment of the score function is zero.
The Fisher information can be derived using the variance of the score function [3] which can be written as

follows:

I(θ) = E

[(
∂

∂θ
log p(r|θ)

)2
]

= h′(θ)TΣ(θ)h′(θ), (4)

where Σ(θ) = E
[
(r(θ)− f(θ)) (r(θ)− f(θ))

T
]
is the noise covariance matrix. To express the Fisher information

in terms of f(θ), we note that
f ′(θ) =

d
dθ

∫
rp(r|θ)dr = Σ(θ)h′(θ). (5)

Thus, we have h′(θ) = Σ−1(θ)f ′(θ) [4]. Taking this expression to substitute both instances of h′(θ) in the Fisher
information results in

I(θ) = f ′(θ)TΣ−1(θ)f ′(θ). (6)
To show that linear Fisher information is the information extractable by aminimum-variance unbiased linear

decoder, assume that the decoder linearly combines neural activity of neurons with a projection vector w. For
fine discrimination task with two close-by stimuli θ1 = θ0−δθ and θ2 = θ0 +δθ with small δθ, the unbiased locally
linear estimator for θ̂ is given by

θ̂ − θ0 = wT (r− f(θ0)). (7)
The expectation of the right-hand side around θ0 is wT (〈r〉 − f(θ0)) = 0, demonstrating that the estimator is
unbiased. Our aim is to find a w that yields a locally unbiased estimate, that is

dEθ(θ̂)
dθ = 1, (8)

imposing the constraint
wT f ′(θ) = 1. (9)

2



Scaling of information, Supplementary Information Kafashan et al.

To find the minimum variance estimator satisfying this constraint, note that its variance is given by var
(
θ̂
)

=

wTΣw, where Σ is the noise covariance matrix around θ0. Therefore, we aim to find

min
w

wTΣw, s.t. wT f ′(θ) = 1. (10)

Using a Lagrange multiplier to solve the constraint optimization for w results in

w∗ =
Σ−1f ′

f ′TΣ−1f ′
, (11)

with associated estimator variance
var

(
θ̂
)

=
1

f ′TΣ−1f ′
. (12)

By the Cramér-Rao bound [3], the Fisher information is the inverse of this variance, resulting in

I(θ) =
1

var
(
θ̂
) = f ′

T
Σ−1f ′, (13)

which matches the previously derived expression for the linear Fisher information. This demonstrates that
linear Fisher information can be interpreted in multiple ways: it is either the Fisher information when restrict-
ing the distribution of neural activity to the exponential family with linear sufficient statistics (which contains
independent-Poisson populations with dense tuning curves, as well as other distributions [4], or the Fisher in-
formation that can be extracted with a linear decoder.

1.2 Generalizing Fisher information beyond fine discrimination
Let us generalize the above to coarse discrimination. To do so, assume two classes, C1 and C2, which represent
a pair of stimulus orientations at θ1 and θ2 in the experiment. As before, we will derive generalized Fisher
information in two ways. First, we will derive it by making particular distributional assumptions on p(r|θ1) and
p(r|θ2). Then, we will derive it from the perspective of optimal linear discrimination.

For the first approach, assume that p(r|θj) for both j ∈ {1, 2} follows a Gaussian distribution,

C1 : p(r|θ1) = N (r|f1,Σ)

C2 : p(r|θ2) = N (r|f2,Σ),
(14)

which have different means, but the same covariance matrix. Under the assumption that θ is a random variable
(which takes two values, θ ∈ {θ1, θ2}, in coarse discrimination tasks), it is easy to find a decision rule that mini-
mize the expected Bayes risk [5]. We will denote Lij as the loss of choosing Cj when Ci is correct. Furthermore,
we assume a symmetric decision problem with symmetric loss, that is L12 = L21 and L11 = L22, a uniform prior
p(C1) = p(C2) = 1/2, and a preference for making correct choices, that is L11 < L12. In this case, the expected
Bayesian risk,

∑
i∈{1,2} LiD(r)p(Ci|r), associated with decision rule D(r) ∈ {1, 2} is minimized by

D (r) =

{
2 if Λ(r) = log p(r|θ2)

p(r|θ1) > 0,

1 otherwise ,
(15)

where Λ(r) is the log-likelihood ratio. For the assumed Gaussian likelihoods, this log-likelihood ratio is given by

Λ(r) = (f2 − f1)TΣ−1(r− f0), (16)

where f0 = 1
2 (f1 + f2), and fj = Er|θj (r) for j ∈ {1, 2}. Letting w = Σ−1δf with δf = f2 − f1, we can rewrite Λ(r) as

Λ(r) = wT (r− f0). (17)

3
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In order to identify how likely this decision rule makes the correct choice, observe that Λ(r) follows the fol-
lowing distributions under C1 and C2,

Λ(r)|C1 ∼ N
(
−1

2
wTΣw,wTΣw

)
, Λ(r)|C2 ∼ N

(
1

2
wTΣw,wTΣw

)
. (18)

Therefore, we can find the probability of making a correct choice under D(r) by

p(correct) =
1

2
p (Λ(r) ≤ 0|C1) +

1

2
p (Λ(r) > 0|C2) = Φ

(
1

2

√
wTΣw

)
, (19)

where Φ (·) is the cumulative function of the standard normal distribution. After replacing both instances of w
by its definition, w = Σ−1δf , p(correct) becomes

p(correct) = Φ

(
1

2

√
δfTΣ−1δf

)
. (20)

Comparing this expression to Eq. (6) reveals a close similarity which we can utilize to define the generalized
linear Fisher information for coarse discrimination tasks by

Ig(θ) =
δfTΣ−1δf

δθ2 , (21)

where δθ = θ2 − θ1 is the stimulus difference. It is easy to see that, for small δθ, generalized linear Fisher
information converges to linear Fisher information,

lim
δθ→0

Ig(θ) = lim
δθ→0

δfTΣ−1δf

δθ2 = f ′TΣ−1f ′ = I(θ) (22)

As the sensitivity index d′ [6] in our case is given by d′ =
√
δfTΣ−1δf [7, 8, 9], the generalized linear Fisher

information can be re-expressed in terms of d′ by

Ig(θ) =
d′2

δθ2 . (23)

This relationship furthermore results in

p(correct) = Φ

(
δθ

2

√
Ig(θ)

)
= Φ

(
d′

2

)
(24)

illustrating the close relationship between p(correct), d′, and Ig(θ).
An alternative derivation for generalized linear Fisher information is through an optimal linear discriminator

with less stringent assumptions on the class-conditional distribution. In this second approach, we assume a
linear decoder projecting the neural activity to a one-dimensional readout using

θ̂ = wT r. (25)

To assign an observed neural activity to a class, we just need to place a threshold on the readout θ̂. To do
so, we optimize w to maximize the class separation following Fisher’s linear discriminant analysis [10], which
minimizes the within-class variance while maximizing the between-class variance of r. As before, let fj and Σj be
mean and noise covariance of neural activity in class Cj , but without making any further assumptions about the
class-conditional densities p(r|Cj). We aim to find the w that maximizes the ratio of the between-class variance
to the within-class variance, which is formulated as

max
w

wT δfδfTw

wTΣw
, s.t. ‖w‖2 = 1, (26)
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where δfδfT is the between-class covariance matrix and Σ is the average within-class covariance matrix given
by

Σ =
Σ1 + Σ2

2
. (27)

Here, we fix ‖w‖2 = 1, as we are interested in the direction of w but not its length. Using a Lagrange multiplier
to solve the constraint optimization for w results in

w =
Σ−1δf

δfTΣ−1δf
. (28)

This yields the direction, w, to best project the neural activity into one dimension.
To find the associated p(correct), note that θ̂ is the sum of a (potentially large) set of random variables. These

random variables are correlated, such that the central limit theorem does not directly apply. Nonetheless, we
assume this sum to be approximately Gaussian for both θ̂|C1 and θ̂|C2, and given by

θ̂|C1 ∼ N
(
wT f1,w

TΣ1w
)
, θ̂|C2 ∼ N

(
wT f2,w

TΣ2w
)
. (29)

This results in the sensitivity index, d′, to be given by

d′ =
wT f2 −wT f1√

1
2 (wTΣ1w + wTΣ2w)

=
wT δf√
wTΣw

=
√
δfTΣ−1δf , (30)

yielding the same expression as before. This makes it straightforward to derive the generalized Fisher informa-
tion as before.

1.3 Bias-corrected generalized Fisher information
Evaluating the generalized Fisher information, Eq. (21), by replacing δf and Σ by its empirical moments esti-
mated from neural data with a limited number of trials leads to biased estimates [11]. In [11], they provide a
bias correction for standard Fisher information, but it is unclear if this bias correction also applies to our gener-
alization of Fisher information. In this section, we will derive such a bias correction for our generalization. This
correction turns out to be the same as that provided by [11]. This is unsurprising in hindsight, as [11] do not
restrict the size of δθ in their derivation, such that it applies to both fine and coarse discrimination.

We assume neural activity rtj , j = 1, 2 in response to stimulus θj in trials t = 1, ..., T to follow a multivariate
Gaussian distribution given by

rtj ∼ N (fj ,Σ) , j = 1, 2, (31)
where we assume the same covariance matrix for neural activity in response to θ1 and θ2. This is not a restriction,
as our above derivation from the perspective of a linear discriminator has shown that, if these covariances differ,
we can replace them by their average (which is what we do in practice, see below). Under this assumption, the
empirical mean and covariance over T trials for each stimulus is distributed as [12]

µj =
1

T

T∑
t=1

rtj ∼ N
(

fj ,
Σ

T

)
, Sj =

1

T − 1

T∑
t=1

(rtj − µj)(rtj − µj)T ∼ W
(

Σ

T − 1
, T − 1

)
, (32)

whereW(Vp×p, n) is the p-dimensional Wishart distribution with n degrees of freedom.
The naïve estimation of generalized Fisher information, Eq. (21), is obtained by replacing δf and Σ with their

unbiased estimates, δµ and S, given by

δµ = µ1 − µ2 ∼ N
(
δf ,

2Σ

T

)
, S =

1

2
(S1 + S2) ∼ W

(
Σ

2(T − 1)
, 2(T − 1)

)
, (33)

where E(δµ) = δf and E(S) = Σ. Furthermore, the inverse of sample covariance, S−1, follows an inverse Wishart
distribution [12] given by

S−1 ∼ W−1
(
2(T − 1)Σ−1, 2(T − 1)

)
, (34)

5
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which has mean
E(S−1) =

2(T − 1)

2T −N − 3
Σ−1 (35)

Replacing δf and Σ with δµ and S in Eq. (21) results in the following naive estimator of the generalized Fisher
information to be given by

Îg,nv(θ) =
δµTS−1δµ

δθ2
. (36)

To evaluate the bias of Ig,nv, we utilize the fact that the sample mean and sample covariance of Gaussian
distributions are independent [12], such that we can express the first moment of Ig,nv by

E
(
Îg,nv

)
=

Eδµ,S
(
δµTS−1δµ

)
δθ2

, (37)

where

Eδµ,S
(
δµTS−1δµ

)
= Eδµ,S

(
Tr
(
δµδµTS−1

))
= Tr

(
Eδµ,S

(
δµδµTS−1

))
= Tr

(
Eδµ

(
δµδµT

)
ES

(
S−1

))
= Tr

((
δfδfT +

2Σ

T

)(
2(T − 1)

2T −N − 3
Σ−1

))
=

2(T − 1)

2T −N − 3

(
Tr
(
δfδfTΣ−1

)
+

2N

T

)
=

2(T − 1)

2T −N − 3

(
δfTΣ−1δf +

2N

T

)
=

2(T − 1)

2T −N − 3

(
Igδθ

2 +
2N

T

)
.

(38)

Having the first moment of Îg,nv, we can obtain the expression for the bias-corrected generalized Fisher infor-
mation, Îg,bc, given by

Îg,bc =
2T −N − 3

2(T − 1)

δµTS−1δµ

δθ2
− 2N

Tδθ2
. (39)

This estimate is the same as provided by [11], and will, in expectation, equal the true Fisher information, that
is, E

(
Îg,bc

)
= Ig.

1.4 Variance of bias-corrected generalized Fisher information
Let us now consider the variance of the bias-corrected generalized Fisher information across different draws of
T trial/samples from the same neural population. This variance has already been computed by [11], but only
as a function of the true information, Ig, which is an unknown quantity. Here, we re-derive this expression for
completeness, and additionally derive an unbiased estimated thereof as a function of Îg,bc, which can be computed
from experimental data.

The variance of Îg,bc is given by

var
(
Îg,bc

)
=

(2T −N − 3)2

4(T − 1)2δθ4
var(δµTS−1δµ), (40)

where var
(
δµTS−1δµ

)
can be decomposed into

var(δµTS−1δµ) = E
(
(δµTS−1δµ)2

)
− E

(
δµTS−1δµ

)2
. (41)
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The first term in Eq. (41) can be expressed as

E
(
(δµTS−1δµ)2

)
= E

(
δµTS−1δµδµTS−1δµ

)
= Eδµ

(
δµTES

(
S−1δµδµTS−1

)
δµ
)

=
4(T − 1)2

(2T −N − 3)(2T −N − 5)
Eδµ

(
δµTΣ−1δµδµTΣ−1δµ

)
=

4(T − 1)2

(2T −N − 3)(2T −N − 5)
Eδµ

(
(δµTΣ−1δµ)2

)
=

4(T − 1)2

(2T −N − 3)(2T −N − 5)

(
var(δµTΣ−1δµ) + Eδµ

(
δµTΣ−1δµ

)2)
.

(42)

The second term in Eq. (41) can be expressed as

E
(
δµTS−1δµ

)2
=

4(T − 1)2

(2T −N − 3)2
Eδµ

(
δµTΣ−1δµ

)2
. (43)

Together, this results in Eq. (41) to be given by

var(δµTS−1δµ) =
4(T − 1)2

(2T −N − 3)(2T −N − 5)

(
var(δµTΣ−1δµ) +

2

2T −N − 3
Eδµ

(
δµTΣ−1δµ

)2)
. (44)

Therefore, var(Ig,bc) can be simplified to

var
(
Îg,bc

)
=

2

2T −N − 5

(
2T −N − 3

2δθ4
var(δµTΣ−1δµ) +

1

δθ4
Eδµ

(
δµTΣ−1δµ

)2)
. (45)

To simplify this expression, note that if ε ∼ N (µ,Σ), then, for a constant matrix Λ, we have

E(εTΛε) = Tr(ΛΣ) + µTΛµ. (46)

Additionally, for a symmetric matrix Λ, the variance of the quadratic form is expressed as

var(εTΛε) = 2 Tr (ΛΣΛΣ) + 4µTΛΣΛµ. (47)

Applying Eqs. (46) and (47) yields

var(δµTΣ−1δµ) =
8N

T 2
+

8

T
δθ2Ig, Eδµ

(
δµTΣ−1δµ

)2
=

4N2

T 2
+

4N

T
δθ2Ig + δθ4I2

g . (48)

Using these expressions results in the final variance

var
(
Îg,bc

)
=

2

2T −N − 5

(
I2
g +

4(2T − 3)

Tδθ2
Ig +

4N(2T − 3)

T 2δθ4

)
(49)

This is the expression provided by [11]. Unfortunately, it is a function of the true information Ig, which is
unknown, such that the variance cannot be evaluated from data.

To find an unbiased estimate of this variance, note that the true information, Ig, shows up as Ig and I2
g . We

already have an unbiased estimate of Ig, and will now derive such an unbiased estimate for I2
g . Let us denote

this estimate by ˆ(I2
g

)
bc

(in contrast to the squared Îg,bc, which is Î2
g,bc). We find it by

E
(

(Îg,bc)
2
)

= var
(
Îg,bc

)
+ E

(
Îg,bc

)2

=
2

2T −N − 5

(
I2
g +

4(2T − 3)

Tδθ2
Ig +

4N(2T − 3)

T 2δθ4

)
+ I2

g

=
1

2T −N − 5

(
(2T −N − 3)I2

g +
8(2T − 3)

Tδθ2
Ig +

8N(2T − 3)

T 2δθ4

)
.

(50)

7
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Solving for I2
g and substituting Ig by its bias-corrected estimate Îg,bc reveals the bias-corrected estimate

ˆ(I2
g

)
bc

=
2T −N − 5

2T −N − 3
Î2
g,bc −

1

2T −N − 3

8(2T − 3)

Tδθ2
Îg,bc −

1

2T −N − 3

8N(2T − 3)

T 2δθ4
, (51)

which satisfies E
(

ˆ(I2
g

)
bc

)
= I2

g . Substituting the bias corrected estimates of Ig and I2
g into Eq. (49) results after

some algebra in the unbiased variance estimate

var
(
Îg,bc

)
=

2

2T −N − 3

(
Î2
g,bc +

4(2T − 3)

Tδθ2
Îg,bc +

4N(2T − 3)

T 2δθ4

)
, (52)

which can be computed from data.

1.5 Covariance of bias-corrected generalized Fisher information
As we are interested in how information scales with population size, we also need to know how information esti-
mates for different subpopulations relate to each other. Knowing this relationship is essential to our model fits,
as fitting the information scaling models to information estimates that are correlated across different population
sizes could results in significant mis-estimates if these correlations are ignored. In fact, we will use the results
from this section to show in Sec. 3.5 that the increase in information due to adding one more neuron to a pop-
ulation is uncorrelated across different subpopulations. Based on this insight, we thus fitted these information
increases rather than absolute informations, as illustrated in Supplementary Figure 4 in the main text.

To identify the relation between the information estimates for different subpopulations, we will focus on
two subpopulations with Nx and Ny neurons (Ny ≤ Nx) where the latter consists of a subset of neurons of the
former. That is, the subpopulation with Nx neurons contains all of the Ny neurons in the (possibly) smaller
subpopulation. We are interested in how their information estimates co-vary if we estimate both information
measures from the same set of T trials.

To find this covariance, let us decompose the true (i.e., non-empirical) moments of the larger subpopulation
into

δfx =

(
δfy
δfz

)
, Σx =

(
Σy Σu

ΣT
u Σz

)
. (53)

Here, δfx and δfy are the population tuning differences of the larger and smaller subpopulation, respectively, and
we have ordered the neurons in the larger subpopulation such that it contains all shared neurons first, followed
by all non-shared neurons. This re-ordering is possible, as the information estimates are independent or how
neurons are ordered within a population. Furthermore, Σx and Σy are the noise covariance matrices of the
larger and smaller subpopulation, and Σu is the the covariance of shared with non-shared neurons.

Experimentally, we cannot directly observe these moments, but instead estimate them through the empirical
moments,

δµx =

(
δµy
δµz.

)
, Sx =

(
Sy Su
STu Sz.

)
(54)

Using the same properties as in the previous section, these empirical moments relate to the true moments by

δµx ∼ N
(
δfx,

2

T
Σx

)
, S−1

x ∼ W−1
(
2(T − 1)Σ−1

x , 2(T − 1)
)
, (55)

δµy ∼ N
(
δfy,

2

T
Σy

)
, S−1

y ∼ W−1
(
2(T − 1)Σ−1

y , 2(T − 1)
)
, (56)

The empirical covariances additionally have the properties [13]

(Sz − SuS
−1
y STu )−1 ∼ W−1

(
2(T − 1)(Σz −ΣuΣ

−1
y ΣT

u )−1, 2(T − 1)
)
, (57)

SuS
−1
y |S−1

y ∼MNNy×(Nx−Ny)

(
ΣuΣ

−1
y ,

1

2(T − 1)
(Σx −ΣuΣ

−1
y ΣT

u ),S−1
y

)
, (58)

8
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whereMN is the matrix-normal distribution.
From Eq. (39), the bias-corrected generalized information for two subpopulations denoted as Ixg,bc and I

y
g,bc

can be written as

Îxg,bc =
2T −Nx − 3

2T − 2

δµTxS−1
x δµx
δθ2

− 2Nx
Tδθ2

, (59)

Îyg,bc =
2T −Ny − 3

2T − 2

δµTy S−1
y δµy

δθ2
− 2Ny
Tδθ2

. (60)

We can decompose Îxg,bc into two terms. The first term is the shared information which is common between
subpopulations x and y as both of them contains all of neurons in subpopulation y. The second term is the
information gain that is gained by adding the non-shared neurons. This decomposition can be expressed as

Îxg,bc = Îyg,bc + δÎx−yg,bc , (61)

where δÎx−yg,bc is the information gain due to the non-shared components between subpopulations x and y. The
covariance of Îxg,bc and Î

y
g,bc is given by

cov
(
Îxg,bc, Î

y
g,bc

)
= var

(
Îyg,bc

)
+ cov

(
Îyg,bc, δÎ

x−y
g,bc

)
, (62)

where we already have expression for the variance on the right-hand side (i.e., Eq. (52)), and only need to find
an expression for the covariance.

To calculate cov
(
Îyg,bc, δÎ

x−y
g,bc

)
, let us first find an expression for δÎx−yg,bc . To find this expression, note that, by

the decomposition of δµx and Sx, and using block matrix inversion,

δµTxS−1
x δµx = δµTy S−1

y δµy +
(
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

)
, (63)

Substituting this relationship into Eqs. (59) and (60) results in the bias-corrected information gain

δÎx−yg,bc = Îxg,bc − Î
y
g,bc

=
Ny −Nx

2T −Ny − 3
Îyg,bc +

2T −Nx − 3

2T − 2

(
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

)
δθ2

+ const,
(64)

where "const" captures all non-stochastic terms that do not contribute to the covariance. Overall, this results in

cov
(
Îyg,bc, δÎ

x−y
g,bc

)
=

Ny −Nx
2T −Ny − 3

var
(
Îyg,bc

)
+

(2T −Nx − 3)(2T −Ny − 3)

(2T − 2)2δθ4

× cov
(
δµTy S−1

y δµy,
(
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

))
,

(65)

where we have substituted Eq. (60) for Iyg,bc to find the second term on the right-hand side. The first term of
Eq. (65) is known from Eq. (52). The covariance expression in the second term can be expressed as

cov
(
δµTy S−1

y δµy,
(
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

))
= E

(
δµTy S−1

y δµy
(
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

))
− E

(
δµTy S−1

y δµy
)
E
((
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

))
(66)

First we evaluate the last expectation in Eq. (66) which is

E
((
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

))
(67)

9
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Conditioned on S−1
y , we observe that (Sz − SuS

−1
y STu )−1 is independent of SuS

−1
y [13]. Thus we can first take the

expectation of (Sz − SuS
−1
y STu )−1 to get

2T − 2

2T −Nx − 3

(
δµz − SuS

−1
y δµy

)T (
Σz −ΣuΣ

−1
y ΣT

u

)−1 (
δµz − SuS

−1
y δµy

)
. (68)

Next, we observe that SuS
−1
y |S−1

y is matrix normal, which has a simple expression for the expectation of its
quadratic form. Using this expression yields

2T − 2

2T −Nx − 3

(
δµz −ΣuΣ

−1
y δµy

)T (
Σz −ΣuΣ

−1
y ΣT

u

)−1 (
δµz −ΣuΣ

−1
y δµy

)
+

Nx −Ny
2T −Nx − 3

δµTy S−1
y δµy (69)

We do not need to complete the expectation over the remaining random variables because most involved terms
cancel out each other later on.

Utilizing the same strategy we evaluate the expectation of the first term in Eq. (66) which is given by

E
(
δµTy S−1

y δµy
(
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

))
. (70)

Its expectation with respect to
(
Sz − SuS

−1
y STu

)−1 is

2T − 2

2T −N − 3
δµTy S−1

y δµy
(
δµz − SuS

−1
y δµy

)T (
Σz −ΣuΣ

−1
y ΣT

u

)−1 (
δµz − SuS

−1
y δµy

)
. (71)

The expectation with respect to SuS
−1
y |S−1

y is given by

2T − 2

2T −Nx − 3
δµTy S−1

y δµy
(
δµz −ΣuΣ

−1
y δµy

)T (
Σz −ΣuΣ

−1
y ΣT

u

)−1 (
δµz −ΣuΣ

−1
y δµy

)
+

Nx −Ny
2T −Nx − 3

(
δµTy S−1

y δµy
)2

(72)
Utilizing the fact that δµy and δµz−ΣuΣ

−1
y δµy are jointly Gaussian and uncorrelated, which means they are

independent, we can combine Eqs. (72) and (69) to simplify the expression in Eq. (66) to

cov
(
δµTy S−1

y δµy,
(
δµz − SuS

−1
y δµy

)T (
Sz − SuS

−1
y STu

)−1 (
δµz − SuS

−1
y δµy

))
=

Nx −Ny
2T −Nx − 3

(
E
((
δµTy S−1

y δµy
)2)− E

(
δµTy S−1

y δµy
)2)

=
Nx −Ny

2T −Nx − 3
var

(
δµTy S−1

y δµy
)

=
(Nx −Ny)(2T − 2)2δθ4

(2T −Nx − 3)(2T −Ny − 3)2
var

(
Îyg,bc

)
.

(73)

Substituting Eq. (73) into Eq. (65) results in

cov
(
Îyg,bc, δÎ

x−y
g,bc

)
=

Ny −Nx
2T −Ny − 3

var
(
Îyg,bc

)
+

Nx −Ny
2T −Ny − 3

var
(
Îyg,bc

)
= 0, (74)

which means that information in the smaller population is uncorrelated to the information gain obtained from
non-shared neurons. As a consequence,

cov
(
Îxg,bc, Î

y
g,bc

)
= var

(
Îyg,bc

)
. (75)

Note the this only holds for the bias-corrected information estimates. For the naïve estimates, a similar deriva-
tion shows that Îyg,nv and δÎx−yg,nv are correlated.
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Supplementary Note 2. Information scaling models
We assume that information in the recorded population is limited by the presence of information-limiting corre-
lations [1]. In this case, the noise covariance matrix ΣN for a population of N neurons decomposes into

ΣN = Σ0,N +
1

I∞
f ′N f ′TN , (76)

where Σ0,N is the non-limiting covariance component, I∞ is the asymptotic information, and f ′N is the derivative
of the mean population activity. All of these quantities depend on the stimulus, θ, but we will keep this depen-
dency implicit for notational convenience. In the N → ∞ limit, only the second component limits information,
while the information associated with Σ0,N grows without bounds.

To see how information grows in the presence of information-limiting correlations, note that the Sherman-
Morrison formula allows us to express Σ−1

N by

Σ−1
N = Σ−1

0,N −
Σ−1

0,N f ′N f ′TN Σ−1
0,N

I∞ + f ′TN Σ−1
0,N f ′N

(77)

Let us denote the linear Fisher information associated with the non-limiting component by I0,N = f ′TN Σ−1
0,N f ′N .

Then, after some algebra, the total Fisher information is given by

IN = f ′TN Σ−1
N f ′N = f ′TN Σ−1

0,N f ′N −
f ′TN Σ−1

0,N f ′N f ′TN Σ−1
0,N f ′N

I∞ + f ′TN Σ−1
0,N f ′N

=
1

1
I0,N

+ 1
I∞

, (78)

or, equally, I−1
N = I−1

0,N + I−1
∞ . This result forms the core of our information scaling models. For the remainder

of this section we will discuss how we would expect information I0,N in the non-limiting component to scale, and
the impact of measurement noise on overall information scaling.

2.1 Linear non-limiting information scaling for large N

To characterize the scaling of I0,N with N , let us use the spectral decomposition

Σ0,N =

N∑
n=1

σ2
N,nzN,nzTN,n, (79)

with variances σ2
N,1, . . . , σ

2
N,N and principal directions zN,1, . . . , zN,N . Then, I0,N is given by

I0,N =
N∑
n=1

(
f ′TN zN,n

)2
σ2
N,n

= ‖f ′N‖2
N∑
n=1

cos2 (αN,n)

σ2
N,n

, (80)

where αN,n is the angle between f ′N and zn.
To see how I0,N scales with N , let us assume that the αN,n’s are independent of the σ2

N,n’s. Furthermore,
f ′N,n (that is, the nth component of f ′N ) is O(1), such that ‖f ′N‖2 will be O(N). In addition, geometry requires that∑N
n=1 cos2 (αN,n) = 1, such that each cos2 (αNn) is O(1/N) [1]. Together, this yields

I0,N ∝ N
N∑
n=1

1

N

1

σ2
N,n

=

N∑
n=1

1

σ2
N,n

. (81)

Therefore, under these assumptions, the scaling of I0,N only depends on the scaling of the eigenvalue spectrum
{σ2

N,1, . . . , σ
2
N,N} of Σ0,N .

For the following, we will assume that each neuron in the population features some small amount of "private"
noise that is not correlated with the variability of other neurons. This private noise introduces a lower bound,

11
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σ2
0 , on the variances, that is σ2

N,n ≥ σ2
0 for all n. Together with the above expression, this allows us to derive a

lower bound on the scaling of non-limiting information. In particular, by Jensen’s inequality

I0,N ∝ N

(
1

N

N∑
n=1

1

σ2
N,n

)
≥ N 1

1
N

∑N
n=1 σ

2
N,n

∝ N. (82)

The second-to-last expression contains the average variance, which is lower-bounded by σ2
0 and of order one.

Therefore, the scaling of I0,N is at least O(N).
To gain further insight into the scaling of I0,N , assume a sequence of non-limiting covariance matrices

Σ0,M ,Σ0,M−1,Σ0,M−2, . . . , starting with some large population withM neurons. Each consecutivematrixΣ0,N−1

is constructed from the next-larger matrix Σ0,N by removing a single neuron, such that they share all en-
tries except for one row and column associated with that neuron. If we order their eigenvalues according to
σ2
N,1 ≥ σN,2 ≥ . . . σ2

N,N and σ2
N−1,1 ≥ σ2

N−1,2 ≥ · · · ≥ σ2
N−1,N−1, it is known that these eigenvalues obey the

interleaved ordering
σ2
N,1 ≥ σ2

N−1,1 ≥ σ2
N,2 ≥ σ2

N−1,2 ≥ . . . σ2
N−1,N−1 ≥ σ2

N,N . (83)

Using I0,N ∝
∑N
n=1 σ

−2
N,n, the information increase when moving from N − 1 to N neurons becomes

I0,N − I0,N−1 ∝
N−1∑
n=1

(
1

σ2
N,n

− 1

σ2
N−1,n

)
+

1

σ2
N,N

. (84)

This information increase is O(1) if both terms on the left-hand side are O(1).
The second term isO(1) if there exists some positive constant C such that, for allN above someN0, σ−2

N,N ≤ C.
As σ2

N,N is always the smallest eigenvalue of the covariance matrix, this implies that O(1) can be guaranteed
as long as σ2

N,N remains positive with increasing N , which is satisfied by our previous assumption that each
neuron has some private noise. If it instead would go to zero, we would have limN→M σ−2

N,N = 0, violating the
requirement.

For the first term we observe that the hierarchical eigenvalue relationship of nested matrices implies that
σ−2
N,n ≤ σ−2

N−1,n for all n = 1, . . . , N − 1. This implies that every element in the sum is negative. However, the
information increase I0,N − I0,N−1 cannot be negative. Therefore, the second term on the left-hand side has to
be at least as large as the negative first term (i.e., the sum), that is

1

σ2
N,N

≥ −
N∑
n=1

(
1

σ2
N,n

− 1

σ2
N−1,n

)
. (85)

As σ−2
N,N is O(1), the sum cannot be larger than O(1). Overall, as long as none of the variances become zero with

increasing N , the increase in I0,N will be O(1), which implies that I0,N scales with O(N).

2.2 Models for I0,N

The above argument shows that, under rather general conditions, I0,N can be expected to scale with O(N).
However, it does not tell us about how I0,N behaves for small N , which depends on the details of the structure of
ΣN,0.

To describe the details of this structure, we compared two models for I0,N . The first, called the lim model,
directly follows the scaling results and assumes that I0,N = cN with some parameter c that is independent of N .
The second model, called the lim-exp model, allows the non-limiting information to initially grow supralinearly
before converging to a linear growth. We derived this model by integrating c

(
1− e−N/τ

)
from zero toN , resulting

in
I0,N = c

(
N + τ

(
e−

N
τ − 1

))
, (86)

with the additional parameter τ that controls the extent of the initial supralinearity (in units ofN ). We have cho-
sen this particular model, as it turns out easier to fit than alternative models (such as, for example, integrating
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a re-scaled logistic sigmoid over the positive half-line) that provide qualitatively similar qualitative I0,N scaling.
This model approaches I0,N = cN in the τ → 0 limit. Model comparison revealed the lim model to significantly
outperform the lim-expmodel (Supplementary Figure 6), such that we focused on the limmodel in the main text.

2.3 Impact of measurement noise
Our recordings of neural activity might be noisy, introducing additional variability into our estimates of ΣN and
f ′N . To estimate the effect of such measurement noise, we assume it to be of equal magnitude and independent
across neurons, such that it adds an additional diagonal term to the covariance decomposition,

ΣN = Σ0,N +
1

I∞
f ′N f ′TN + σ2

recI, (87)

where σ2
rec denotes the variance of the measurement noise. We don’t assume it to impact differential correlations,

as those limit information in the brain, rather than our measurement thereof.
Following the same derivation as in the beginning of this section, the information in a population ofN neurons

becomes
IN =

1
1

I0,rec,N
+ 1

I∞

, (88)

where
I0,rec,N = f ′TN

(
Σ0,N + σ2

recI
)−1

f ′N , (89)
is the non-limiting information, including measurement noise. We can, as before, use the spectral decomposition
Σ0,N =

∑N
n=1 σ

2
N,nznzTn and observe that I =

∑N
n=1 znzTn , resulting in

Σ0,N + σ2
recI =

N∑
n=1

(
σ2
N,n + σ2

rec

)
znzTn . (90)

This shows that measurement noise increases all eigenvalues of Σ0,N by the same magnitude.
This has several consequences. First, the added variance baseline results in I0,rec,N to grow more slowly with

N than I0,N . Second, this baseline causes in the eigenvalues of Σ0,N +σ2
recI to be more similar to each other than

those of Σ0,N alone. As a consequence, the growth of I0,rec,N ∝
∑N
n=1

(
σ2
N,n + σ2

rec

)−1 with N is more linear than
that of I0,N ∝

∑N
n=1 σ

−2
N,n. This might make I0,rec,N = crecN a good model of non-limiting information growth,

even if I0,N = cN is not. Third, as the measurement noise impacts only I0,rec,N but not I∞, measurement noise
only impacts our estimates of c but not of I∞. Fourth, measurement noise will lower our estimates of c, and
therefore increase our estimates of Na = a/(1− a)I∞/c, which is the population size at which a fraction a of the
asymptotic information I∞ is reached.

2.4 Impact of eye movements
To estimate the impact of eye movements that might occur between trials, we assume that the only impact that
they might have had was to have the stimulus appear outside some neurons’ receptive field in some trials. We
assumed that, under those circumstances, the neuron’s activity would be set to zero. For tractability, our model
does not consider details of the spatial structure of receptive fields. This leads to a simple model in which we
assume one indicator variable zt per trial t that is zt = 0 if the stimulus appears in all measured neurons’
receptive fields in that trial, and zt = 1 if it might fall outside of some receptive fields. We furthermore introduce
the indicator variable znt for neuron n in trial t that is znt = 0 if the stimulus falls into neuron n’s receptive field
in trial t, and znt = 1 if it might fall outside of it. We assume that p(zt = 1) = pt and p(znt = 1) = pn, independent
across trials and neurons. Furthermore, pn is the same across all neurons, and thus a scalar. Neuron n’s activity
in trial t is set to zero only if zt = 1 and znt = 1. Formally, if rnt,ori is the neuron’s unperturbed (original) spike
count in that trial, its perturbed one becomes

rnt = (1− ztznt)rnt,ori. (91)
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For simplicity we here assumed zt and znt to be independent, and are zeroing neurons only if ztznt = 1, jointly.
For zt = 0, this occurs with probability p(ztznt = 1|zt = 0) = 0, that is, never. For zt = 1, it occurs with probability
p(ztznt = 1|zt = 1) = pn.

We could have equivalently fixed znt = 0 for all trials in which zt = 0, defined p(znt = 1|zt = 1) = pn, and set
rnt = (1 − znt)rnt,ori. This choice leads to p(znt = 1|zt = 0) = 0 and p(znt = 1|zt = 1) = pn, illustrating that it
yields the same result as our original assumptions. In either formulation, zt mimics global fluctuations, whereas
znt mimics fluctuations that are private to individual neurons.

2.4.1 Impact on population activity moments

As linear Fisher information only depends on f ′ and Σ we here assess the impact on occasionally zeroing out
neurons on these moments. To do so, we denote fori, f ′ori, and Σori as the unperturbed moments, and f , f ′, and Σ
as the same moments after perturbation. To find the perturbed mean, observe that

fn = 〈rnt〉 = 〈(1− ztznt)rnt,ori〉 = (1− ptpn) 〈rnt,ori〉 = (1− ptpn)fn,ori, (92)

such that f = (1− ptpn)fori. As f ′ is the difference between two f ’s, we furthermore have f ′ = (1− ptpn)f ′ori.
The perturbed covariance follows a similar derivation, for n 6= m,

Σnm = 〈rntrmt〉 − 〈rnt〉 〈rmt〉
= 〈(1− ztznt)(1− ztzmt)rnt,orirmt,ori〉 − 〈(1− ztznt)rnt,ori〉 〈(1− ztzmt)rmt,ori〉
= 〈(1− zt (znt + zmt − zntzmt)) rnt,orirmt,ori〉 − (1− ptpn)2fn,orifm,ori

= (1− ptpn (2− pn)) 〈rnt,orirmt,ori〉 − (1− ptpn)2fn,orifm,ori

= (1− ptpn (2− pn)) (〈rnt,orirmt,ori〉 − 〈rnt,ori〉 〈rmt,ori〉) + pt(1− pt)p2
nfn,orifm,ori

= (a2 + b2)Σnm,ori + b2fn,orifm,ori,

(93)

where we have defined
a = 1− ptpn, b = pn

√
pt(1− pt). (94)

A similar derivation for n = m results in

Σnn = (a2 + b2)Σnn,ori + b2f2
n,ori + ptpn(1− pn)

(
Σnn,ori + f2

n,ori

)
. (95)

Together, this yields

Σnm = (a2 + b2)Σnm,ori + b2fn,orifm,ori + δnmptpn(1− pn)
(
Σnn,ori + f2

n,ori

)
, (96)

where δnm = 1 if n = m, and δnm = 0 otherwise.
Overall, this results in

Σ =
(
a2 + b2

)
Σori + b2forif

T
ori + ptpn(1− pn)S, (97)

where S is a diagonal matrix with Σnn,ori + f2
n,ori as the nth element of its diagonal. Therefore, the perturbed

covariance Σ is a scaled-down version (as a2 + b2 ≤ 1) of the unperturbed covariance Σori, with the scaling factor
a2 + b2 decreasing monotonically in both pn and pt. Zeroing out neurons results in two additional perturbations.
First, it causes the addition of the rank-one matrix forif

T
ori whose magnitude increases with pn and the variance

of zt, var (zt) = pt(1− pt), which is largest for pt = 1/2. Second, it adds a diagonal component whose magnitude
increases with pt and the variance of znt, var (znt) = pn(1− pn).

Both f and Σ are computed conditional on a specific stimulus. The Σ we used to compute linear Fisher infor-
mation is the average across the two considered stimuli. Then, the perturbed Σ becomes a linear combination
of the average Σori, forif

T
ori, and S, for both stimuli.
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2.4.2 Impact on information scaling

Let us consider the impact of the above perturbations on how information scales with population size, and its
consequences for the estimated scaling parameters c and I∞. If we ignore the rank-one and diagonal additions
to the covariance matrix, the overall Fisher information for each N is re-scaled by

IN ≈
(1− pnpt)2

a2 + b2
IN,ori, (98)

with a scaling factor that is close-to one for small pn and pt, and shrinks monotonically in pn. Furthermore,
it is smallest for interim values of pt, but becomes one for pt = 0 and pt = 1. Based on the expression of our
information scaling model, Eq. (78), as I−1

N,ori = c−1
oriN

−1 + I−1
∞,ori, estimates of both c and I∞ will be down-scaled

by the same factor.
Adding a diagonal term to Σ has an analogous effect as measurement noise, as discussed in the previous

section: it causes information to grow more slowly with N , thus lowering c further, but leaves I∞ unperturbed.
The impact of the rank-one component forif

T
ori depends on the alignment between fori and f ′ori. If they are per-

fectly aligned, that is, if fori ∝ f ′ori, this component introduces differential correlations, thus lowering asymptotic
information I∞. If alignment is only partial, then this component does not limit information [1], but might still
lower c. Non-alignment is likely if a change in the stimulus results in a simple shift in the population activity
pattern, as is the case in our experiments. Perfect alignment could, for example, occur, if the stimulus modulates
the gain of population activity, making the change in population activity due to a change in stimulus well-aligned
with the average population activity. This might, for example, occur in contrast discrimination tasks, if contrast
modulates the population activity gain.

In summary, zeroing out some neurons in a fraction of trials results in lowering our estimate of c, depending
on a complex interplay of pt and pn. If fori is not perfectly aligned to f ′ori, then I∞ is down-weighted by (1 −
pnpt)

2/(a2 + b2). In case of perfect alignment, the asymptotic information estimate is suppressed further. We
confirmed these effects in simulations, as shown in Supplementary Figure 14.
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Supplementary Note 3. Estimating the information scaling moments
from neural data
Here, we fix the discrimination (i.e., the pair of drift directions, θ1 and θ2) and discuss how we estimate the
moments of Fisher information for different population sizes. To do so, we assume a large population with M
neurons of which we subsample N neurons, and where N � M . Rather than focusing on the moments of the
Fisher information In for population size n ≤ N , we will instead focus on the moments of the Fisher information
increase, ∆In = In − In−1 (with I0 = 0), when increasing the population size from n − 1 to n neurons, for
reasons that become apparent later. Our aim is to estimate the mean, E (∆In), the variance, var (∆In), and the
covariance, cov (∆In,∆Im), for different population sizes n and m.

3.1 Generative model and desired moments
To describe the stochasticity of ∆In, we assume the following generative process. Assume that neurons in the
large population have indices 1 to M , and that we uniformly draw a subset of N different neurons with indices
i1, i2, . . . , iN , denoted i1:N . This subpopulation has moments f ′i1:N and Σi1:N , that in turn can be used to compute
its associated Fisher information. However, we do not directly observe these moments, but instead record the
population activity across T trials for each stimulus, θ1 and θ2, from which we compute the empirical moments
γi1:N and Ωi1:N . These empirical moments are in turn used to compute the Fisher information increases ∆Î1:N ,
using the bias-corrected estimates discussed further above. In summary, the generative process follows the
Markov chain

i1:N → f ′i1:N ,Σi1:N → γi1:N ,Ωi1:N → ∆Î1:N . (99)
In this Markov chain, the first and last transition are deterministic, and the center transition is stochastic.
Therefore, we can write the generative model as

p
(

∆Î1:N

)
=
∑
i1:N

p
(

∆Î1:N (γi1:N ,Ωi1:N ) |i1:N

)
p (i1:N ) , (100)

where the Fisher information increases are a deterministic function of the empirical moments, and the sum is
over different subpopulations drawn from the larger population. We assume these draws to be uniform, that is
p (i1:N ) ∝ 1.

To find the moments of ∆În, we use iterated expectation, variance, and covariance, which, for a Markov chain
Z → X1, X2 is given by

EX1 (X1) = EZ
(
EX1|Z (X1)

)
, (101)

varX1 (X1) = EZ
(
varX1|Z (X1)

)
+ varZ

(
EX1|Z (X1)

)
, (102)

covX1,X2 (X1, X2) = EZ
(
covX1,X2|Z (X1, X2)

)
+ covZ

(
EX1|Z (X1) ,EX2|Z (X2)

)
. (103)

Applied to our generative model, that yields the decompositions

E∆În

(
∆În

)
= Ei1:N

(
E∆În|i1:N

(
∆În

))
, (104)

var∆În

(
∆În

)
= Ei1:N

(
var∆În|i1:N

(
∆În

))
+ vari1:N

(
E∆În|i1:N

(
∆În

))
, (105)

cov∆În,∆Îm

(
∆În,∆Îm

)
= Ei1:N

(
cov∆În,∆Îm|i1:N

(
∆În,∆Îm

))
+ covi1:n

(
E∆În|i1:N

(
∆În

)
,E∆Îm|i1:N

(
∆Îm

))
,

(106)

where both variance and covariance are decomposed into (i) the (co)variance of the information increase for a
fixed subpopulation i1:N , averaged across different subpopulations, and (ii) how the average information increase
for a fixed subpopulation (co)varies across different subpopulations.

Our data does not allow us to directly estimate these moments for two reasons. First, we don’t observe the
larger population, and so can’t use it to draw different subpopulations from this larger population. We will
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address how we handle this limitation in the next subsection. Second, we only observe a single set of empirical
moments, µ and S, for the subpopulation that we record from. We will address how we handle this limitation in
the remaining subsections.

3.2 Simulating samples from a large, unobserved population
Our generative model assumes that we are subsampling N neurons from a large neural populations of M neu-
rons. Our data, in contrast, are population recordings from a single neural population with N neurons. To use
these recordings to simulate sampling from various subpopulations of the larger population, we assume these
subpopulations to be statistically similar to the recorded population. That is, the different sampled subpop-
ulations will contain neurons with similar activity statistics as the recorded population. Thus, each sampled
subpopulation will contain all neurons from the recorded population, but in a different order for each sampled
subpopulation. We will simulate this by introducing a new index set j1:N = j1, j2, . . . , jN that, for each sampled
subpopulation i1:N , contains a random order of the indices 1, . . . , N of neurons in the recorded population. With
this, all of the above moments across i1:N will become moments across j1:N , while taking into account that the
recorded subpopulation is used as a proxy for sampling different subpopulations from a larger populations. We
will describe the consequences of this for each of the moments separately.

3.3 Estimating the mean
The desired mean of the information increase ∆În is, by Eq. (104) the average information increase for a par-
ticular set of empirical moments, γi1:N and Ωi1:N , for a particular subpopulation i1:N , averaged across different
subpopulations. We deal with not being able to sample different subpopulations by replacing i1:N by a randomly
ordered recorded population j1:N . Furthermore, we cannot draw different empirical moments, γi1:N and Ωi1:N for
a given subpopulation, as would be required to compute E∆Î|i1:N

(
∆În

)
. We will replace this expectation with

our best estimate thereof, which is the Fisher information increase estimate based on the bias-correctet Fisher
information, estimated from the empirical moments of the recorded population, µ and S. Overall, this leads to
the approximate estimate,

Ei1:N
(
E∆În|i1:N

(
∆În

))
≈ Ej1:N

(
∆În (µj1:N ,Sj1:N )

)
, (107)

where µj1:N and Sj1:N denote the empirical moments with neurons ordered according to j1:N . As our Fisher
information estimate is unbiased, the above estimate will be unbiased as well. In practice, we approximate the
expectation over j1:N by 10000 random ordering.

3.4 Estimating the variance

The variance, Eq. (105), is decomposed into two terms. The first, Ei1:N
(
var∆În|i1:N

(
∆În

))
, is the variance of

the Fisher information increase for a fixed subpopulation, averaged across many subpopulations. This term
captures the uncertainty in ∆În due to using the empirical moments to estimate it. The second term, given
vari1:N

(
E∆În|i1:N

(
În

))
, captures how the average Fisher information increase for a given subpopulation varies

across different subpopulations. Our data doesn’t allow us to compute either of these terms directly. However,
it turns out that they are both well-approximated by how the Fisher information increase estimated from the
empirical moments, µ and S, varies across different population orders, j1:N , that is

Ei1:N
(
var∆În|i1:N

(
∆În

))
+ vari1:N

(
E∆În|i1:N

(
∆În

))
≈ varj1:N

(
∆În (µj1:N ,Sj1:N )

)
. (108)

To understand why this approximation works, we need to consider two components that contribute to the empir-
ical moments of the recorded neurons. The first is that, for each neuron and each neuron pair, these empirical
moments are noisy, as they are estimated from a limited number of trials. Thus, we can approximate the ef-
fect of using empirical rather than true moments, as captured by the first term in Eq. (105), by computing the
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variance across different neurons in the population, as achieved by the variance across different orderings, j1:N .
The second factor is that different neurons contribute different amounts of information to the population. This
comes into play in the second term in Eq. (105), and is again well-approximated by the variance across different
orderings, j1:N . As it seems paradoxical that the same variance can capture both kinds of effects at the same
time, we have demonstrated it in simulations of neural populations, shown in Supplementary Figure 16a.

3.5 Estimating the covariance
As the variance, the covariance, Eq. (106) can be decomposed into two terms that capture different sources of
uncertainty. The first term, Ei1:N

(
cov∆În,∆Îm|i1:N

(
∆În,∆Îm

))
, captures the uncertainty associated with esti-

mating empirical moments from a limited number of trials. To find this covariance, assume n 6= m and note
that,

cov
(

∆În,∆Îm

)
= cov

(
În − În−1, Îm − Îm−1

)
= cov

(
În, Îm

)
− cov

(
În, Îm−1

)
− cov

(
În−1, Îm

)
+ cov

(
În−1, Îm−1

) (109)

where all covariances are conditional on i1:N . Without loss of generality we can assume that n > m, and use
Eq. (75) from Sec. 1.4 to find

cov
(

∆În,∆Îm

)
= var

(
Îm

)
− var

(
Îm−1

)
− var

(
Îm

)
+ var

(
Îm−1

)
= 0. (110)

This shows, that, conditional on i1:N , the information increase estimates are uncorrelated.
The second term, covi1:N

(
E∆În|i1:N

(
∆În

)
,E∆Îm|i1:N

(
∆Îm

))
, captures how the average Fisher information

increase associated with adding the nth neuron correlates with that when adding themth neuron across different
subpopulation samples. On average, these increases will be negatively correlated, for the following reason. The
variance of the information estimate În =

∑n
k=1 ∆Îk can be decomposed into

var
(
În

)
=

n∑
k=1

(
var

(
∆Îk

)
+ 2

k−1∑
l=1

cov
(

∆Îk,∆Îl

))
, (111)

which shows the impact of the individual variances, as well as the covariance between estimates associated with
different population sizes. For a population of M neurons, the estimate of total information, ÎM , will be the
same, irrespective of how the neurons are ordered within that subset. Therefore, var

(
ÎM

)
= 0. However, as, by

definition, var
(

∆În

)
≥ 0, the above decomposition implies that the covariances need to be on average negative,

to ensure that the sum of variances and covariances becomes zero.
The same principle applies if we estimate the variance of ∆În by shuffling the order, j1:N , of neurons in a

smaller, recorded population. If this population has N neurons, then var
(
EÎN |j1:N

(
ÎN

))
= 0, irrespective of

j1:N , such that the information increase estimates will be negatively correlated.
Recall that we use population order shuffling as a proxy for repeatedly subsampling N neurons from a larger

population of M neurons. The shuffling-induced negative correlations arise from using the same N recorded
neurons across all estimates. If we instead subsample a larger population, the different sampled subpopulations
are bound to share a smaller number of neurons. For two subpopulations that share no neurons, these estimates
would be completely uncorrelated. However, even for N � M , two random subpopulations of size N are likely
to share neurons of the larger population. Indeed, the same intuition underlying the birthday paradox [14] tells
us that we are almost guaranteed to find such shared neurons. However, the correlations don’t only depend
on the presence of shared neurons, but also on how many of them are shared, and the latter will decrease
significantly for largerM . To show that this significantly lowers the impact of negative correlations on the total
variance, we compare this variance computed with and without accounting for these correlations for different
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M ’s. As Supplementary Figure 16b shows, their impact drops significantly with growingM . Therefore, we will
approximate them to be zero, that is

cov∆În,∆Îm

(
∆În,∆Îm

)
≈ 0. (112)

This results in an overestimate of the variance of the Fisher information estimate, and make our fits less certain,
and, as a consequence, more conservative.
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Supplementary Note 4. Population activity models
We used two different models to simulate population activity, as described below.

4.1 A Gaussian population activity model with limited information
We used a simple Gaussian activity model to satisfy the assumptions of Gaussianity underlying the generalized
linear Fisher information, and to test some of the properties of our estimates. Thismodel violates some properties
of neural activity, like non-negativity, but is convenient for our purposes, as it supports fine control over the
eigenvalues of Σ0, the alignment of f ′ to Σ0, and the asymptotic information, I∞. For a population size of N
neurons, we generated Σ0 by drawing a random orthonormal matrix Z0 of sizeN×N that forms the eigenvectors
of Σ0. We parameterized the eigenvalues by σ2

n,0 = σ2
0 + σbm

−β , which together form the diagonal matrix D0 =

diag
(
σ2

0,1, . . . , σ
2
0,N

)
. Z0 and D0 together specify Σ0 by Σ0 = Z0D0Z

T
0 . For a given f ′, the full noise covariance is

then given by Σ = Σ0 + I−1
∞ f ′f ′T .

For Supplementary Figure 7, we drew a random f ′ ∼ N (0, I), and subsequently rescaled the vector such that
‖f ′‖ = g. This makes the alignment of f ′ to the eigenvectors of Σ0 roughly uniform on average. For this figure, we
use parameters I∞ = 20 (or I∞ =∞ for the unlimited-information case), g = 20, σ2

0 = 10−3, σ2
b = 1, and β = 0.1.

For Supplementary Figure 16, we specified the alignment of f ′ to the eigenvectors of Σ0 by αn = σ2
α+ ∝

e−n/τα , normalized such that
∑
n αn = 1. This yields f̃ ′ =

∑
n αnzn (zn is the nth eigenvector of Σ0), and f ′ =√

gfN f̃ ′/‖f̃ ′‖. The magnitude of f ′ here scales with
√
N to ensure roughly similar information across different

N ’s. The used parameters were I∞ = 100, gf = 0.008, σ2
0 = 5 × 10−5, σ2

g = 3, β = 0.5, σ2
α = 10−3, and τα = 30,

which results in population statistics comparable to those shown in Figs. 3 and 8 in the main text.

4.2 A visual hierarchy population activity model
We relied on [15] for a more realistic model of V1 population activity that is driven by pixel-level inputs. Details
of this model can be found in [15]. Briefly, a population of N neurons responded to a P × P pixelated images J
of an oriented Gabor. The nth neuron’s linear filter Fn was for each (x, y) pixel determined by

ce−
(x2+y2)

2σ2 cos

(
2πx

λ
cos (θn) +

2πy

λ
sin (θn) + φ

)
, (113)

where c is the Michelson contrast, θn determines the neuron’s tuning, σ2 determines the size of the exponential
envelope, and λ and φ are the Gabor’s frequency and phase, respectively. The filter was computed by the above
function for each (x, y) and then standardized to have mean zero and unit variance across all (x, y). Image
templates, J(θ), in response to stimulus θ were generated equally, with θn replaced by the template’s orientation,
θ. Each neuron’s gain, an, was drawn from a log-normal distribution with unit mean and variance σ2

a, and then
multiplied by the overall gain, g.

Neural population activity is assumed to arise from the image template with Gaussian pixel noise (zero mean,
variance σ2

0), followed by application of the per-neuron linear filters, Fn, multiplied by their gain an, and a Pois-
son step. For Supplementary Figure 7, we estimated information from a set of trials, in each of which neural
activity was generated from a different pixel noise instantiation. For Supplementary Figure 10, we skipped the
Poisson step, as it introduced additional noise and was not required for the point we were trying to make. In-
stead, we estimated Fisher information from approximations to the neural mean responses and their covariance
matrix, following [15]. We computed the mean response of neuron n to image J by fn(θ) =

[
an
∑
xy Fn,xyJxy(θ)

]
+
,

where [·]+ is the threshold-linear function that sets negative values to zero. The population noise covariance was
computed by

Σ(θ) = σ2
0

(
aaT

)
⊗
[
FTF

]
+

+ diag (a⊗ f(θ)) , (114)

where ⊗ denotes the (element-wise) Hadamard product, a = (a1, . . . , aN )
T is the column vector of per-neuron

gains, F is the P 2 ×N filter matrix with per-neuron filters unrolled as vectors along its columns, and f(θ) is the
mean population activity in response to stimulus θ. The information was computed from Σ(θ) and f(θ).
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For Figs. 7, 14, and 15 we used the parameters σ = P/5, λ = P/1.5, φ = 0, c = 1, g = 20, and σa =
√

2, as in
[15], and additionally different N ’s for different figures, P = 32 and σ0 = 0.25. To simulate infinite information,
we removed pixel noise by setting σ0 = 0. For Supplementary Figure 10, we used the same parameters except
N = 1000, g = 10, and σ0 = 0.11, to achieve the desired level of information, and approximate information
saturation within the simulated population size. In all simulations, neural tuning, θn, was uniformly distributed
over [−π, π], and pixels (x, y) were uniformly distributed over locations [−(P −1)/2, (P −1)/2] in both dimensions.
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5 Supplementary Tables

Session
Mouse Contrast A B C D E F G

1 10% 2.03% 2.65%
2 10% 2.03% 3.11%
3 10% 3.21% 2.44% 5.49% 6.23% 3.55%
4 10% 5.19% 4.70% 4.46% 5.13% 3.66% 2.30% 5.38%
5 10% 4.13% 2.29% 2.84% 1.00%

25% 3.36% 1.72% 0.52% 0.33%
6 10% 3.57% 2.34% 2.37%

25% 2.30% 1.34% 4.44%

Supplementary Table 1: Percentage of neurons that show significant adaptation at the p = 0.05 level, for all
sessions/mice. We assessed adaptation by asking if the response of each neuron to a drifting stimulus was significantly
modulated by the drift direction of the preceding stimulus. We did so by asking if we could reject a non-adaptive model
when comparing it to an adaptive model. The non-adaptive model fit neural responses ri across trials i = 1, 2, . . . by linear
regression, using the model

ri ∼
8∑
j=1

1xi=θjβj , (115)

where xi is the stimulus’ drift direction in trial i, θj is the j’s of the eight drift direction used in our experiments, and 1a is
the indicator function that results in 1a = 1 if a is true, and 1a = 0 otherwise. In this model, βj will be the neuron’s average
activity in response to stimulus θj . The adaptive model fits neural responses across trials by the following linear model,

ri ∼
8∑
j=1

(
1xi=θjβj +

8∑
k=2

1xi=θj ,xi−1=θkβjk

)
. (116)

In this model, the neuron’s mean activity in response to a stimulus with drift direction xi = θj preceded by a stimulus with
drift direction xi−1 = θ1 is βj . The βjk ’s then model how this activity changes relative to βj if the current trial’s stimulus is
instead preceded by a stimulus with drift direction xi−1 = θk. For sessions with stimuli of multiple contrasts, the contrast
in the table refers to that of the preceding stimulus (i.e., that in trial i − 1 of the adapting stimulus). As these models are
nested (i.e., setting βjk = 0 for all j and k turns the adaptive model into a non-adaptive one), we used an F-test to test the null
hypothesis that the non-adaptive model fits the data better than the adaptive model. The above table shows the percentage of
neurons for which this null hypothesis could be rejected at the p = 0.05 significance level. We performed a one-sided binomial
test (H0: fraction = 5%, testing for fraction > 5%) to determine if any of the observed fractions are unlike to have arisen by
chance, and found that none are significantly above 5% (one-sided p > 0.124 for all sessions/mice) [16]. This made us conclude
that none of our datasets featured significant adaptation effects.
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Session
Mouse Contrast Avg. A B C D E F G

1 10% 0.12± 0.02 0.14 0.11
2 10% 0.07± 0.03 0.11 0.04
3 10% 0.16± 0.02 0.22 0.20 0.09 0.13 0.14
4 10% 0.12± 0.01 0.10 0.11 0.12 0.10 0.13 0.13 0.16
5 10% 0.22± 0.06 0.12 0.16 0.20 0.40

25% 0.23± 0.03 0.19 0.20 0.22 0.32
6 10% 0.20± 0.02 0.16 0.23 0.22

25% 0.22± 0.01 0.20 0.23 0.24

Supplementary Table 2: Average Fisher information per neuron in rad−2/neuron, across all sessions/mice, av-
eraged across all δθ = 45◦ discriminations. The average Fisher information was computed from the Fisher informa-
tion scaling for trial-shuffled data that removed across-neuron correlations. For individual neurons, it can be computed by
2 (〈r|θ1〉 − 〈r|θ2〉)2 /

(
δθ2 (var (r|θ1) + var (r|θ2))

)
, where r|θj is the neural response to stimulus θj . The Avg. column provides

the average across sessions (mean ± 1 SEM).
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6 Supplementary Figures

Supplementary Figure 1: Example tuning curves, absence of adaptation, and fitted tuning curve R2’s, for 10%
contrast trials. (a) Eight examples of untuned, orientation-tuned, and direction-tuned neurons. We defined direction-
tuned neurons (see Method) as having significantly higher responses for the tuned direction than the opposite direction.
Orientation-tuned neurons are those for which this difference is not significant. The response of untuned neurons is not
significantly modulated by drift direction. The pale, small dots show responses in individual trials. The large dots show
mean responses for each drift direction, and the solid, vertical lines connect the 25th and 75th percentile. The pale lines
show the fitted tuning curves. See Methods for how tuning was determined. Plots are truncated at ∆F/F = 1. (b) Example
direction tuning averaged across all trials (black), and across trials following a stimulus of a specific drift direction (colors,
mean ± 1SEM, error bars horizontally shifted for visibility), demonstrating little to no adaptation to the preceding stimulus
(see also Supplementary Supplementary Table 1). The shown example neurons are the same as in the first row of (a). (c)
The cumulative distribution of coefficients of variations R2 for different mice (rows) and sessions (line) for orientation-tuned
(purple) and direction-tuned (orange) neurons. The pale vertical lines show the average R2 for each session and neuron type.
The R2 for untuned neurons is not shown, as it is, by definition, R2 = 0. (a) and (b) used data from one session of mouse 1
whose correspondingR2 values are shown in bold in (c). All data at 0◦ is replicated at 360◦ to show the tuning curve across all
possible drift directions. Note that fitted tuning curves were not used to estimate information, and are provided for reference
only.
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Supplementary Figure 2: Pairwise noise correlations across all neurons, and for neurons with specific tuning.
(a) The cumulative distribution of pairwise noise correlations across all neurons collected within individual sessions (black
lines) for mice 1-4 (rows). For reference, we also show these noise correlations for trial-shuffled data (red) that, on average,
removes noise correlations. (b) The cumulative distribution of pairwise noise correlations for pairs of neurons with specific
tuning (colors). See Methods for how tuning was determined. In both (a) and (b), the vertical lines show the mean pairwise
correlations for the respective session and type of analysis. These mean correlations where comparable to those found in
previous studies [17]. For mouse 1, the bold lines correspond to the session for which tuning curve examples are shown in
Supplementary Figure 1(a)/(b). Note that the average pair-wise correlations were not used to estimate information, and are
provided for reference only.
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Supplementary Figure 3: Examples of raw ∆F/F traces and traces projected onto the optimal decoder. Each
circle of 8 panels shows 200 raw ∆F/F time-course examples (thin lines) as well as their mean (thick line) for one example
neuron, grouped by different stimulus drift directions (different panels; grey-shaded area = stimulus presentation period;
black horizontal bar = 1 ∆F/F ). The top six panel circles show three orientation-tuned example neurons, and the bottom
six panel circles represent three direction-tuned example neurons (left two columns: mouse 1, all trials 10% contrast; right
column: mouse 5, only 25% contrast trials; see Supplementary Figure 1 for definition of orientation/direction-tuning). The top
row in each neuron group shows the raw traces, and the bottom row shows the same traces projected onto the optimal decoder,
w ∝ Σ−1f ′. The low variability of per-trial trace examples after this projection (frequently obscured by the across-trial mean;
see enlarged inset) illustrates that most variability of the raw traces does not impact information, as it is orthogonal to the
signal direction. The optimal decoder was for each stimulus drift direction computed (from temporally deconvolved traces)
as the best discriminator between this and the next-closest drift direction.26
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Supplementary Figure 4: Impact of running speed on information. For each session, we grouped trials into low
(blue) and high (red) running speed by (i) subsampling trials to ensure a similar running speed distribution across all drift
directions, and (ii) performing a median split by running speed for each drift direction. To maximize the number of analyzed
trials, we did not aim to achieve the same average running speeds within each speed group across sessions — these average
running speedswithin each groupmight thus differ across sessions. Furthermore, mice 3 and 4were overall running less than
mice 1 and 2. (a) Information increases more rapidly with population size for higher running speeds (same mouse/session
as in Supplementary Figure 3c; mean ± 1SD across random orderings of neurons within the population). The black line
shows the mean information growth across all trials (as in Supplementary Figure 3c). The dashed lines show trial-shuffled
data that removes pairwise noise correlations, and illustrate that, in all cases, these correlations lower information across
all population sizes. (b) The drift direction discrimination threshold (80% correct) inferred from the information estimated
in the recorded population is consistent across different drift direction pairs with δθ = 45◦, and is lower for high running
speeds. The black dots show the inferred thresholds across all trials (as in Supplementary Figure 3f). (c) Higher running
speed increases information in the recorded population. Each dot (mean ± 1SD of information estimate; filled = significant
increase, bootstrap, p<0.05) shows the information estimated for one discrimination with δθ = 45◦. Across all sessions,
higher running speed significantly increased information (t63 = 6.69, two-sided p ≈ 7 × 10−9, across non-overlapping δθ =
45◦ discriminations). (d) Both estimated asymptotic information and N95 appear impacted by running speed (lines connect
median estimates of individual sessions; horizontally shifted to ease comparison; posterior densities as is Supplementary
Figure 4c). Across sessions, we found a significant increase in asymptotic information (signed-rank on median estimates;
δθ = 45◦: z = 2.64, two-sided p ≈ 8.36 × 10−3; δθ = 90◦: z = 2.69, two-sided p ≈ 7.17 × 10−3; δθ = 135◦: z = 3.36, two-sided
p ≈ 7.76 × 10−4; not adjusted for multiple comparisons across δθ), but not N95 (signed-rank on median estimates; δθ = 45◦:
z = 0.672, two-sided p ≈ 0.501; δθ = 90◦: z = 1.14, two-sided p ≈ 0.255; δθ = 135◦: z = 1.500, two-sided p ≈ 0.134; not
adjusted for multiple comparisons across δθ) with running speed.
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Supplementary Figure 5: Information boost due to increased running speed results from a combination of
multiple factors. To identify which changes to the population response statistics are responsible for the boost in information
for increased running speeds (see Supplementary Figure 4), we focused on δθ = 45◦ discriminations in each session for which
we observed a significant information increase (filled dots in Supplementary Figure 4c). We focused on three factors: (i) a
change in mean responses, f ′, (ii) a change in per-neuron noise variances, σ2, and (iii) a change in pairwise noise correlations,
R. Per-neuron variances and pairwise noise correlations completely determine the noise covariance matrix Σ

(
σ2,R

)
. For

each considered discrimination, we computed these factors separately for trials in which the running speed was low, denoted
·lo, and in which it was high, denoted ·hi. With this notation, the information in the recorded population for low and high
running speeds, as shown in Supplementary Figure 4, is given by Ilo = f ′Tlo Σ−1

lo f ′lo and Ihi = f ′Thi Σ
−1
hi f ′hi, where we have used

the short-hand notation Σx = Σ
(
σ2
x,Rx

)
with x ∈ {lo, hi}. (a) All factors boost information individually (mean ± 1SD of

information estimate; filled = significant increase, bootstrap, p<0.05). To see the impact on information if only a single of
these factors changes, we compared Ilo for all considered discriminations to the information when a single factors (except for
Σ, for which we changed both σ2 and R) was changed from ·lo to ·hi. Across all considered discriminations we observed a
significant information increase due to all factors (two-sided t-test, t32 < −7.22, p < 3.34 × 10−8). (b) Relative information
boost on the Ilo — Ihi scale. To see how the information due to separate factors compares to that due to all factors, we
computed the percentage of information boost for each considered discrimination and factor combination (different bars)
where the information boost lies on the scale from Ilo (0%) to Ihi (100%). Each box plot shows the median, the 25% and 75%
percentiles (box) and the extremes (whiskers) of the percentage information boost for a given combination of factors across
considered discriminations. The relative information boost can exceed 100% in cases in which changing the remaining ·lo
factor to ·hi results in a drop of information, as seen for (f ′hi,Σlo) and

(
f ′hi, σ

2
lo,R

2
hi

)
. Both in combination show that the

change of f ′ from f ′lo to f ′hi, which results in an information boost beyond Ihi, is compensated by a change of the per-neuron
variances σ2 from σ2

lo to σ2
hi. n=4 mice with a total of 16 sessions, resulting in 128 discriminations that were utilized for this

analysis.
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Supplementary Figure 6: Model comparison of different information scalingmodels. Both panels show histograms
of differences in the Watanabe-Akaike Information Criterion (WAIC) for two different models fitted to the measured informa-
tion scaling curves across all eight discriminations with δθ = 45◦, sessions, andmice. (a) shows theWAIC difference for fitting
a model that assumes no information limitation (unlim) to one that does (lim), for regular (blue) and shuffled (red) data. For
regular data this difference is in most cases positive, indicating that the information-limiting model fits the data better. In
fact, even for individual negative WAIC differences, the average across all eight WAIC difference within a session remains
positive. For shuffled data, a model assuming no information limitation fits the data better in all instances. This confirms
that our model comparison is not biased towards the model assuming limited information. (b) shows the WAIC difference
for fitting two models that assume limited information (see Sec. 2.2), one with linear scaling of the non-limiting component
(lim), and one assuming initial supralinear scaling of that component (lim-exp). The latter only fits the data better in few
instances. In those, the average WAIC difference across all discriminations within that session is nonetheless positive. The
colored lines in (a) and (b) show the median WAIC difference across all comparisons.
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Supplementary Figure 7: Recovering asymptotic information from simulated population activity. We simulated
neural population activity, using either a multivariate Gaussian population model (a-c; see Sec. 4.1 for details) or a linear-
nonlinear Poisson model (d-f; see Sec. 4.2 for details) and fitted a linear scaling (unlim) and a limited information scaling
model (lim). For each model type, we generated two large datasets (limited information and unlimited information; δθ =
θ2−θ1 = 45◦ in both cases) and then subsampled neurons and trials to perform the fits. (a,d) Example information scaling for
N = 300 and T = 500 (mean ± 1SD information estimation; green/red = limited/unlimited information). For the Gaussian
model we could specify the asymptotic information I∞ (dashed grey line). For the LNP model we estimated it from the
information I2500 at N = 2500 neurons. (b-c,e-f) Estimated asymptotic information and non-limiting information scaling for
the limmodel from data with different population sizes N and numbers of trials T per stimulus. The posterior estimates are
shown as in Supplementary Figure 4c in the main text. Blue/green and orange/red colors indicate a better fit by the lim and
unlim model (WAIC for model comparison), respectively. Asymptotic information is well-estimated by the lim model (b,e),
and more certain for larger N and T . Model comparison in most cases (28 out of 30 for Gaussian model, 26 out of 30 for LNP
model) correctly identifies if information was limited or unlimited (colors).
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Supplementary Figure 8: Statistics of a linear fit I−1
N = β0 +β1N

−1 across all eight discriminations with δθ = 45◦,
sessions, and mice. (a) The adjusted R2 is close to one for all fits. (b) Both intercept, β0, and slope, β1, are significantly
above zero for all discriminations. The plot shows these intercepts with 95% CIs, which are obscured by the dots.

Supplementary Figure 9: Model comparison of per-discrimination fits vs. pooled fits across multiple discrimi-
nations. The figure shows for each session (individual sessions connected by grey lines; horizontally jittered for clarity) the
WAIC difference of fitting the information scaling of individual discriminations (indv) vs. fitting all of these discriminations
simultaneously (pooled). The mostly positive WAIC differences, preferring pooled fits, confirm that the information scaling
across different discriminations with the same drift direction difference δθ were exceedingly similar. The tested discrimina-
tions were 45◦ vs. 90◦, 135◦ vs. 180◦, 225◦ vs. 270◦, and 315◦ vs. 0◦ (δθ = 45◦); 45◦ vs. 135◦, 90◦ vs. 180◦, 225◦ vs. 315◦, and
270◦ vs. 0◦ (δθ = 90◦); and 45◦ vs. 180◦, 90◦ vs. 315◦, and 225◦ vs. 0◦ (δθ = 135◦). The WAIC differences for δθ = 315◦ had
overall smaller magnitudes, as they pooled across three rather than four discriminations.
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Supplementary Figure 10: Linear Fisher information is expected to drop with increasing δθ. (a) Generalized lin-
ear Fisher information measures how easy it is to discriminate two stimuli from the population responses they evoke. This
discriminabiliy is measured by the performance of a linear discriminator, normalized by the stimulus difference (δs or δθ).
For population responses (dots = mean population activity for one stimulus, shaded areas = 1SD of the noise covariance; δfi =
difference in mean population activity for different δsi / δθi) whose mean response changes linearly with the stimulus s, this
information remains unchanged when δs changes (top; δs1 vs. δs2). Population activity that encodes a circular stimulus θ is
bound to violate this linearity, and its associated linearly decodable information drops with an increase in δθ (bottom; δθ1 vs.
δθ2). This occurs also if a non-linear decoder that accounts for the circularity of θ would recover the same information, irre-
spective of δθ, and is not a bug of the linear decoder, which nonetheless correctly identifies all linearly decodable information
(that drops with δθ). (b) We demonstrate this effect by simulating V1 population in response to oriented Gabor pattern, and
estimate the information encoded about their orientation. We show how information grows with population sizes for stimulus
pairs with different δθ (colors; mean ± 1SD across different orders with which neurons are added to the population). (c) The
information at N = 1000, which we use as a proxy for I∞, drops with δθ, for the reason illustrated for the rotational code in
(a). Details of the simulations to generate (b) and (c) are described in Sec. 4.2. The simulations quantify information about
oriented Gabor pattern rather than the drift direction of drifting gratings, and so should only be qualitatively compared to
the data in the main text.

Supplementary Figure 11: Same as Supplementary Figure 5, but for trial-shuffled data. As in Supplementary
Figure 5, we asked if a subpopulation appears to encode a disproportionate amount of information across all stimulus drift
directions. In contrast to Supplementary Figure 5, we here removed the impact of noise correlations by, for each neuron
and drift direction, randomly shuffling the trial identity. (a) Both panels show that information increase in the recorded
population depends on the order with which neurons are added to the population (colors). The panels differ in the considered
drift direction discrimination (left: 0◦ vs. 45◦; right: 45◦ vs 90◦). The neuron order was optimized by incrementally adding
the neuron that resulted in the largest information increase for a 0◦ vs. 45◦ (blue) or 45◦ vs 90◦ (orange) drift direction
discrimination, or largest average increase across all discriminations with δθ = 45◦ (green). The optimal ordering for the 0◦

vs. 45◦ was also applied to the 45◦ vs 90◦ discrimination (blue line in right panel) and vice versa (orange line in left panel). The
average information increase across random orders (black) is shown as baseline reference. Shaded error regions illustrate
the uncertainty (mean ± 1SD) due to limited numbers of trials (all curves), and variability across random orderings (black
only). The black and green open circle (bootstrapped median ± 95% CI) show the population sizes required to capture 90% of
the information in the recorded population for the associated orderings. (b) Plotting population sizes required to capture 90%
of the information in the recorded population (bootstrapped median ± 95% CI) for random ordering vs. orderings optimized
to maximize average information across all discriminations revealed a significant difference between the two orderings for
some datasets (filled dots). Each dot reflects one discrimination for one session. The difference in population sizes was also
significant across all datasets (t-test, t63 = 9.541, two-sided p = 6.1×10−14, across non-overlapping δθ = 45◦ discriminations).
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Supplementary Figure 12: Example tuning curves, tuning curve R2’s, and pair-wise correlations, for the 10%
and 25% contrast trials of mice 5 and 6. We determined the tuning type (untuned, orientation-tuned, or direction-tuned)
of each neuron by fitting the 25% contrast trials only, and chose the best-fit tuning curve function f25(θ) (functional form
depends on tuning type) as described in Methods. We then jointly fit the 10% and 25% contrast data by using the previously
determined f25(θ) function to fit the 25% contrast trials, and f10(θ) = a+ bf25(θ) to fit the 10% contrast trials. To do so, we
jointly adjusted the parameters of the f25 function, as well as a and b. Except for untuned neurons, this resulted in tuning
curve fits with fewer parameters than if we would have fitted the tuning curves for each contrast level separately. Bayesian
model comparison that accounted for the different numbers of parameters revealed that, for most neurons, this joint fit
across both contrast levels explained the data better than separate fits for each contrast level (BICjoint < BICseparate; mouse 5:
direction-tuned 76.54% (310 of 405 neurons), orientation-tuned 94.21% (683 of 725 neurons); mouse 6: direction-tuned 70.35%
(140 of 199 neurons), orientation-tuned 92.41% (597 of 646 neurons)). (a) Eight examples of untuned, orientation-tuned, and
direction-tuned neurons. The pale, small dots show responses in individual trials. The large dots show mean responses for
each drift direction, and the solid, vertical lines connect the 25th and 75th percentile. The pale lines shows the fitted tuning
curves. Each panel shows data for both 10% and 25% contrast trials. Data, raw, and fitted tuning curves are darker for
25% contrast trials and slightly shifted to the right. Plots are truncated at ∆F/F = 0.2. (b) Cumulative distributions of
coefficients of variation R2 for different mice (rows) and sessions (line) for orientation-tuned (purple) and direction-tuned
(orange) neurons for 25% (dark) and 10% (bright) contrast trials. The R2 values are computed separately for each contrast
level, even though the tuning curves were fit jointly across the two contrast levels. (c) The cumulative distribution of pairwise
noise correlations for pairs of neurons for 25% contrast (dark) and 10% contrast (bright trials), shown separately for each
session. (a) used data from one session of mouse 5 whose corresponding R2 values are shown in bold in (b) and (c). All data
at 0◦ is replicated at 360◦ to show the fitted tuning curve across all possible drift directions. The pale vertical lines in (b) and
(c) show the average R2 and correlation coefficients for each sessions, tuning type, and contrast level. The observed mean
correlations were comparable to those found in previous studies [17]. Note that fitted tuning curves and average pair-wise
correlations were not used to estimate information, and are provided for reference only.
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Supplementary Figure 13: The scaling of the estimated population size with the fraction of asymptotic infor-
mation. LetNa denote the population size required to encode a% of the total asymptotic information, I∞. Changing a results
in a simple re-scaling ofNa. This figures illustrates this re-scaling for different a, usingN95 as a base measure. For example,
if we would be interested in N90 instead of N95, we would read off the scaling factor for 90%, and would re-scale the reported
N95 to get estimates for N90.

Supplementary Figure 14: Effects of modeled eye movement on information scaling. We assessed the effects of eye
movements on information scaling using a simple eye movement model (see Sec. 2.4 for details). In this model, in a fraction
of trials pt the activity of a fraction of neurons pn was set to zero. (a) We simulated population activity by adding a Poisson
step to the model described in Sec. 4.2 to simulate spike counts in a 500ms window in a population of N = 1000 neurons
in response to oriented Gabor pattern, and estimated bias-corrected linear Fisher information for different population sizes,
different pt’s (panels/colors), and different pn’s (color shading). As can be seen, information grows more slowly with number
of neurons N with increasing pt and increasing pn. (b) We fitted our information scaling model to the information scaling
curves in (a) to estimate non-asymptotic scaling c (left) and asymptotic information I∞ (center). We used these estimates
to, in turn, estimate the number of neurons N95 required to encode 95% of asymptotic information (right). The posterior
estimates are shown as in Supplementary Figure 4c in the main text. As predicted by our theory (see Sec. 2.4), asymptotic
information scales with pt(1− pt): it hardly drops if pt = 1, and drops most strongly for pt = 0.6. This also confirms that fori
is most likely not perfectly aligned to f ′ori in our simulations. The estimated c, in contrast, drops monotonically with both an
increase in pt and in pn. In combination, this yields an overestimation of N95 that grows with both pt and pn.
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Supplementary Figure 15: A non-linear mapping between spike counts and ∆F/F signal does not qualitatively
impact our results. We added a Poisson step to the model described in Sec. 4.2 to simulate spike counts in a 500ms window
in a population ofN = 300 neurons in response to oriented Gabor pattern. We then used linear and non-linear functions that
map these spike counts to ∆F/F signals that were in turn used to estimate how information scales with population size. (a)
The different utilized functions for mapping per-neuron spike counts to ∆F/F signals. The black line connects the percentiles
(from the 1st to the 99th percentile) of the distribution of simulated spike counts to those of the distribution of∆F/F responses
of the data of session 1 of mouse 1. The near-linear relationship indicates that a linear remapping of these spike counts will
well-replicate the observed ∆F/F distribution. We fitted this relationship with both a linear (green) and a quadratic function
(blue). We furthermore tested various saturating functions (different shades of red, weak: 0.5 tanh

(
(0.5r)2

)1/2, medium:
0.24 tanh

(
(0.1r)2

)1/2, strong: 0.05 tanh
(
(0.45)2

)1/2, where r is the spike count) to simulate the scenario in which the ∆F/F
response saturates for higher spike counts. (b) The cumulative distribution function of the ∆F/F distributions of the data
of session 1 of mouse 1 (black), the linear (green) and quadratic (blue) model, and the different saturating models (shades
of red). In particular the strongly saturating model results in significant deviations from the data. (c) Information scaling
computed from the ∆F/F signal (except for the black & grey lines, which are based on spike counts) for the different mappings
between spike counts and ∆F/F . The dashed lines show results when trial-shuffling the spike count data before mapping
it to ∆F/F signals to destroys the spike count noise correlations (see Supplementary Figure 3). Any eventual difference
between Fisher information computed from spike counts (black) and the linear model (green) are due to numerical precision,
as invertible linear transformations, as used here, do not change the Fisher information. Most importantly, trial-shuffled
spike count data yields linear information scaling even after non-linear mappings, as these mappings do not introduce new
noise correlations. Similarly, the information scaling of non-shuffled data saturates even after perturbing the spike counts
with a non-linear mapping, as this mapping does not remove the noise correlations. While strong non-linear mappings might
lower our information estimates, they do not impact our finding that information saturates.
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Supplementary Figure 16: The variance and covariance of Fisher information scaling. We simulated virtual
populations of different sizes M as described in Sec. 4.1, yielding f ′ and Σ for each M . (a) To demonstrate that the vari-
ance in the Fisher information increase estimate due to shuffling well-approximates the combined variance due to popu-
lation subsampling and due to estimating the moments from a finite number of trials, we generated one population with
M = 10, 000 neurons. We in turn drew 100 empirical moments, γ ∼ N

(
f ′, 2Σ/(Tδθ)2

)
and Ω ∼ W (Σ/(2T − 2), 2T − 1),

corresponding to estimating these moments from T = 1, 000 trials each for two drift directions separated by δθ = 45◦. We
additionally subsampled N = 300 neurons of the full population ten times, resulting in ten i1:N neuron indices, and, for
each i1:N , containing a fixed set of neurons, shuffled their order 100 times, resulting in 100 j1:N per i1:N . For the empiri-
cal moments, we computed the Fisher information increase for each subsampled, shuffled population j1:N , resulting in 106

estimates for each population size n ∈ 1, . . . N . The figure shows the variance due to shuffling only (blue, averaged over
different subsamples and empirical moments), and due to empirical moments only (red, averaged over different subsam-
ples and shuffles). As comparison, we computed the total variance of the same estimate across 100 subsampled populations
with N = 300 neurons for each set of empirical moment (black; variance across 104 estimates), which is the variance we
aim to estimate. As the plot shows, the variance due to shuffling well-approximates this total variance. A naïve sum of
the variance due to empirical moments and shuffling (grey dashed) would over-estimate the total variance. (b) To estimate
the degree by which the variance of the Fisher information increase, var

(
∆În

)
, is overestimated when ignoring the nega-

tive correlations across different ∆În’s, we generate populations of different sizes, M , and their associated moments. For
each population, we then estimated the covariance cov

(
∆În,∆Îm

)
across 1,000 different subsamples i1:N of populations of

N = 300 neurons. In turn, we estimated the Fisher information variance once when taking into account this covariance,
var

(
În
)

=
∑n
j=1

(
var

(
∆Îj

)
+ 2

∑j−1
k=1 cov

(
∆Îk,∆Îj

))
, and once when not doing so, ˜var

(
În
)

=
∑n
j=1 var

(
∆Îj

)
. The plot

shows the resulting fraction
(

˜var
(

∆În
)
− var

(
∆În

))
/var

(
∆În

)
for different n and M as an average across ten different

generated populations, and shows that the variance overestimate becomes smaller for larger populations.
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