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When facing uncertainty, adaptive behavioral strategies 
demand that the brain performs probabilistic computations. 
In this probabilistic framework, the notion of certainty and 
confidence would appear to be closely related, so much so 
that it is tempting to conclude that these two concepts are one 
and the same. We argue that there are computational reasons 
to distinguish between these two concepts. Specifically, we 
propose that confidence should be defined as the probability 
that a decision or a proposition, overt or covert, is correct 
given the evidence, a critical quantity in complex sequential 
decisions. We suggest that the term certainty should be 
reserved to refer to the encoding of all other probability 
distributions over sensory and cognitive variables. We also 
discuss strategies for studying the neural codes for confidence 
and certainty and argue that clear definitions of neural codes 
are essential to understanding the relative contributions of 
various cortical areas to decision making.

William James famously wrote, “Everyone knows what attention is”. 
Yet cognitive scientists are still struggling to come up with a clear 
definition of attention. The same might be said of confidence. Just 
like attention, we all know at least intuitively what confidence is.  
For instance, when we take an exam, we can feel more of less confi-
dent depending on the degree of preparation and prior knowledge, 
modulated by our personality. But what is this sense of confidence?  
There have been multiple attempts at defining confidence more  
precisely, but we still lack a consensual mathematical definition. Such 
a definition is essential for deepening our understanding of the dif-
ferent types of probabilistic computations underlying behavior and 
for guiding our search for a neural basis of confidence.

We argue here confidence corresponds to the belief that a choice 
(for example, choosing the riper of two avocadoes) or a proposition 
(for example, Nigeria is the most populous country in Africa) is cor-
rect based on the available evidence. In most cases, this is indeed the 
required quantity for solving behavioral tasks that have been designed 
to probe the level of confidence in humans and animals. Given that 
confidence is defined as a belief, or probability, over a random variable 
that can take two values, correct or incorrect, it is a form of certainty. 

However, this does not mean that certainty reduces to confidence in 
general. The brain also needs to represent certainty in a decision-
independent, but domain-specific, way to enable different estimates 
of certainty elicited by the same latent variable, such as separate visual 
and auditory certainties corresponding to the position of the same 
object. As we will discuss, this domain-specific notion of certainty 
and the notion of confidence might correspond to different stages of 
statistical inference in the brain, each with their own computational 
role in the CNS architecture.

Our focus is on computational principles grounded in probability  
theory. We do not present an exhaustive review of the literature on 
confidence, as such reviews are widely available (see refs. 1–3) or 
discuss algorithmic models based on psychological or neurobiological  
considerations4–7. Rather, our goal is to offer a computational  
and neural coding perspective on confidence in an attempt to 
clarify what this concept is about and how it differs from the other  
probabilistic quantities.

The many kinds of uncertainties
Imagine that you are driving your car at night. There are no street 
lights on the road and your car’s front lights are dim. As you are  
trying to keep the car on the road you need to determine which direc-
tion you and the other traffic are moving. This can be achieved by 
processing two distinct sensory inputs: the visual flow field created on 
the retina by your own motion and the vestibular stimulation, which 
measures acceleration. If the car in front of you suddenly brakes, you 
have to make a quick decision, based on these sensory inputs, about 
whether it is better to veer left or right (we are assuming that there are 
no additional obstacles or cars on either side, in which case the only 
important question is how to avoid a collision with the car ahead). 
The best decision requires determining whether your current heading 
is to the left or right side of the braking car and then to veer in that 
direction. The noise in the vestibular system as well as the glare of 
lights and random movement of cars creates uncertainty and, given 
these sources of stochasticity, you, or rather your brain, cannot know 
for sure the precise direction of heading.

As this example illustrates, to perform well, the brain needs to 
be effective at dealing with a daunting array of uncertainties. Some 
originate in the external world, such as sensory or motor variability,  
whereas others are internal to the brain and are associated with cog-
nitive variables, timing or abstract states. When dealing with these 
uncertainties, it is useful to represent current knowledge with prob-
ability distributions and update these on the basis of the rules of 
probabilistic inference—namely Bayes’ theorem8. Notably, there is 
ample experimental evidence that humans and other animals can 
indeed estimate and employ uncertainty to perform probabilistic 
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inference about sensory, cognitive and motor variables (see ref. 9 for 
a review). In fact, in the particular case of heading direction, humans 
and animals have been shown to perform near optimally given the 
uncertainty inherent to the visual and vestibular information10,11. 
There is also emerging evidence about how brains implement these 
uncertainty-based computations in neural circuits9.

Uncertainty is an intrinsic part of neural computation and there are 
many varieties of it. However, probability theory, although being the 
calculus of reasoning with uncertainty data, does not provide us with 
a clear language for different uncertainty types. Consider, for instance, 
the multiple forms of uncertainty present in the above example  
(Fig. 1). To avoid crashing into the car in front of us, the nervous sys-
tem might infer the current heading direction, denoted by θ, based on 
the visual information received by the retina, denoted Image. Because 
of the stochastic and ambiguous nature of visual information, there 
is not a single value of θ, but an entire distribution p(θ|Image), called 
the posterior distribution over heading, that is compatible with this 
information to different degrees (see Box 1 for how these posteriors 
relate to the likelihoods in Fig. 1). Similarly, we can infer the cur-
rent heading based on vestibular information, leading to p(θ|Vestib).  
The width of these posterior distributions specifies the uncertainty 
associated with inferring the heading direction.

To make a decision about whether to veer left or right, we need an 
intermediate variable, let us call it z, that can take on the values left or 
right and that corresponds to an abstract state of the world—in this 
case whether it is best to head right or left of straight ahead to avoid 
the car ahead (Fig. 1). Inferring the likelihood of different values of z 
requires probabilistic inference to evaluate uncertainty about the state 
of the world given all sensory evidence, p(z|Image, Vestib). Note that 
Image and Vestib represent the percept of the sensory evidence, the 
internal variable available to the decision maker, and not the external 
data directly. On the basis of this posterior distribution over z, the 
brain needs to pick a choice that is effectively a function of the visual 
and vestibular information, d = choice(Image, Vestib). Assuming all 
other things are equal, the best choice corresponds to the value of z 
that is more likely in light of the evidence.

Once a choice has been made, overtly or covertly, one can com-
pute the probability that this choice is correct, p(z = k|d = k, Image, 

Vestib), that is, that z = k if choice d = k is considered (here we could 
have just as well written p   (z = k|Image, Vestib), where k is the current 
choice, hence our conditioning on d = k, which makes this point more 
explicit). This last probability distribution is defined over a variable 
that can take two values, correct (z = k and d = k) or incorrect (z = j 
and d = k, for all j ≠ k), in reference to a particular, overt or covert, 
choice d. Thus, it represents the probability that a single hypothesis, 
Hk, will turn out to be correct based on the available evidence, p(Hk 
is correct|choice = Hk, evidence).

This stands in contrast to p(z|Image, Vestib), which is a distribu-
tion over all possible choices, irrespective of their correctness. The 
distinction between these two functions is particularly clear for deci-
sions involving more than two choices. For instance, if there are four 
choices, the variable z can take four possible values and the posterior 
over z is a function specifying four different probabilities, whereas 
the probability of being correct given a choice is still defined over two 
possible states, correct or incorrect. Thus, these two distributions are 
conceptually and mathematically distinct, which will become impor-
tant once we consider the computational role for either of them.

As just illustrated, these types of decisions involve a number of 
distinct probability distributions, leading to potential confusion in 
terminology. Not only is it unclear which of these quantities should 
be called confidence, but it is just as unclear whether the notions of 
certainty and confidence are different concepts. In fact, they are often 
used interchangeably in the literature.

Confidence: definition and computations
We propose that confidence should be used to refer to the probabil-
ity that a choice is correct, which we denote p(z = k|d = k, Image, 
Vestib). This definition has a long history in psychophysics7,12,13 and 
has been recently used in several studies14–21. This is also what many 
authors call confidence22–28, even if they don’t always formally define 
it as such. This definition not only applies to decisions, but also to 
confidence in propositions, or potentially even to aspects of self-con-
fidence. For example, suppose you are asked to express your confi-
dence in the following proposition: “Nigeria is the most populous  
African country”. This amounts to asking your confidence in choos-
ing this proposition versus “Nigeria is not the most populous African 
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Figure 1 Confidence and certainty in a visuo- 
vestibular task. As described in the main text,  
assume that we are driving in dense traffic and  
that—on the basis of visual cues, I, and vestibular  
cues about self-motion, V—we have to decide  
between veering to the left or right to avoid  
hitting a car braking in front of us. We determine  
the best course of action by inverting the  
generative model (left), which specifies how the  
choice-relevant latent variable z is assumed to  
have generated the observations I and V. In our  
case, z is either right or left, indicating the  
better direction to veer toward. This z is assumed  
to stochastically generate a heading direction  
θ relative to the braking car and compatible  
with z. The relative heading direction in turn  
generates the visual and vestibular observations.  
The generative model is inverted (right) to  
determine the probability of z = right or z = left  
given these observations, leading to the posterior distribution p(z  |I,V). This posterior  
can in turn be used to determine the choice d(I,V), which, as the posterior, is a  
function of the observations. All probability distributions leading up to this choice  
determine the certainties about various variables involved in the decision-making process. The confidence in this choice, in contrast, is the probability 
that the choice itself is correct, that is, that the latent state z indeed corresponds to this choice,  p   (z = k|d = k, I,V). For more details, see Box 1.
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country”. Thus, as for decision confidence, the confidence in this 
proposition can be defined as the probability that the decision, 
“Nigeria is the most populous African country”, is correct. The same 
applies to some aspects of self-confidence. Lionel Messi is presumably 
highly self-confident in his ability to score in soccer games because 
the probability that the proposition “I will score” (as opposed to “I will 
not score”) is correct tends to be high. The concept that unifies all of 
these seemingly different types of confidence is that they are about a 
choice being correct, even if only hypothetically, such that confidence 
can be expressed probabilistically by p   (z = k|d = k, evidence). Here 
we focus mostly on confidence about decisions, but our conclusions 
apply just as well to propositions.

When compared to the posterior p(z|Image, Vestib) over all possible 
choices, confidence is the probability mass of this posterior for one 
particular (overt or covert) choice. But does it ever make sense to main-
tain a separate measure of confidence rather than continuing to use the 
full posterior? In other words, why would you use a limited summary, 
confidence, when the entire posterior distribution is available?

This is because confidence is in fact the only quantity that is needed 
in a wide variety of tasks. It is particularly important in sequential  
decisions, when subsequent choices depend on previous deci-
sions22,29–31. One example of such a task is a post-decision wager, in 
which subjects are asked to place a bet on whether their decision was 
correct29,32,33. The optimal size of the wager, the investment, depends 
on the degree of belief that the initial choice was correct, with a higher 
wager when confidence is high33. These types of post-decision wagers 
can be studied in the laboratory, even in animals1. One example is a 
time investment task, initially introduced to study confidence in rats, 
that requires the decision maker to first gather evidence about which 
of several choice options is rewarded34. After a choice is made, the 

reward is delayed for a randomized interval and it is up to the decision 
maker to choose how long to wait for this reward. To not wait in vain, 
it only makes sense to wait extended periods if the decision maker is 
confident of their choice. In fact, it can be shown that there is no need 
to store the posterior distribution over the choices for this kind of 
task: the probabilities associated with the choices that the subject did 
not select are irrelevant, the only required quantity is the probability 
that the selected choice is correct. Confidence can also be important 
for learning from feedback (Box 2) and group decision-making35.

However, confidence is not always the appropriate measure to use, 
even in sequential decisions. For instance, if a subject receives further 
information relevant to a previously taken choice, then the entire 
posterior distribution over the latent variable z, p(z|Image, Vestib), 
needs to be updated in the face of new evidence. Even in this situation, 
confidence may be a computationally efficient summary statistic to 
use instead of the full posterior distribution. Consider, for example, 
complex environments in which the posterior distribution might 
require an inordinate amount of data to learn, involve extremely 
complex inference to compute or require large neuronal resource to 
store. As a result, the posterior distributions computed will only be 
a rough approximation of the true posterior36. Using confidence in 
these situations as an approximation to the full posterior can be the 
computationally appropriate strategy that beats other solutions that 
were optimal if more information were available (for example, see 
refs. 37,38). Although these ideas are speculative at present, as the 
field begins to study more complex behavioral questions, we are likely 
to find that the complexity of the computations faced by the brain 
strongly constrains what it can compute and store.

Thus far we have defined confidence for discrete choices, but 
it is possible to extend this definition to continuous variables.  

Box 1 Computing confidence and certainty in a visuo-vestibular task 

Consider the visuo-vestibular task in which we aim to avoid hitting a car braking ahead of us by veering to the left or right. As illustrated 
in Figure 1, this problem is approached statistically by inverting a generative model that specifies how likely it is to observe a particular 
piece of evidence given some choice-related latent state of the world. In our example, the observed evidences are visual and vestibular 
cues, I and V, telling us about the location of the braking car and heading direction. The latent state z determines whether it is better to 
veer to the right or the left of the car given the current heading direction. The generative model links these variables in two steps.  
First, z is assumed to stochastically generate some heading direction θ relative to the braking car, according to the probability distribution  
p   (θ|z), which conforms to θ < 0° if z = right and θ > 0° otherwise, to enforce consistency between z and θ. Second, the chosen relative  
heading direction θ generates the visual and vestibular observations, I and V, according to probability distribution p   (I |θ) and p   (V |θ). 
These mappings are again stochastic, as many different visual and vestibular observations are, to different degrees, compatible with a 
given relative heading direction. Together, these distributions fully specify the generative model linking the latent state to the  
observations. In the main text, we discuss the posteriors, p(θ |I) and p(θ |V), instead of the above likelihoods. According to Bayes’ rule, 
these posteriors are proportional to the likelihood multiplied by the prior, p(θ). In this particular instance, the distinction between likeli-
hood and posterior is not critical for the argument.
 To infer the latent state z given these observations, I and V, we need to invert the generative model. This inversion is based on the 
likelihoods of the visual and vestibular information given relative heading, p(I |θ) and p(V |θ). If these likelihoods are independent when 
conditional on θ, they can be combined into the joint likelihood 

p pI V I V, | ( | )q q q( ) = ( )p |  

indicating for each θ how likely it is to observe I and V. We can invert this probability by Bayes’ rule 

p p p( | , ) ( , | ) ( )q q qI V I V∝  

returning how likely each relative heading direction is, given the observed evidence. This posterior probability can in turn be used to 
compute the posterior probability for each latent state z 

p z p d=( ) = ( )
°

°

∫left| |I V I V, ,
0

180

q q

 

where we have used the fact that z = left for all θ values from 0° to 180°. An analogous expression returns p   (z = right|I,V). This posterior 
probability is independent of the choice, but can be used to determine the choice. For either choice d, the confidence is the probability 
that this choice is indeed correct, that is, that choice corresponds to the latent state z. Thus, confidence in our example is the probabil-
ity p   (z = k |d = k,I,V), where k is either left or right, depending on the choice.
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In experiments testing confidence for continuous variables, subjects 
are commonly asked to commit to an estimate and assess the con-
fidence in that estimate (for example, ref. 39). For instance, in the 
heading task, we could ask subjects to directly estimate their heading 
direction, and then to report their confidence in that estimate. Thus, 
confidence is once again a choice-dependent variable: it relates to 
the accuracy of the choice or a commitment to a particular value. 
However, we can no longer define confidence as the probability of the 
current choice being correct because this probability, that is, the prob-
ability that the chosen estimate matches the true value, equals zero 
for continuous variables. Instead, we can define an interval over the 
chosen estimate that contains the true value with a fixed probability, 
say 95%. In terms of heading estimation, such an interval is closely 
related to the variance of the posterior distribution over heading (for 
example, see ref. 40), illustrating that, when working with continuous 
variables, it is particularly easy to confuse certainty and confidence. 
Nevertheless, there is a fundamental difference: although certainty is 
about the posterior distribution over any latent variables that may be 
relevant to the task, confidence exists only in the context of a choice 
that the decision maker has committed to (independent of whether 
this commitment is overt or covert).

Certainty: definition and computations
Given that we defined confidence with respect to a particular poste-
rior distribution over a binary random variable, correct or incorrect, 
it is therefore a form of certainty. However, not all forms of certainty 
can be reduced to confidence according to the definition we pro-
pose. Confidence is distinct from all other posterior distributions 
that might be involved in decision-making because it is related only 
to the current choice d, which, in our opinion, is the key property of 
confidence. In contrast, the certainty about direction of motion in the 
heading task is determined by the posterior distribution p  (θ|Image, 
Vestib), just like the certainty about whether one is moving right-
ward or leftward is determined by distribution p   (z|Image, Vestib), 
two notions that are independent of whether we have made a choice  
(Fig. 1). Note that both of these distributions are required to compute 
the confidence, but they are distinct statistical quantities.

Given our definition of confidence as the probability that the current 
choice is correct, we suggest that the term certainty is best reserved for 
all distributions that are choice independent. For example, certainty 
could refer to the inverse variance of these distributions in the case 
of continuous variables, such as θ, and to the inverse entropy of the  

distributions in the case of discrete variables or non-Gaussian  
distributions. According to this definition, certainty is decision  
independent because it is not conditioned on a choice. Furthermore, 
it is domain specific because the degree of certainty has to be specific 
to each of the variables involved in the inference. For instance, in our 
heading task above, we need to be able to specify the certainty associ-
ated with heading based on vision alone, vestibular information alone 
or both (Fig. 1). We also need to represent the certainty associated 
with the binary variable z given all the evidence. These are distinct 
forms of certainty that might be represented in the brain by distinct 
neuronal populations. Confidence can also be domain specific, as one 
could ask a subject to base their decision on a single modality and 
then ask the confidence in this decision. However, the brain needs 
to encode only one confidence, the one corresponding to the current 
decision (assuming that humans and animals can only consider one 
decision at any given time), whereas it is essential to encode multiple 
certainties simultaneously.

These definitions have implications for the possible neural  
implementations of these quantities. We can search for areas  
specifically involved in the representation of confidence, but not 
of the posterior distribution over choices, for example, p   (z|Image, 
Vestib). For instance, Lak et al.34 found that inactivating the orbit-
ofrontal cortex (OFC) selectively impaired rats’ ability to wait in 
proportion to their confidence level, but preserved their olfactory dis-
crimination performance. Indeed, given that confidence is a choice- 
dependent quantity, it should involve associative areas such as frontal 
and prefrontal areas, such as the OFC22 or rostro lateral prefrontal  
cortex (rlPFC)41, and it could recruit global signals, such as  
neuromodulators. Several groups have in fact proposed such  
a centralized system for confidence estimation42,43, and that  
confidence may serve as common currency across tasks44. Certainty, 
on the other hand, cannot employ similarly global signals since 
we need to be able to encode distinct levels of certainty for each of  
the variables involved. Each cortical area has to be able to encode 
posterior distributions (or likelihood; Fig. 1 and Box 1) specific to 
the variables encoded in that area. This is a critical feature, with-
out which cortical circuits could not perform optimal probabilistic  
inference such as cue integration45–48 or optimal accumulation of 
evidence over time49,50. Note that our definition of certainty does 
not directly address the origins of uncertainty, for instance, whether 
it is a result of incomplete evidence, incorrect internal model or noisy 
processing (for example, see refs. 51,52).

Box 2 The role of confidence when learning from feedback 

Confidence is important when learning from feedback (for example, see ref. 74). In our heading example, subjects must learn how to 
map the image of the motion flow field onto adequate responses, which is to say, they need to learn the parameters, such as synaptic 
weights, W, of the neural network that maps the images onto a sensory representation of the response. Independent of the complexity 
of these networks, their weights can be adjusted on every trial from the observation of three variables: the sensory (here, visual) input, 
Image, the choice k made by the subject, d = k, and feedback about the correct choice, z. In reinforcement learning, the feedback 
about z typically indicates whether the choice is correct (z = k) or not (z ≠ k). Given these variables, the best the brain can do is to 
learn the posterior distribution over the weights, which is obtained via a simple application of Bayes’ rule. In the case of a correct 
choice, we obtain 

p z k d k Image p z k d k Image pW W W| , , | , ,= =( ) ∝ = =( ) ( )

For incorrect choices, in which case z ≠ k, the weight update is instead 

p z k d k Image p z k d k Image p p z k d k ImageW W W| , , | , , | ,≠ =( ) ∝ ≠ =( ) ( ) = − = =1 ,,W W( )( ) ( )p

In both cases, the first term on the right hand side of the equation is precisely what we have called confidence. Our definition of  
confidence in the main text did not include the variable W, but this variable is implicit, as this function is necessarily parameterized 
in the brain. Counterfactual reasoning emerges as an additional feature of the above learning rule, as for incorrect choices the relevant 
probability is the belief about the correctness of the un-chosen options, or “what would have happened had I chosen otherwise?”
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Looking for confidence in neural codes
How can we establish that a particular neuron or neural popula-
tion encodes confidence, certainty or some other cognitive variable?  
The usual strategy involves recording neuronal activity, with elec-
trodes or its correlates with functional magnetic resonance imaging 
(fMRI), while manipulating the variable of interest. However, in the 
case of a variable such as confidence, which is not just a property of 
the stimulus, but a subjective internal variable, it is not immediately 
clear how to obtain a precise measurement of the variable in question. 
The most straightforward approach is to simply ask subjects to report 
their confidence in their choice, for instance, on a scale of 1 to 5, and 
then show that a neuron’s firing is correlated with this confidence 
report. Although straightforward, this method suffers from a few limi-
tations. First, it is difficult to design a version of this task that could 
work with animals. Second, and more importantly, without specifying 
what is meant by confidence, it is unclear what subjects are actually 
reporting. For instance, the behavioral expression of confidence may 

be dependent on a number of factors: context, bias and other fram-
ing effects that are difficult to control. Thus, even if one observes a 
correlation between neural activity and confidence report, it needs 
to be established that the correlation is not a result of an unidentified 
underlying factor contributing to the confidence report.

To go beyond this behavioral correlation approach and establish 
that neural activity represents confidence, it is important adopt a 
computational approach and ask what the simplest computations that 
could generate the neural activity in question are. For instance, for 
post-decision wagering tasks, the wager must reflect the expected 
reward, that is, the product of the probability of being correct (con-
fidence) with the reward associated with the choice. By developing 
a computational model of this task, a subject’s estimate of being  
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Figure 2 Two distinct codes for certainty. Left, the encoded probability 
distribution, p   (s|r), illustrated here for direction of motion s given the 
activity r of a neural population (in all panels, blue curve indicates low 
certainty and red curve indicates high certainty). Right, tuning curves 
of an individual neuron for two hypothetical neural codes. Top right, the 
width of the tuning curves is inversely proportional to certainty (1 2/ss )  
about the stimulus. Bottom right, the amplitude of the tuning curve is 
proportional to certainty. Such code can be detected by regressing the 
variance of the posterior distribution against the width or amplitude of 
the tuning curves. Unfortunately, finding a significant correlation between 
certainty and some features of the tuning curves does not guarantee that 
this feature encodes certainty. It is instead preferable to use a decoding 
approach, as explained in the main text and Figure 4.

Box 3 From probabilistic population codes to monotonic confidence encoding 

The transformation from probabilistic population codes (PPCs) to a monotonic representation of confidence is just a nonlinear trans-
formation and, as such, it can be implemented in basis function networks. To illustrate this, let us consider the example from Box 1, 
in which a posterior over motion heading p    (θ|I,V) is turned into a choice d and an associated confidence, p    (z = k |d = k,I,V). Assume 
that this posterior is encoded in population activity rθ by a linear PPC, that is, p Zq qq q| TI V,( ) = ( ) ( )( )−r h r1 exp , where Z r h rq qq q( ) = ( )∫ exp dT( )  is 
the normalization constant, and h(θ) is the locally linear decoder as a function of θ (ref. 44). Even though the exact location of where 
the posterior over θ is encoded is not important for the argument, rθ might, for example, be the activity of area MSTd, which seems to 
encoded information about self-motion. From this posterior we can compute the posterior over latent states, z, by 
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which is a nonlinear function f(rθ) of rθ. This posterior can consecutively be encoded in a PPC, p z p z Z zz z z| , ; ( ( ) )I V( ) = ( ) = ( )−r r h r1 exp T , where 
rz is a nonlinear function of rθ such that p   (z;rz) = p   (z = left|I,V) as given above holds, and Z(rz) is again a normalization constant.  
The basis function networks described in the main text readily implement such nonlinear functions. They can do so efficiently despite 
the high-dimensional input rθ, as the distributions encoded by this input can be described by few parameters. See ref. 75 for examples 
of PPCs that compute marginalizations similar to the above with only quadratic nonlinearities and divisive normalization.
Next we compute confidence from the above posterior over z. Formally, confidence is given by p   (z = k|d = k,I,V), such that 
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The above is again a nonlinear function of rz and choice d. Thus, independent of how exactly d is encoded in neural population activity, 
a basis function network can compute the confidence. Assuming linear encoding would yield neural activity that monotonically increases 
with confidence, similar to many neurons in OFC21.
 On the other hand, it is equally possible to implement a network in which neural activity directly represents a basis function network 
of confidence. Furthermore, we do not need to represent the posterior over z with a PPC, as confidence could be directly computed as a 
nonlinear function of rθ and d. We only included rz to make each of the processing steps explicit. This illustrates that, due to the power 
of basis function networks to perform nonlinear transformations, it becomes possible to move from uncertainties encoded by linear PPCs 
to a linear or nonlinear encoding of confidence. Critically, however, all steps in the inference require nonlinear transformations, implying 
that confidence can be neither linearly decoded from rθ nor from rz.
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correct can be inferred without an explicit report of this probability. 
Regressing this model-based estimate against neural activity avoids 
the problem of corruption by other variables, such as anxiety, and pro-
vides a rigorous computational estimate of confidence. Other caveats 
remain, however; for example, the decision maker might compute 
confidence differently from the model, in which case the model-based 
approach does not guarantee finding neural representations even if 
they exist. With these caveats in mind, we next discuss two different 
computational approaches for how such neural representations could 
be identified.

Neural coding: the encoding and decoding approaches
The simplest approach to reveal a neural code, and the most widely 
used, consists of plotting the activity of single neurons as a function 
of the variable of interest, usually obtained from a model, to gener-
ate what is known as a tuning curve. We refer to this as the encoding 
approach. Using this approach, a significant fraction of neurons in 
the orbitofrontal cortex of rats have been found to have monotonic 
tuning curves to confidence22. Similarly, neurons with monotonic 
tuning curves to confidence have been reported in the dorsal pulvi-
nar of rhesus monkeys28 and in the amygdala and hippocampus of 
human patients53.

Human fMRI studies also suggest that the ventral medial pre-
frontal cortex (vmPFC) and rlPFC encode confidence in humans54.  
Just like the single-cell studies mentioned above, this analysis is effec-
tively looking for neural responses (or their fMRI proxy, voxel BOLD  
activation) that are monotonic functions of confidence. This is 

indeed a simple test that, if positive, suggests that the neurons or 
brain regions in question encode confidence. Linear regression, how-
ever, is limited in the type of codes it can reveal. It works when the 
neuronal responses are monotonic functions of confidence, but it 
can fail for some non-monotonic functions that are quite ubiquitous 
in the brain55–58.

Another approach, which does not rely on monotonic tuning 
curves, is to regress the encoded variable not simply against the 
raw neural activity, but against a feature of the neural tuning curves 
that may encode it (Fig. 2 and Dekleva, B., Wanda, P., Miller, L.E. & 
Kording, K. Soc. Neurosci. Abstr. 572.505, 2012)59. Although more 
general, this approach also suffers from a general problem of the 
encoding approach: it eludes the critical question of what is known 
about the encoded variable given the neural pattern of activity45,60–62. 
This is the relevant question for downstream neurons that have to rely 
on the activity of upstream neurons to perform computation over the 
encoded variable. This question can only be answered by adopting a  
decoding perspective.

The decoding approach requires switching to the question of read out 
and asking how one could recover, or decode, some variable x of inter-
est from a set of responses across a population of neurons. Specifically, 
several authors have suggested defining neural representations as pat-
terns of neural activity from which linear and nonlinear functions, f(x), 
of the variable of interest can be decoded linearly63–66.

Note that this definition implies that the variable itself could be 
decoded linearly, as this corresponds to decoding a particular func-
tion of x, namely, the identity function f  (x) = x. However, most 
computations performed by the brain involve much more complex 
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Figure 3 Nonlinear neural computations by neural populations that 
linearly represent variables. We say that a neural population represents a 
variable x if linear and nonlinear functions of x can be estimated linearly 
from the neural activity. This requires that neurons have nonlinear tuning 
curves to x, such as the ones shown in the inset below population x. The 
network implements the nonlinear function z = f(x,y) by first transforming 
the activity of the neural populations representing x and y (bottom, blue 
and yellow) into a basis function layer (central circle) whose neurons 
feature activities gj(x,y) that are nonlinear combinations of the activities of 
the two input populations. Second, neurons in the population representing 
z (top, green) combine the activities of the basis function neurons linearly, 
as illustrated by weights wk for neuron k. This population again represents 
z in a linearly decodable way by featuring nonlinear tuning curves with 
respect to z. Such a network can compute almost arbitrary nonlinear 
functions as long as the set of basis functions is sufficiently rich. The 
bottom neurons representing x and y together contain all the information 
to compute z, however do not represent z, as z can only be decoded 
with a nonlinear decoder from these neurons. The central neurons in the 
basis function layer represent x and y, as their activities can be used to 
compute f   (x,y) = x and f   (x,y) = y, which implies that both x and y are 
linearly decodable from this population. They also represent z, as the 
activities of neurons in the population z is only a linear transformation of 
the activity of neurons in the basis function network, making z linearly 
decodable from this network. Note that both input populations as well 
as the output population can be part of upstream and downstream basis 
function networks performing further computations. They are here shown 
as distinct entities only for the sake of illustration.
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functions (Box 3). For instance, the expected value of a decision is 
the product of confidence and the reward size, which is a nonlinear 
function of these two variables (linear functions only allow weighted 
sums, whereas we need a product in this case). One of the goals of 
neural computation should be to produce neural representations that 
simplify the computation and learning of such nonlinear functions. 
This is precisely what motivates our definition of a neural represen-
tation: a set of responses that reduce nonlinear functions to simpler 
linear operations. Such representations also simplify learning: neu-
rally plausible local learning rules such as the delta rule (a supervised 
version of Hebb rule67) are sufficient to learn optimal linear decoders 
of nonlinear functions.

Representations that make nonlinear computations linearly deco-
dable are known as basis function representations (see ref. 68 for a 
review). They require neurons with nonlinear tuning—for example, 
sigmoidal or bell-shaped tuning curves—to all the variables of interest 
(for example, confidence and reward; Fig. 3). It is important to realize  
that, in such basis function representations, the neurons are not 
guaranteed to exhibit the signature of confidence encoding that most 
studies have been looking for so far, namely, a monotonic tuning 
to confidence. Nonetheless, the responses of a set of basis function  
neurons would provide a perfectly sensible representation of confi-
dence from the point of view of downstream computation (Box 3).

Implicit versus explicit representations of confidence and certainty
Given the definition of a representation we have just considered, which 
brain regions are involved in representing confidence? Single-unit 
recordings have yielded candidates such as the OFC22, pulvinar28 and 
the supplementary eye field31, whereas vmPFC and rlPFC have been 
implicated using fMRI41,54. In addition, given that activity of neurons 
in the lateral intraparietal cortex (area LIP) reflects the accumulation 
of sensory evidence for decision-making69, it could provide a repre-
sentation of confidence, perhaps not explicitly, but at least implicitly23. 
Furthermore, all sensory cortical areas contain information to support 
decisions and therefore might also contain an implicit representation 
of confidence. To clarify these issues, we first need to define what we 
mean by a representation being ‘implicit’ and ‘explicit’.

Let us start with explicit representations. As discussed in the 
previous section, we consider that an area represents a variable of 
interest as long as this variable is linearly decodable. Although we 
do not encourage calling this representation explicit in general, we 
will do so here solely to distinguish it from implicit representations. 
Considering this, what does the neural activity in parietal cortex 
area LIP represent explicitly? One possibility is that it is involved 
in representing the distribution over choices given the sensory evi-
dence, p(z|sensory evidence). To establish that this is the case, we 
need to first define what constitutes an explicit neural representation  
of such probability distributions. Fortunately, we can follow the 
same logic as for scalar variables: an explicit neural representation 
of a probability distribution is a set of responses from which one can 
recover the probability distribution through a linear combination of  
neuronal responses (Fig. 4). Codes in which this linear combination 
corresponds to the log of the encoded probability are known a linear 
probabilistic population codes45. Following earlier work from Gold 
and Shadlen49, Beck et al.50 used linear PPCs to show that activity in 
LIP is consistent with the idea that it encodes the log of the posterior  
distributions over choices, p(z|sensory evidence). Thus, it might  
explicitly represent the logarithm of this distribution.

In addition to representing this posterior distribution, does LIP 
activity also represent confidence explicitly? To our knowledge, neither  

confidence nor any function thereof is linearly decodable from LIP 
activity alone. Nonetheless, if LIP encodes the posterior distributions 
over choices, it is possible for a nonlinear decoder to yield an esti-
mate of confidence, as is clear from the work of Kiani and Shadlen23.  
This could therefore constitute an implicit representation of  
confidence. The problem with calling such a representation implicit 
is that it can be applied to almost any area. Consider, for instance, 
area MSTd, which explicitly represents the posterior distribution over 
heading directions in the sense that a probability distribution over 
heading could be linearly decoded from MTSd48. However, as any 
decision about heading is likely based on MSTd activity, we could 
claim that MSTd also contains an implicit representation of confi-
dence. We could even estimate confidence from MSTd activity with 
a complex nonlinear decoder. Taking this argument a step further 
would lead us to claim that even the retina contains an implicit rep-
resentation of visual confidence, which seems to render the concept 
of implicit representations useless.

To summarize, we propose a definition of confidence representation 
based on linear decodability that allows us to assign specific and distinct 
computational roles to cortical areas: early sensory areas represent the 
posterior distribution over sensory variables (for example, posterior 
distribution over heading in MSTd), areas such as LIP and the frontal  
eye fields (FEF) represent the posterior distribution over choices 
given the sensory evidence, whereas confidence is represented by 
other frontal areas such as OFC and vmPFC (Box 3). Our current  
understanding of what these areas represent may be incorrect, but we 
nevertheless hope that our criteria and hypotheses can guide future 
research. In contrast, if we were to broaden our definition to include 
implicit representations or distributional confidence (a related concept, 
see ref. 2) that apply to any area containing information about confi-
dence in some form, then any area along the visual processing pathway, 
including the retina, could be said to represent visual confidence.

Conclusion
We suggest defining confidence as the probability that the current choice, 
over or covert, is correct while reserving the terms certainty and uncer-
tainty to refer to all other kinds of probabilistic representations in neural 
circuits. The key property of confidence is that it is choice dependent; 
there is no notion of confidence without a choice, although the choice 
need not be actualized and can remain covert. In this respect, it is dif-
ferent from the posterior distributions over choices given the sensory 
evidence, which is independent of whether a choice is even possible.

Although we have eluded this issue thus far, we should be clear 
is that when we write ‘the probability of being correct’, we actually 
mean the probability of being correct as estimated by the subject, as 
opposed to the true probability of being correct, as estimated by an 
ideal observer with complete knowledge of the world (for example, 
a generative probabilistic model that has produced the sensory evi-
dence; Fig. 1)16. This generative model is specific to each task and 
subjects may not be able to learn this model perfectly well, particu-
larly in complex tasks, and may therefore resort to approximations.  
This would imply that confidence reports deviate from the actual 
probability of being correct. Indeed, confidence miscalibration of 
this type is often reported25,70–73. Similarly, if confidence estimates 
obtained by decoding a cortical area strongly deviate from the one 
observed behaviorally, it does not indicate that the area does not 
encode confidence, but instead simply reflects a suboptimal step in 
downstream computation. Finally, it is possible that subjects use more 
than one representation of confidence and that these representations 
use distinct approximations to obtain their estimates.
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We emphasize that our definitions of confidence, certainty and 
their neural representations are not entirely new. Other groups have 
made similar proposals, but we hope that this Perspective helps to 
clarify these definitions by providing clear mathematical foundations. 
These mathematical definitions may ultimately fail to capture all of 
the subtleties of these concepts, but, at the very least, they can be used 
to dissect the computational contributions of various cortical areas to 
the process of decision-making by providing a clear-cut and testable 
demarcation between the concepts of confidence and certainty.
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