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In a natural environment, choosing the best of multiple options  
is frequently critical for an organism’s survival. Such decisions  
are often value-based, in which case the reward is determined 

by the chosen item (such as when individuals choose between food 
items; Fig. 1a), or perceptual, in which case individuals receive a 
fixed reward if they pick the correct option (Fig. 1b). Compared 
to binary choice paradigms1–3, much less is known about the com-
putational principles underlying decisions with more than two 
options4. Some studies have suggested that decisions among 3 or 
4 options could be solved with coupled drift diffusion models4–6, 
which are optimal for binary choices7, but, as we are going to show, 
these become suboptimal once the number of choices grows beyond 
two. Another option for modeling such choices is to use ‘race mod-
els’. In race models, the momentary choice preference is encoded by 
competing evidence accumulators, one per option, which trigger a 
choice as soon as one of them reaches a decision threshold (Fig. 1c). 
Such standard race models imply that both races and static deci-
sion criteria are independent across individual options. However, 
in contrast to race models, the nervous system features dynamic 
neural interactions across races, such as activity normalization8,9 
and a global urgency signal10. Whether such coupled races are com-
patible with optimal decision policies for three or more choices  
is unknown.

At the behavioral level, individuals choosing between three or 
more options exhibit several seemingly suboptimal behaviors, such 
as the similarity effect or violations of both the regularity principle 
and the independence of irrelevant alternatives (IIA) principle11. 
However, before concluding that such behaviors are suboptimal, it 
is critical to first derive the optimal policy and check whether they 
are compatible with this policy.

In this study, we adopt such a normative approach. Unlike pre-
vious models motivated by biological implementations, we start 
by deriving the optimal, reward-maximizing strategy for multi-
alternative decision-making, and then ask how this strategy can be 
implemented by biologically plausible mechanisms. To do so, we 
first extend a recently developed theory of value-based decision-
making with binary options7 to N alternatives, revealing nonlinear 
and time-dependent decision boundaries in a high-dimensional 
belief space. Next, we show that geometric symmetries allow reduc-
ing the optimal strategy to a simple neural mechanism. This yields 

an extension of race models with time-dependent activity normal-
ization controlled by an urgency signal10.

The model provides an alternative perspective on how normal-
ization and an urgency signal cooperate to implement close-to-opti-
mal decisions for multi-alternative choices. We also demonstrate 
that the optimal policy is compatible with divisive normalization, 
which has been widely reported throughout the nervous system8,9. 
Additionally, in the presence of internal variability, our network 
replicates the similarity effect and violates both the IIA and regu-
larity principles. Thus, our model isolates the functional compo-
nents required for optimal decision-making and replicates a range 
of essential physiological and behavioral phenomena observed for 
multi-alternative decisions.

Results
The optimal policy for multi-alternative decisions. Suppose we 
have N alternatives to choose from in perceptual or value-based 
decisions. The decision-maker’s aim is to make choices whose out-
come depends on a  priori unknown variables (for example, true 
rewards (Fig. 1a), or stimulus contrasts (Fig. 1b)) associated with 
the individual options, whose values vary across choice trials. We 
will assume that on a given trial, each short time duration δt yields 
a piece of noisy momentary evidence about the true values of the 
hidden variables. For perceptual decision-making, this would cor-
respond to observing new sensory information, while for value-
based decision-making, this might be the result of recalling past 
experiences from memory12. Our derivation shows that the opti-
mal way of accumulating such evidence is to simply sum it up over 
time (Methods). This reduces the process of forming a belief about 
these variables to a diffusion (or random walk) process, x(t), in an 
N-dimensional space, as implemented by race models (Fig. 1d).

Next, we derive the optimal stopping strategy: when should the 
decision-maker stop accumulating evidence and trigger a choice? To 
do so, and in contrast to experiments where participants wait until 
the end of the trial to respond, we only consider the more natural 
scenario where the decision-maker is in control of their decision 
time. In a standard race model, evidence accumulation stops when-
ever one of the races reaches a threshold that is constant over time 
and identical across races. In other words, evidence accumulation 
stops once the diffusing particle hits any sides of an N-dimensional 
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(half-)cube (Fig. 1d). While simple, this stopping policy is not 
necessarily optimal. To find the optimal policy, we use tools from 
dynamic programming7,13. One such tool is the ‘value function’ 
V(t,x), which corresponds to the expected reward for being in state 
x at time t, assuming that the optimal policy is followed from there 
on. This value function can be computed recursively through a 
Bellman equation (Methods). For the simple case of a single, isolated 
choice, the decision-maker aims to maximize the expected reward 
(or reward per unit time) for this choice minus some cost c for accu-
mulating evidence per unit time. One can imagine several different 
types of costs, such as, for example, the metabolic cost of accumu-
lating more evidence. Once we embed this single choice within a 
long sequence of similar choices, an additional cost ρ emerges that 
reflects missing out on rewards that future choices yield (Methods). 
Overall, the optimal decision policy results in:
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This value function compares the value for deciding immedi-
ately, yielding the highest of the N expected rewards ̂ … ̂r r, , N1 , with 
that for accumulating more evidence and deciding later; ρ is the 
reward rate (see Methods for the formal definition), tw is the inter-
trial interval including the nondecision time required for motor 
movement. The expected reward for each option, ̂r t x( , )i i  is com-
puted by combining the accumulated evidence with the prior 
knowledge about the reward mean and variance through Bayes’ rule 
(Methods). As shown by dynamic programming theory, the larger 
of these two terms yields the optimal value function; their inter-
section determines the decision boundaries for stopping evidence 
accumulation and thus the optimal policy. In realistic setups, deci-
sion-makers make a sequence of choices, in which case the aim of 
maximizing the total reward becomes equivalent (assuming a very 

long sequence of choice) to maximizing their reward rate, which is 
the expected reward for either choice divided by the expected time 
between consecutive choices. The value function for this case is the 
same as that for the single-trial choice, except that both values for 
deciding immediately and for accumulating more evidence include 
the opportunity cost of missing out on future rewards (Methods).

We found the optimal policy for this general problem by com-
puting the value function numerically14 from which we derived the 
complex, nonlinear decision boundaries (Fig. 2a). Clearly, the struc-
ture of the optimal decision boundaries differs substantially from 
that of standard race models (Fig. 1d). Interestingly, we found that 
they have an important symmetry. They are parallel to the diagonal, 
that is, the line connecting (0,0,…,0) and (1,1,…,1) (Supplementary 
Note 1 shows this formally). This symmetry implies that any diffu-
sion parallel to the diagonal line is irrelevant to the final decision, 
such that we only need to consider the projection of the diffusion 
process onto the hyperplane orthogonal to this line (Fig. 2b). The 
decision boundaries remain nonlinear even in this projection, as 
depicted by the curvatures of the solid lines in Fig. 2b. Note that for 
binary choices, our derivation indicates that the projection of the 
diffusion process onto an (N – 1)-dimensional subspace becomes a 
projection onto a line since N = 2. On this line, the stopping bound-
aries are just two points and therefore cannot exhibit any non-
linearities. Thus, for N = 2, the optimal policy corresponds to the 
well-known drift diffusion model of decision-making7,13.

Numerical solutions also revealed that the optimal decision 
boundaries evolve over time; they approach each other as time 
elapses and finally collapse (Fig. 2b). These nonlinear collaps-
ing boundaries differ from the linear and static ones of previous 
approximate models, such as multihypothesis sequential probability 
ratio tests (MSPRTs)15–17, which are known to be only asymptotically 
optimal under specific assumptions (Methods).

We show in Supplementary Note 4 that these results general-
ize to models where the streams of noisy momentary evidence are  
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Fig. 1 | Multi-alternative decision tasks and the standard race model. a, An example value-based task in a laboratory setting. In a typical experiment, 
participants are rewarded with one of the objects they chose (in a randomly selected trial from the whole trial sequence). b, An example perceptual task, 
where participants are required to choose the highest-contrast Gabor patch—in this example, the one on the bottom left. c, The race model. The colored 
traces represent the accumulated evidence for individual options (x1, x2 and x3). In the race model, the accumulation process is terminated when either 
race reaches a constant decision boundary (a.u., arbitrary units). d, An alternative representation for the same race model, where the races of accumulated 
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correlated in time, either with short-range temporal correlations, as 
is often observed in spikes trains, or with long-range temporal cor-
relations as postulated, for example, in the linear ballistic accumula-
tor model18,19. Our results also apply to experiments such as the ones 
performed by Thura and Cisek20,21 where the momentary evidence 
is accumulated directly on the screen, in which case there is no need 
for latent integration.

Circuit implementation of the optimal policy. In the optimal pol-
icy we have derived, evidence accumulation is simple: it involves 
N accumulators, each summing up their associated momentary 
evidence independent of the other accumulators. By contrast, the 
stopping rule is complex: at every time step, the policy requires 
computing N time-dependent nonlinear functions that form the 
individual stopping boundaries. This rule is nonlocal because 

whether an accumulator stops depends not only on its own state but 
also on that of all the other accumulators. A simpler stopping rule 
would be one where a decision is made whenever one of the accu-
mulators reaches a particular threshold value, as in independent 
race models. However, this would require a nonlinear and nonlo-
cal accumulation process to implement the same policy through a 
proper variable transformation. Nonetheless, such a solution would 
be appealing from a neural point of view since it could be imple-
mented in a nonlinear recurrent network endowed with a simple 
winner-takes-all mechanism that selects a choice once the threshold 
is reached by one of the accumulators.

Armed with this insight, we found that a recurrent network with 
independent thresholds (Fig. 2c) can indeed approximate the opti-
mal solution very closely. It consists of N neurons (or N groups of 
identical neurons), one per option, which receive evidence for their 
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associated option. The network operates at two timescales. On the 
slower timescale, neurons accumulate momentary evidence inde-
pendently across options according to:

∼ δ= + −

−
x x

x
C (2)t t

t

t

1

1

∼=x xC (3)tt t

where xt is the vector of accumulated evidence at time t, δxt is the 
vector of momentary evidence at time t and Ct is the commonly 
used divisive normalization, ∼σ= ∕ + ∑ =C K x( )t h n

N
t n1 , , ∼xt n,  denotes 

the nth component of the vector ∼x t. This form of divisive normal-
ization merely rescales the space of evidence accumulation, leaving 
the relative distances between accumulators and stopping bounds 
intact. As a result, it has no impact on the performance of the model 
if the stopping bounds are adequately rescaled, and no appreciable 
impact even without this rescaling. It is included for biological real-
ism because this nonlinearity is found throughout the cortex and in 
particular in the lateral intraparietal (LIP) area8,22.

On the faster timescale, activity is projected onto a manifold 
defined by ∑ =f x u t( ) ( )

N i i
1  (gray surface in Fig. 2d), where u(t) 

is the urgency signal. This operation is implemented by iterating:
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until convergence; γ is the update rate and f is a rectified polynomial 
nonlinearity (see Methods and Supplementary Note 2 for details). 
This process is stopped whenever one of the integrators reaches a 
preset threshold. The choice of this projection was motivated by 
two key factors. First, this particular form ensures that the projec-
tion is parallel to the diagonal, that is, the line connecting (0,0,…,0) 
and (1,1,…,1). As we have seen, diffusion along this axis is indeed 
irrelevant. Second, the use of a nonlinear function f implies that we 
do not merely project on the hyperplane orthogonal to the diago-
nal. Instead, we project onto a nonlinear manifold. This step is what 
allow us to approximate the original complex stopping surfaces 
with simpler independent bounds on each of the integrators, as 
illustrated in Fig. 2d (see Supplementary Note 2 for a formal expla-
nation). The time-dependent urgency signal, u(t), implements a 
collapsing bound, which is also part of the optimal policy (Fig. 2b). 

Indeed, this urgency signals brings all the neurons closer to their 
threshold and, as such, is equivalent to the collapse of the stopping 
bounds over time (Fig. 2d).

Equations (2), (3) and (4) can be turned into a single differen-
tial equation (see equation (40) in the Supplementary Note). The 
iterative difference equations we show in this article are a particular 
form of the implementation, making it easier to interpret the diffu-
sion process. Importantly, equations (2) and (3) provide a general-
ization of divisive normalization, which ensures that evidence is still 
integrated optimally over time.

The model contains three parameters: the power of the non-
linearity, and the starting point and slope of the urgency signal 
(Methods). When these parameters are optimized to maximize 
the reward rate, the network approximates very closely the optimal 
stopping bounds (Fig. 2b). As a result, the reward rate achieved by 
the network is within 98 and 95% of the optimal reward rate for 3 
and 4 options, respectively (across a wide range of prior distribu-
tions over rewards; see Methods).

Normalization and urgency improve task performance. Our cir-
cuit model comprises independent decision thresholds for individ-
ual options, as in standard race models (consistent with recordings 
in the LIP area10), but features time-dependent normalization in 
addition to an urgency signal. To quantify the contribution of each 
circuit component, we compared the performance of four different 
circuit models: (1) the standard race model with independent evi-
dence accumulation within each accumulator; (2) a race model with 
the urgency signal alone; (3) a race model with normalization alone, 
where normalization refers to equation (4); and (4) the full model 
with both urgency signal and normalization. Note that all models 
included divisive normalization (equations (2) and (3)). This com-
parison revealed that adding the urgency signal and/or normaliza-
tion to the standard race model indeed improved the reward rate 
(Fig. 3). Intriguingly, for both value-based and perceptual decisions, 
normalization had a much larger impact than the urgency signal, 
demonstrating the relative importance of normalization in improv-
ing the reward rate.

Relation to physiological and behavioral findings. Urgency signal. 
We examined how the neural dynamics and behavior predicted by 
the proposed circuit relates to previous physiological and behavioral 
findings. First, we found that the average activity in model neurons 
rises over time, independently of the sensory evidence, consistent 
with the urgency signals demonstrated in physiological recordings 

1

0.9

0.8

0.7
R

el
at

iv
e 

re
w

ar
d 

ra
te

0.6

1

0.9

0.8

0.7

0.6

2 3 4 6 8

Number of options

2 3 4 6 8

Full model
Race model + constraint alone
Race model + urgency alone
Race model

Fig. 3 | Normalization and urgency improve task performance. Relative reward rates in value-based (left) and perceptual tasks (right). To quantify the 
contribution of each circuit component, we compared the performance of four different circuit models: (1) the standard race model with independent 
evidence accumulation within each accumulator; (2) a race model with only an urgency signal; (3) a race model with only normalization; and (4) the 
full model with both urgency signal and normalization. We quantified the reward rates of models 1–3 (‘reduced models’) relative to that of the full 
model by ≡ρ ρ ρ ρ ρ− ∕ −( ) ( )k k

Rel Rand Full Rand , where ρk(k = 1,2,3) denotes the reward rates of reduced models 1–3; ρ = ∕z tw
Rand  is the baseline reward rate of 

a decision-maker who makes immediate random choices after trial onset; ρFull is the reward rate of the full model with both normalization and urgency. 
The performance differences across models shrink with an increasing number of options because the performance shown is relative to a model making 
random, immediate choices. Indeed, as the number of options to choose from increases, the absolute reward rates of the full and reduced models increase 
at similar rates, while the performance of the random model remains the same. Each point represents the mean reward rate across 106 simulated trials.
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of neurons in the LIP area10 (Fig. 4a). Interestingly, our model also 
replicates a gradual decrease in the slope of the average neural activ-
ity over time that arises in the model as a consequence of the non-
linear recurrent process.

Decrease in offset activities in multi-alternative tasks. Second, it has 
been reported that the initial ‘offset’ (that is, the average neural 
activity) of evidence accumulation10,23 decreases as the number of 
options increases (Fig. 4b), although to our knowledge no norma-
tive explanation has been offered for this observation. Our circuit 

model replicates this property when optimized to maximize the 
reward rate (Fig. 4b). Indeed, in our model, increasing the num-
ber of options while leaving the initial offset unchanged causes a 
decrease in both accuracy and reaction time, and an associated drop 
in reward rate. This drop in reward rate can be compensated by low-
ering the initial offset, which increases both accuracy and reaction 
time but has a proportionally stronger effect on accuracy such that 
the reward rate increases.

Hick’s law in choice reaction times. Third, the change in the opti-
mal offset also explains the behavioral effects in choice reactions 
times known as ‘Hick’s law’24,25. Hick’s law is one of the most robust 
properties of choice reaction times in perceptual decision tasks24,25. 
In its classic form, it states that mean reaction time (RT) and the 
logarithm of the number of options (N) are linearly related via 
RT = a + b log(N + 1). Our model replicates this near-logarithmic 
relationship (Fig. 4c). Interestingly, the reaction time dependency 
on the number of options tends to be much weaker for value-based 
than perceptual decisions26.

Value normalization. Fourth, our model replicates the suppres-
sive effects of neurally encoded values among individual options  
(Fig. 5a). In particular, the activity of LIP neurons encodes values 
of targets inside the neuronal receptive fields, but is also affected 
by values associated with targets displayed outside the receptive 
fields8,9,27. The larger the total target values outside these receptive 
fields, the lower the neural activity, which is usually described as 
normalization.

IIA violation. So far, our neural model only has one source of variabil-
ity, namely the noise corrupting the momentary evidence. However, 
there are other sources of variability that quite probably exist in the 
brain. For instance, the decision-maker must learn how to prop-
erly adjust the decision bounds to optimize the reward rate, which  
would result in trial-to-trial variability in the value of the bound. 
There is experimental evidence suggesting that learning can indeed 
induce extra variability in decision-making tasks28. Variability in 
bounds and neural responses could also be purposely induced by 
neural circuits to ensure that the decision-maker does not always 
choose the option with the highest value but also explores alter-
natives. Such an exploration behavior is critical in environments 
where the value of the options varies over time, which is common 
in real-world situations.

In our neural model, we added such extra variability directly to 
the accumulator by adding zero-mean Gaussian white noise to the 
state of the accumulator at each time step t after applying both nor-
malizations (equations (2), (3) and (4)). Despite this extra variabil-
ity, our neural model continues to outperform the race model (Fig. 
5c and Supplementary Fig. 1). Stripping the normalization from the 
full model results in a large drop in reward rate with a further drop, 
although less pronounced, when the urgency signal is also removed.

Importantly, this version of the model also replicates apparently 
‘irrational’ behavior in humans and animals that violates the IIA 
principle29, an axiomatic property assumed in traditional rational 
theories of choice30,31. Behavioral studies have shown that the choice 
between two highly valued options depends on the value of a third 
alternative option32–36, even if the value of this third option is so 
low that it is never chosen. One example of such an interaction is 
shown in Fig. 5b. In this experiment, participants found it increas-
ingly harder to pick among their two top choices as the value of the 
third option increased. Our noisy neural model exhibits a similar 
IIA violation (Fig. 5b), which is primarily caused by divisive nor-
malization. Divisive normalization decreases the mean value differ-
ence between the two top options as the value of the third option is 
increased, making these two options harder to distinguish due the 
presence of internal variability.
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Violation of the regularity principle. In multi-alternative decision-
making, individuals not only violate the IIA but also the regularity 
principle. The regularity principle asserts that adding extra options 
cannot increase the probability of selecting an existing option. 
We found that the same model that violates the IIA also violates 
this regularity principle. At first, this may seem counterintuitive. 
Introducing a third option into a choice set must decrease the prob-
ability of picking either of the first two options. However, consider 
the probability of picking option 1 when option 2 is more valuable. 
In the absence of a third option, this probability will tend to be very 
small. When the third option is introduced and its value is increased, 

IIA violation implies that the probability of picking option 1 relative 
to option 2 will increase, as illustrated by the shallower psychomet-
ric curves in Fig. 5b. Therefore, two factors are with opposite effects 
are at play: the presence of a third option implies that choices 1 and 
2 are picked less often, but the probability of picking option 1 rela-
tive to option 2 increases as a result of IIA violation. Our simulations 
reveal that the second factor dominates when the value of option 1 
is smaller than that of option 2, as illustrated in Fig. 6a.

The similarity effect. Our model also replicates the similarity effect 
that has been reported in the literature35,37,38. This effect refers to the 
fact that when individuals are given a third option similar to, say, 
option 1, the probability of choosing option 1 decreases. To model 
this effect, we postulated that each object is defined by a set of fea-
tures and that its overall value is a linear combination of the val-
ues of its features. As before, we also assumed that the values of the 
features are not known exactly. Instead, the brain generates noisy 
samples of these values over time. In this scenario, the similarity 
between two objects is proportional to the overlap between their 
features. This overlap implies that the stream of value samples for 
the two similar options are correlated while being independent for 
the third, dissimilar option. Accordingly, we simulated a three-way 
race where the momentary evidence for options 1 and 3 are posi-
tively correlated. As illustrated in Fig. 6b, we found that the proba-
bility of choosing option 1 decreases relative to option 2 as the value 
of option 3 increases, thus replicating the similarity effect. As has 
been observed experimentally39,40, we found that the similarity effect 
grows over time during the course of a single trial (Fig. 6c).

Predictions. Our model makes a number of experimental predic-
tions at both the behavioral and neural levels (see Supplementary 
Note 3 for further details).

First, during evidence accumulation, the neural population 
activity should be near an (N − 1)-dimensional continuous mani-
fold (that is, a nonlinear surface), where N is the number of choices 
(Fig. 2d). This is a direct consequence of evidence accumulation 
paired with nonlinear normalization. As the activity of D-neurons is 
D-dimensional, and since N ≪ D in general, our prediction implies 
that neural activity should be constrained to a small subspace of the 
neural activity space. This prediction can be tested with standard 
dimensionality reduction techniques using multielectrode record-
ings, although this analysis should be done carefully since our 
model also predicts that the position of this manifold changes over 
time. Failure to take this time dependency into account could sig-
nificantly bias the estimate of the dimensionality of the constrain-
ing manifold. Our theory makes 11 additional predictions related 
to the existence and properties of the manifold, which are listed in 
Supplementary Note 3.

Second, our model correctly predicted the decrease in the initial 
activity offset (baseline firing rate) value of LIP neurons with the 
number of choices. Remarkably, this offset decrease results from 
an economic strategy that maximizes the reward rates by balanc-
ing the speed and accuracy in a long sequence of trials under the 
opportunity cost for future rewards. Thus, the offset should also be 
modulated by other reward rate manipulations. For example, we 
predict that increasing the average reward rate by either increasing 
the reward associated with the choices or decreasing the intertrial 
interval should raise the offset for a fixed number of choices.

Third, previous studies have considered two types of strate-
gies for multi-alternative decision-making: the ‘max versus average’  
(Fig. 7b) and the ‘max versus next’ (Fig. 7c) (refs. 6,26,41). Our theory 
predicts that individuals should smoothly transition between these 
two modes depending on the pattern of rewards across choices  
(Fig. 7a), a prediction that can be tested with standard psychophysical 
experiments. More specifically, when all choices are equally rewarded, 
or only one choice is highly rewarded, our model predicts that 
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Fig. 5 | Activity normalization and violation of the axiom of iiA 
independence. a, Neuronal response to a saccadic target associated with a 
fixed reward as a function of the total amount of reward for all other targets 
on the screen in the LIP area (left) and in the model (right). Data from ref. 8  
were used to create this panel; in the original experiment, subjects were 
monkeys and the targets were drops of juice. In both LIP and the model, 
the response of a neuron to a target associated with a fixed amount of 
reward decreases as the reward to the other targets increases. In the 
model, this effect is induced by the normalization. The points represent 
the mean ± s.d. across 106 simulated trials. b, Left: as the value of a third 
option is increased, the psychometric curve (for a fixed decision time, as 
set by the experimenter) corresponding to the choice between options 1 
and 2 becomes shallower—a result that violates the IIA axiom. Data from 
ref. 11 were used to create this panel. Right: the model with added neural 
noise after activity normalization exhibits the same behavior over a total of 
106 simulated trials. c, In the presence of internal variability, the race model 
variants without constrained evidence accumulation approximating the 
optimal policy (second term in equation (2)) perform much worse than our 
model variants with that constraint (when compared to Fig. 2d). Each point 
represents mean reward rate across 106 simulated trials.
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individuals should adopt a max versus average strategy (Fig. 7d,e), 
whereas when two options are highly rewarded, our model predicts 
that individuals should adopt a max versus next strategy (Fig. 7f).

Discussion
In this study, we discussed the optimal policy for decisions between 
more than two valuable options, as well as a possible biological  
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implementation. The resulting policy has nonlinear boundaries 
and thus differs qualitatively from the simple diffusion models 
that implement the optimal policy for the two-alternative case7. 
More specifically, this work makes four major contributions. First, 
we prove analytically that the optimal policy involves a nonlinear 
projection onto an (N − 1)-dimensional manifold, which can be 
closely approximated by neural circuits with nonlinear normaliza-
tion (equation (4)). Second, apparently ‘irrational’ choice behaviors, 
such as IIA violation, are reproduced by our model in the presence 
of internal variability and divisive normalization. Third, we found 
that the distance to the threshold must increase with a set size for 
optimal performance. This has already been observed experimen-
tally10,23. To our knowledge, no computational explanation has been 
offered for this effect until now. Fourth, the model follows Hick’s 
law, that is, it predicts that reaction times in value-based decisions 
should be proportional to the log of the number of choices plus one, 
as is commonly observed in behavioral choice data. However, our 
model does not account for the violation of Hick’s law for saccadic 
eye movement effects42,43, or the well know pop-out effect reported 
in visual search, where reaction times are independent of the num-
ber of items on the screen44. Capturing these effects requires that we 
specialize our model to the specific context of these experiments; 
this is beyond the scope of the present article.

Our replication of IIA violation is similar to what Louie et al.11 
have proposed recently, although they did not consider noise in 
the momentary evidence and did not derive the optimal policy for 
multi-alternative decision-making. Therefore, our work demon-
strates that an optimal policy for multi-alternative decision-making 
using divisive normalization violates the IIA in the presence of inter-
nal noise. Note that our work shows that divisive normalization is 
not required for optimal performance when the only source of noise 
is in the sensory evidence, although another form of normalization 
(equation (4)) is needed. However, preliminary work by Steverson 
et al.45 clarified the conditions under which networks with divisive 
normalization implement the optimal policy for decision-making 
with regard to internal noise, thus suggesting that divisive nor-
malization might indeed be required for optimal decision-making 
when all sources of noise are considered. Moreover, recent proof 
of equivalence between divisive normalization and an informa-
tion processing model offers another explanation for the role of  
divisive normalization—to optimally balance the expected value of 
the chosen option with the entropic cost of reducing uncertainty in 
the choice45.

A well-known strategy to decide between multiple options is the 
MSPRT15,16; previous studies have shown that the MSPRT could be 
implemented/approximated by neural circuits17,41,46. However, the 
MSPRT has not been designed for the problems we considered in 
this study. First, it assumes that the decision-maker receives a fixed 
magnitude of reward based on choice accuracy (that is, whether 
they are correct or incorrect) in each trial, as in conventional per-
ceptual decision tasks. Value-based decisions, where the reward 
magnitude can vary across trials, clearly violate this assumption. 
Second, it assumes a constant task difficulty whereas the pres-
ent study assumes the difficulty of both value-based and percep-
tual choices to vary across these choices. Third, since the MSPRT 
is only asymptotically optimal in the limit of infinitely small error 
rates (that is, when the model’s performance is nearly 100% correct),  
it deviates from the optimal policy when this error rate is not  
negligible15,16. Our present analysis clarifies the properties of the 
optimal decision policy under multiple options, which differs 
from the MSPRT by characteristic nonlinear and collapsing deci-
sion boundaries. Despite the apparent complexity of those decision 
boundaries, we found that a symmetry in these boundaries allows 
the optimal strategies to be approximated by a circuit that features 
well-known neural mechanisms—race models whose evidence 
accumulation process is modulated by normalization, an urgency 

signal and nonlinear activation functions. The model provides a 
consistent explanation for the functional significance of normaliza-
tion and urgency signal. They are necessary to implement optimal 
decision policies for multi-alternative choices where participants 
control the decision time.

Although we modeled the uncertainty about the true hidden 
states or values with a single Gaussian process that represents the 
noisy momentary evidence, in realistic situations the uncertainty 
could have multiple origins, including both external and internal 
sources. Potential sources of external noises include the stochastic 
nature of stimuli, sensory noise and incomplete knowledge about 
the options (for example, having not yet read the dessert of a par-
ticular menu option when choosing among different lunch menus). 
On the other hand, internal noises could result from learning, explo-
ration, suboptimal computation47, uncertain memory or ongoing 
value inference (for example, sequentially contemplating features of 
a particular menu course over time). We assumed simplified gen-
erative models with an unbiased and uncorrelated Gaussian prior; 
future extensions should consider more complex setups, including 
asymmetric mean rewards among options.

Note that the present study considers a simplified case where 
the value of each option is represented with a scalar variable. We 
have shown that this model is sufficiently complex to replicate basic 
behavioral properties, such as Hick’s law, similarity effect and vio-
lation of both the IIA and regularity principle in multi-alternative 
choices. Future studies should cover more complex situations, 
including value comparisons based on multiple features (for exam-
ple, speeds and designs of cars), which can lead to other forms of 
context-dependent choice behavior34,35,48. Decision-making with 
such a multidimensional feature space requires computing each 
option’s value by appropriately weighting each feature. Some stud-
ies suggest that apparently irrational human behavior could be 
accounted for by heuristic weighting rules for features that integrate 
feature valences through feedforward26,37,38 or recurrent39,40 neural 
interactions. Interestingly, a recent study reported that a context-
dependent feature weighting can increase the robustness of value 
encoding to neural noise in later processing stages38,49, whereas 
another recent study provided a unified adaptive gain-control model 
that produces context-dependent behavioral biases50. However, to 
our knowledge, the optimal policy for these more complex models 
where the value function is computed by combining multiple fea-
tures, presented sequentially, remains unknown. Once this policy 
is derived, it will be interesting to determine whether all, or part,  
of the seemingly irrational behaviors that have been reported in  
the literature are a consequence of using the optimal policies  
for such decisions or genuine limitations of the human decision-
making process.

Finally, the current model provides several interesting predic-
tions on neural population dynamics. Because of normalization, 
the collective neural activity could be constrained to a low- 
dimensional manifold during decision-making. The dimensionality 
of this manifold depends on the number of options (N − 1 dimen-
sions for N-alternative choices), whereas the position of the mani-
fold should depend on time, reflecting the effect of the urgency 
signal. These predictions could be tested with neurophysiological 
population recordings combined with advanced dimensionality 
reduction techniques.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
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Methods
Task structure and generative models. We consider N-alternative value-based 
or perceptual decisions where decision-makers respond as soon as they commit 
to a choice. Value-based and perceptual decisions differ in how choices are 
associated with reward: in value-based decisions, the decision-maker reaps the 
reward associated with the chosen item (for example, a food item), whereas in 
perceptual paradigms the amount of reward depends only on whether the choice 
is ‘correct’ in the context of the current task. In contrast to previous models 
motivated by biological implementations51–54, we start by deriving the optimal, 
reward-maximizing strategy for multi-alternative decision-making tasks without 
assuming specific biological implementations, and then ask how this strategy can 
be implemented by biologically plausible mechanisms. The following formulation 
applies to both perceptual and value-based tasks.

Let z ≡ (z1,...,zN) denote hidden variables (for example, reward magnitudes 
for value-based tasks, or stimulus contrasts for perceptual tasks) associated with 
N choice options. These true hidden variables vary across trials and are never 
observed directly and as such unknown to the decision-maker. Instead, the 
decision-maker observes some noisy momentary evidence with mean zδt,

N Σδ δ δ∣ ~x z z t t( , ) (5)n x

for each option i ∈ {1,...,N}, in every small time step n of duration δt. Σx here 
denotes the covariance matrix of the momentary evidence. Before observing any 
evidence, the decision-maker is assumed to hold a normally distributed prior belief,

N Σ~z z( , ) (6)z

with mean z  and covariance Σz reflecting the statistics of the true prior distribution, 
p(z). For simplicity, we define the correct option in a perceptual task as the option 
associated with the largest hidden variable, icorrect = argmaxizi, which, for example, 
can be interpreted as the highest contrast in a contrast discrimination task.

In both value-based and perceptual tasks, we assume that the decision-maker 
tries to maximize the expected reward under a time constraint. Specifically, we 
focus on reaction time tasks where the decision-maker is free to choose at any time 
within each trial and proceeds through a long sequence of trials within a fixed time 
period. The total number of trials, and thus the total reward throughout the entire 
trial sequence, depends on how rapidly the decision-maker chooses in each trial: 
faster decisions allow for more of them in the same amount of time. However, due 
to noisy evidence, collecting more of this kind of evidence in each trial yields better 
choices, resulting in a trade-off between speed and accuracy.

Optimal decision policy. We assume that the decision-maker’s aim is to maximize 
the total expected reward obtained in this task. The optimal decision policy 
comprises two key components: (1) optimal online inference of the hidden 
variables by accumulating the evidence about them; and (2) optimal rules for 
stopping the evidence accumulation to make a choice.

Optimal evidence accumulation. We provide a general formulation that includes 
correlations among options in the generative models. After some time t = nδt, the 
decision-maker’s posterior belief about the true hidden variables p(z|δx1,...,δxn) is 
found using Bayes’ rule, δ δ δ∣ . . . ∝ ∏ ∣′ ′=z x x z x zp p p( , , ) ( ) ( )nn n

n
1 1 , using the fact 

that δxn′ (n′ = 1,...,n) is independent and identically distributed across time. This 
results in:

N Σ Σ Σ Σδ δ∣ . . . ~ +− −z x x z xt t t, , ( ( ) ( ( )), ( )) (7)n z x1
1 1

where we have defined δ≡ ∑ ′ ′=x xt( ) n
n

n1  as the sum of all momentary evidence up 
to time t, and Σ Σ Σ= +− − −

t t( ) ( )z x
1 1 1

 as the posterior covariance. The temporally 
accumulated evidence x(t) and the time t provide the sufficient statistics for z and 
thus for the rewards ≡ . . . ⊤r r r( , , )N1  associated with individual options. For value-
based decision-making, the reward r equals the true hidden variable z, that is r = z, 
such that the expected option reward ̂ = ∣r t x t z t x t( , ( )) , ( )i i i i  is the mean of the 
posterior. For perceptual decision-making, the rewards associated with individual 
options are expressed as a vector r such that ri = rcorrect when i is the correct option 
and ri = rincorrect otherwise. Thus, the expected reward for option i is ri(t,x(t)) = rcorrect 
p(i = icorrect | t,x(t)) + rincorrect p(i ≠ icorrect | t,x(t)). Because δ ′xn  is independent and 
identically distributed in time, x(t) is a random walk in an N-dimensional space 
(the thick black trace in Fig. 2a). The next question is when to stop accumulating 
evidence and which option to choose at that point.

Optimal stopping rules. To find the optimal policy, we use tools from dynamic 
programming7,13,55. One such tool is the ‘value function’ V(⋅), which can be defined 
recursively through Bellman’s equation56. This value function returns for each state 
of the accumulation process (identified by the sufficient statistics) the total reward 
(including accumulation cost) the decision-maker expects to receive from this state 
onward when following the optimal policy.

Let us first consider this value function for the case of a single choice, where 
the aim is to maximize the expected reward for this choice minus some cost c 
per unit time for accumulating evidence (if there were no such cost, no decisions 

would ever be made). At any point in time t, the decision-maker can either decide 
to make a choice, yielding the highest of the N expected rewards, or accumulate 
more evidence for some small time δt, resulting in cost −cδt, and expected future 
reward given by the value function at time t + δt. According to Bellman’s principle 
of optimality, the best action corresponds to the one yielding the highest expected 
reward, resulting in Bellman’s equation

δ δ δ= + + −{ }x x xV t r t V t t t t c t( , ) max max ( , ), ( , ( )) (8)i i

where the expected rewards ri(t,x) differ between perceptual and value-based 
choices (see previous section; in both cases, they are functions of x and t), and 
the expectation in the second term is across expected changes of the accumulated 
evidence, p(x(t + δt)|x(t),t). The intersection between the two terms within {⋅,⋅} 
determines the decision boundaries for stopping the evidence accumulation and 
thus the optimal policy.

In more realistic setups, decision-makers make a sequence of choices 
within a limited time period, where the aim of maximizing the total reward 
becomes equivalent (assuming long time periods) to maximizing their 
reward rate ρ, which is the expected reward for either choice divided by the 
expected time between consecutive choices. This reward rate is thus given by 

∼ρ = ⟨ ∣ ⟩− ⟨ ⟩ ∕ + ⟨ ⟩zr T c T t T( (0 : ) ) ( )j j w , where T is the evidence accumulation time, 
tw is the waiting time after choices (including possible delays in motor responses) 
before the onset of evidence for the next choice, and the expectation is across 
choices j. The value function associated with the reward rate maximizing policy 
differs by introducing an additional opportunity cost ρ per unit time. For 
immediate choices, this introduces the cost −ρtw that the decision-maker has 
to wait until the next trial (assuming ρ =zV (0, ; ) 0). For accumulating more 
evidence, the associated cost increases from −cδt to −(c + ρ)δt. Overall, this leads 
to Bellman’s equation (equations (1), (8)) as given in the main text. If we set ρ = 0, 
we recover Bellman’s equation for single, isolated choices.

To find the optimal policy for the aforementioned cases numerically, we 
computed the value function by backward induction14 using Bellman’s equation. 
Bellman’s equation expresses the value function at time t as a function of the value 
function at time t + δt. Therefore, if we know the value function at some time T, 
we can compute it at time T − δt, then T − 2δt, and so on, until time t = 0. To find 
the reward rate, which is required to compute the value function, we initially set 
it to ρ = 0, computed the full value function, and then update it iteratively by root 
finding until ρ =zV (0, ; ) 0, recomputing the full value function in each root-
finding step (see Drugowitsch et al.57 for the rationale behind this procedure).

Unless otherwise mentioned, we used T = 10 s and δt = 0.005 s for all 
simulations. That is, we assumed V(T = 10,x;ρ) to be given by the value for 
immediate choices, and then moved backward in time in steps of 0.005s to find the 
value function by backward induction until t = 0. Furthermore, we set the prior 
parameters of the true, latent variables z to =z 1. The waiting time was fixed to 
tw = 0.5 s, and the accumulation cost to c = 0 (that is, the opportunity cost ρ was 
the only cost). The results did not change qualitatively when changing the values 
of these parameters. Supplementary Fig. 2 shows the dependence of stopping 
boundaries on the task parameters.

Boundary structure analysis. Interestingly, we found that the decision boundaries 
in value-based tasks generally have a remarkable symmetry that reduces the 
optimal policy to a simple neural computation. All the decision boundaries are 
parallel to the diagonal—the line connecting (0,0,...,0) and (1,1,...,1).

In value-based tasks, this symmetry emerges from the fact that the state 
transition probability p(x(t)|x(t + δt)) is invariant to translational shifts in x. 
We can prove that the value function increases linearly along the diagonal, 
V(t,x + 1C) = V(t,x) + C and ∇xV(t,x) ≥ 0, where C is an arbitrary scalar. From 
these properties of the value function, we can prove that the decision boundaries 
are ‘parallel’ to the diagonal: for all i, B(t,xi + C) = B(t,xi) + 1C, where B(t,xi) is a set 
of points that define, for a fixed xi, the boundary in xj≠i at which point a decision 
ought to be made. The formal proofs are provided in Supplementary Note 1.

We can demonstrate the same symmetry in the perceptual tasks, even though 
it arises from a different mechanism. In perceptual tasks, by construction, the 
value function is determined by the probability of each option being the correct 
answer. Because this probability is already normalized such that the sum of all the 
probabilities across options is 1, the resulting value function is constant along the 
diagonal (in contrast to the value-based case where the value function increases 
linearly along the diagonal). This yields the symmetry of decision boundaries along 
the diagonal.

Circuit implementation of the optimal policy. It may seem difficult for biological 
systems to implement the optimal decision boundaries since these boundaries 
are, in general, represented by N time-dependent nonlinear functions Fi(t,x(t)) = 0 
corresponding to the individual options, i = 1,…,N, that depends on N and other task 
contingencies. Fortunately, however, because of the symmetry of these boundaries 
(see main text), the decision policy effectively reduces to a lower dimensional 
representation (N − 1 dimensions for an N-alternative choice), which supports a 
simpler implementation of these boundaries. The key idea is as follows. The original 
decision policy representation assumes evidence accumulation by a simple random 
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walk (diffusion) process in a linear space, which is terminated by a set of complex 
decision boundaries as a stopping rule. However, if we nonlinearly constrain the 
evidence accumulation space, we can vastly simplify these boundaries and instead 
can use constant decision thresholds that are independent across options.

More specifically, there exists a variable transformation, 
ϕ ↦ ≡ + Δx x xt t: ( ) *( ) 1t x  with a scalar Δx, under which the optimal policy 
becomes equivalent to comparing each element x t*( )i  to a constant threshold 
θx satisfying θ θ̂ =r t( , )i x . This variable transformation projects the states x 
onto an (N − 1)-dimensional manifold Mθ that is differentiable everywhere 
and asymptotically approaches the plane θ σ σ δ∣ = + ∕ +x x t c t{ ( ) }i x z

2 2  in the 
limit of ∀j≠i:xj→−∞ for each i, where σ2 and σz

2 are the variances of likelihood 
and prior, respectively. The intersection of Mθ and the constant thresholds 
xi = θx(∀i) implements effectively the same decision policy as the original one (see 
Supplementary Note 2).

Moreover, for some fixed time t, this manifold Mθ is well approximated by 
the parameterized surface � = ∣ ∑ =θ { }xM f x u t( ) ( )

N i i
1 , where f(x) is an arbitrary 

increasing, differentiable function that asymptotically approaches zero in the 
limit of xi→−∞ and u(t) is a scalar parameter. The variable transformation 

�∼∼ϕ ↦ ∈ θx xt t M: ( ) *( )t  is achieved by a recurrent neural process shown in Fig. 2c, 
which implements the following updated rule:

∼← + Δx x 1 (9)x











∼ ∼ ∼∑γΔ ← Δ + − + Δu t

N
f x( ) 1 ( ) (10)x x

i
i x

where γ is the update rate. The second equation finds the appropriate ∼Δx
, whereas the first equation performs the projection. This circuit comprises a 
nonlinear normalization of neural activities, x t*( )i , controlled by an ‘urgency 
signal’, u(t). Further, the circuit performs divisive normalization at a slower 
timescale (see equation (3)).

For subsequent simulations, we use the following sequence of discretized steps 
for each time step of incoming momentary evidence: (1) accumulate evidence 
according to equation (2); (2) project the newly accumulated evidence onto a 
nonlinear manifold by iterating equation (4) (or equations (9) and (10)) five times; 
(3) perform divisive normalization as in equation (3); and (4) add independent 
noise ξi on the individual output units (only for simulations corresponding to Figs. 
5 and 6). We follow this sequence because we assume that the projection happens 
at a much faster timescale than divisive normalization (see main text). However, as 
we show in Supplementary Note 5, this particular order of time-discretized steps is 
inconsequential.

We found that a linear urgency signal, u(t) = βt + u0, approximates well the 
collapse of the optimal decision boundaries. In this instance, β and u0 are the slope 
and offset of the function, respectively, which we optimized in the subsequent 
simulations to maximize the reward rates. For the nonlinear function f, we used 
a rectified power function = ⌊ ⌋αf x x( )i i , with the exponent fixed to α = 1.5 
(see Supplementary Fig. 3 for the dependence of optimal urgency signal on the 
nonlinearity). The update rate of the projection in equations (4) and (10) was 
fixed to γ = 0.4. We also fixed the gain of the divisive normalization term, K, to 
the mean reward across all trials and options, whereas σh was optimized. We 
ran the simulation for T = 10 s with time steps of δt = 0.005 s. We identified the 
optimal parameters (that is, the parameters that maximize the reward rate) with 
an exhaustive search followed by a simplex optimization58. For N = 3 and N = 4, 
the circuit was confirmed to yield near-optimal reward rates for a reasonably wide 
range of the mean reward (from =z 0 to 5).

IIA violation, similarity effect and violation of the regularity principle. To 
simulate the third option effect that violates the IIA and regularity principles, 
and to reproduce the similarity effect, we perform simulations to reoptimize our 
optimal neural circuit for N choice options with independent variability added to 
each accumulator at every time step. We simulate the model for a fixed duration 
of T = 200 ms as in Louie et al.11 with time steps of δt = 1 ms and pick the option 
with the highest accumulator value at the end of the trial. The rewards for the 
three options were chosen uniformly from z1 ∈ [25,35], z2 = 30 and z3 ∈ [0,30]. The 
momentary evidence was uncorrelated for the IIA and regularity principles with 
Σx = σ1; for the similarity effect, the momentary evidence for two of the choice 
options was positively correlated with the correlation coefficient 0.1.

Statistics. Most figures are based on simulating our model using a sufficiently large 
number of trials (mentioned in the corresponding figure legends); this made the 
use of statistical testing unnecessary.

For Fig. 4c, we performed linear regression (RT = β0 + β1log(N + 1)) to predict 
the reaction time based on a logarithmic function of the number of choices, 
log(N + 1), where N is the number of choices. We found a significant relation 
between reaction time and N for both value-based decisions (P = 5.2 × 10−4) 
with R2 = 0.9866 (non-adjusted) and perceptual decisions (P = 3.9 × 10−5) 
with R2 = 0.9982 (non-adjusted). Additional information can be found in the 
accompanying Life Sciences Reporting Summary.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data sharing is not applicable to this article since no datasets were generated or 
analyzed during the current study.

code availability
These results of this article were generated using code written in MATLAB. The 
code is available at https://github.com/DrugowitschLab/MultiAlternativeDecisions.
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Supplementary Figure 1 

Addition of variability to the accumulator affects models’ relative performance 

The race model variants without constrained evidence accumulation approximating the optimal policy perform much worse than our 
model’s variants with that constraint, a result that is demonstrated in Figure 5c. Here, we show that reducing the amount of variability in 
the decision bounds brings the models’ relative performances closer to each other as was the case in Figure 3. As in Figures 3 and 5c, 
this figure shows the reward rate of the race model with (green) and without (orange) the urgency signal relative to our full model with 
urgency and constrained evidence accumulation (blue). Each point represents the mean reward rate across 10

6
 simulated trials. 



 

Supplementary Figure 2 

Dependencies of the stopping boundaries on task parameters. 



We show how the decision boundaries change as a function of time (a), inter-trial interval (b), noise variance (c), and with symmetric (d) 

and asymmetric (e) prior mean of reward. (a) Dynamics of decision boundaries over time, . The decision boundaries approach each 

other over time. Here, we used the following parameters: reward prior, ; inter trial interval (ITI, 

including non-decision time), ; noise variance, . In (b)-(e) we varied a single parameter, while keeping all other 

parameters constant. The shown boundaries are the initial ones, at time . (b) Effect of inter trial interval (ITI), . The boundaries 

start further apart for longer ITIs.  corresponds to the leftmost plot in panel a. (c) Effect of the evidence noise variance, . The 

boundaries start further apart for larger noise.  corresponds to the leftmost plot in panel a. (d) Effect of the reward prior mean, . 

The boundaries start closer to each other for larger mean rewards.  corresponds to the leftmost plot in panel a. (e) Effect of the 

asymmetric reward prior, , where , , and  can be different from each other. The boundaries remain parallel to the cube 

diagonal but the asymmetric priors cause a shift of the boundary positions when projected on the triangle orthogonal to the diagonal, 

such that the boundaries corresponding to the most rewarded options start closer to the center of the triangle.  

is identical to the leftmost plot in panel a. We have not been able to derive analytical approximations to the stopping bounds but note 

that the neural network provides a close approximation to the optimal bound with only three parameters. Given the shape and time 

dependence of the bounds, it is unlikely that it is possible to obtain an analytical solution with fewer parameters. 



 

Supplementary Figure 3 

The optimal urgency signal is only weakly dependent on accumulation cost and nonlinearity. 

Each panel shows combinations of urgency signal parameters (vertical axis; offset or slope) and cost (left panels) or nonlinearity (right 
panels) setting  the reward rate (value-based decisions; top) or correct rate (perceptual decision; bottom) as a color gradient. For each 
parameter combination, reward and correct rate were found by simulating 500,000 trials. The black line in each panel indicates for each 
cost or nonlinearity setting the value of the urgency signal parameter that maximizes the reward/correct rate. This line is noisy due to 
the simulation-based stochastic evaluation of the reward/correct rates. In general, both optimal slope and offset only weekly depend on 
the accumulation cost. The same applies to the nonlinearity, except for a narrow band around 1.5, where it is best to decrease both 
slope and offset for an increase in this nonlinearity. 
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Supplementary Mathematical Note 

1 Structure of the value function and the optimal decision boundaries 

The value function 

In this section, we provide an analytic characterization of the decision boundary structure. To do 

so, we focus on the value function in the single-choice value-based decision tasks; the result for 

the reward rate case is not shown, but follows a similar analysis. Assume that 𝑿(𝑡)  is the 

stochastic process (or "decision variable") that describes the expected reward in 𝑁-dimensional 

space. Furthermore, assume that 𝑿(𝑡)  is shift-invariant, that is 𝑿(𝜏) | (𝑿(𝑡) + 𝑪) =

 (𝑿(𝜏) | 𝑿(𝑡)) + 𝑪, where 𝜏 ≥ 𝑡. For simple (even correlated) setups, this will hold. In particular, 

it holds for all cases discussed in the main text.  

In this context, the value function is non-recursively given by 

𝑉(𝑡, 𝒙) = max
𝜏≥𝑡 

⟨max
𝑖

 𝑋𝑖(𝜏) − 𝑐(𝜏 − 𝑡)|𝑿(𝑡) = 𝒙⟩,   (1) 

where the expectation is over the time-evolution of 𝑿.  

Below we show the value function to have the following properties: 

1. 𝑉(𝑡, 𝒙 +  𝟏 𝐶) = 𝑉(𝑡, 𝒙) + 𝐶. 

2. 𝑉(𝑡, 𝒙) is increasing in each element of 𝒙. 

3. 𝑉(𝑡, 𝒙) ≤  𝑉(𝑡, 𝒙 +  𝒆𝑖 𝐶) ≤  𝑉(𝑡, 𝒙) + 𝐶, where 𝒆𝑖 is the 𝑖th basis vector of a 

Cartesian basis. 

4. 𝑉(𝑡, 𝒙) + min
𝑖

 𝐶𝑖 ≤ 𝑉(𝑡, 𝒙 + 𝑪) ≤  𝑉(𝑡, 𝒙) + max
𝑖

 𝐶𝑖 , where 𝐶𝑖  is the 𝑖 th 

element of 𝑪. 

Property 2 implies that 𝑉(𝑡, 𝒙)  is continuous and differentiable. Thus, this property can be 

expressed as 𝛁𝑥 𝑉(𝑡, 𝒙) ≥  0, where the inequality is on each element of the gradient separately. 

As 𝐶 in property 3 can be arbitrarily small, it is a generalization of property 2, such that we only 

need to show property 3. Property 1 is a special case of property 4 in which 𝑪 =  𝟏 𝐶, such that 

mini 𝐶𝑖  =  max𝑖𝐶𝑖  =  𝐶. 

Property 1 

Fix some stopping times 𝜏1, … , 𝜏𝑁. Then, the value function at time 𝑡 is given by 

⟨∑ 1𝜏𝑖 < min𝑗≠ 𝑖 𝜏𝑗
 𝑋𝑖(𝜏𝑖)  −  𝑐(min

𝑖
 𝜏𝑖 − 𝑡)𝑖  | 𝑿(𝑡) = 𝒙⟩,   (2) 
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where the indicator function 1𝑎 is 1 if 𝑎 is true, and 0 otherwise. Thus, if we set the starting 

point to 𝒙 +  𝟏 𝐶, we find 

⟨∑ 1𝜏𝑖<min𝑗≠ 𝑖𝜏𝑗
 𝑋𝑖(𝜏𝑖) −  𝑐 (min

𝑖
 𝜏𝑖 − 𝑡)𝑖  | 𝑿(𝑡) = 𝒙 + 𝟏𝐶⟩ 

=  ⟨∑ 1𝜏𝑖<min𝑗≠ 𝑖𝜏𝑗
 (𝑋𝑖(𝜏𝑖) + 𝐶) −  𝑐 (min

𝑖
 𝜏𝑖 − 𝑡)𝑖  | 𝑿(𝑡) = 𝒙⟩ 

=  ⟨∑ 1𝜏𝑖<min𝑗≠ 𝑖𝜏𝑗
 𝑋𝑖(𝜏𝑖) −  𝑐 (min

𝑖
 𝜏𝑖 − 𝑡)𝑖  | 𝑿(𝑡) = 𝒙⟩ + 𝐶,   (3) 

where the last line follows because the indicator function is only 1 for a single 𝑛. This is true for 

all choices of stopping times, and so also for the maximum over stopping times and choices. 

Properties 2 and 3  

Fix some integer 𝑘 and stopping times 𝜏1, … , 𝜏𝑁. For starting point 𝒙 + 𝒆𝑘𝐶 we get 

⟨∑ 1𝜏𝑖 < min𝑗≠ 𝑖 𝜏𝑗
 𝑋𝑖(𝜏𝑖) −  𝑐 (min

𝑖
 𝜏𝑖 − 𝑡)𝑖  | 𝑿(𝑡) =  𝒙 + 𝒆𝑘𝐶⟩ 

=  ⟨∑ 1𝜏𝑖 < min𝑗≠ 𝑖 𝜏𝑗
 (𝑋𝑖(𝜏𝑖)) + 1𝜏𝑘 < min𝑗≠ 𝑘 𝜏𝑗

 (𝑋𝑘(𝜏𝑘) + 𝐶) −  𝑐 (min
𝑖

 𝜏𝑖 − 𝑡)𝑖≠𝑘  | 𝑿(𝑡) = 𝒙⟩ 

=  ⟨∑ 1𝜏𝑖 < min𝑗≠ 𝑖 𝜏𝑗
 𝑋𝑖(𝜏𝑖) −  𝑐 (min

𝑖
 𝜏𝑖 − 𝑡)𝑖  | 𝑿(𝑡) = 𝒙⟩ + 1𝜏𝑘<min𝑗≠𝑘𝜏𝑗

𝐶, 

  (4) 

Note that, for the last term of the last line, 0 ≤ 1𝜏𝑘 < min𝑗≠ 𝑘 𝜏𝑗
 𝐶 ≤ 𝐶, which upper-bounds the 

increase by 𝐶. The above again holds for an arbitrary set of stopping times, such that it also holds 

for the maximum over stopping times and choices. 

Property 4 

Following the same argument as in the preceding sections, we find for initial state 𝒙 + 𝑪 and 

fixed stopping times that the value function is given by 

⟨∑ 1𝜏𝑖 < min𝑗≠ 𝑖 𝜏𝑗
 𝑋𝑖(𝜏𝑖) −  𝑐 (min

𝑖
 𝜏𝑖 − 𝑡)𝑖  | 𝑿(𝑡) = 𝒙⟩ + ∑ 1𝜏𝑖<min𝑗≠ 𝑖𝜏𝑗

 𝐶𝑖𝑖 , (5) 

The last term is bounded by min𝑖 𝐶𝑖 ≤ ∑  1𝜏𝑖<𝑚𝑖𝑛𝑗≠ 𝑖𝜏𝑗 𝐶𝑖𝑖 ≤ max𝑖 𝐶𝑖, such that the result follows. 

Characterizing the optimal decision boundaries 

In this section we derive a few properties of the optimal decision boundaries, based on the above 

value function properties. 
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The expression for the optimal decision boundaries 

Note that 𝑉(𝑡, 𝒙) ≥  max𝑖 𝑥𝑖 . Furthermore, the decision maker ought to accumulate more 

evidence as long as 𝑉(𝑡, 𝒙) >  max𝑖 𝑥𝑖 and decide as soon as 𝑉(𝑡, 𝒙) =  max𝑖 𝑥𝑖. Let us assume 

that 𝑥1  > max𝑗>1𝑥𝑗, such that, in case of a choice, option 1 ought to be chosen. The argument 

that follows is valid for all options, but we focus on option 1 for notational convenience. In this 

case, we have 𝑥𝑗 < 𝑥1 for all 𝑗 > 1, and 𝑉(𝑡, 𝒙) ≥  𝑥1. Furthermore, we accumulate evidence 

as long as 𝑉(𝑡, 𝒙) > 𝑥1 , and choose option 1 as soon as 𝑉(𝑡, 𝒙) =  𝑥1 . Note that 𝑉(𝑡, 𝒙)  is 

increasing in 𝑥2:𝑁 ≡ 𝑥2, … , 𝑥𝑁, such that we will have 𝑉(𝑡, 𝒙) > 𝑥1 for large 𝑥2:𝑁. Lowering 

𝑥2:𝑁 will cause 𝑉(𝑡, 𝒙) to reduce until it reaches its lower bound, 𝑉(𝑡, 𝒙) = 𝑥1, which is the 

point at which a decision ought to be made. Thus, the decision boundary is the "largest" 𝑥2:𝑁 

(assuming natural vector ordering) at which 𝑉(𝑡, 𝒙)  =  𝑥1, or 

𝐵1(𝑡, 𝑥1) ≡ max  {𝑥2:𝑁 < 𝑥1 | 𝑉(𝑡, 𝒙) = 𝑥1},   (6) 

where 𝑥2:𝑁 < 𝑥1 here denotes 𝑥𝑗 < 𝑥1 for all 𝑗 > 1. This 𝐵1(𝑡, 𝑥1) is a set of points that, for 

a fixed 𝑥1 , define the boundary in 𝑥2:𝑁  at which a decision ought to be made. The above 

argument and resulting expression is valid for the decision boundaries associated with all options. 

The decision boundaries are continuous and decreasing 

To show that the decision boundaries are continuous, fix again 𝑥1 such that  𝑥1 > max𝑗>1𝑥𝑗. 

Furthermore, pick some 𝑥2 and 𝑥2 + 𝛿 that are both part of the vector elements of 𝐵1(𝑡, 𝑥1) 

(this restriction is necessary, as we cannot arbitrarily increase 𝑥2 and still guarantee it to be part 

of the decision boundary). As the decision boundary is determined by the largest 𝑥2:𝑁 such that 

𝑉(𝑡, 𝒙) = 𝑥1 , increasing 𝑥2  while leaving all other elements constant will cause 𝑉(𝑡, 𝒙 +

 𝒆2 𝛿) > 𝑥1. Therefore, we need to reduce another element of 𝑥2:𝑁 such that 𝑉(𝑡, 𝒙) = 𝑥1 is 

again satisfied. As 𝛿  is arbitrarily small and 𝑉(𝑡, 𝒙)  is increasing in all elements of 𝒙 , the 

decision boundary is continuous. Furthermore, as increasing one element of 𝑥2:𝑁  causes a 

decrease in other elements, the decision boundary as function of 𝑥2 is decreasing in 𝑥3:𝑁. 

The decision boundaries are "parallel" to the diagonal 

Let us add a constant vector 𝟏𝐶 to all elements in 𝐵1(𝑡, 𝑥1). Defining 𝒙′ = 𝒙 + 𝟏𝐶, this results 

in 

𝐵1(𝑡, 𝑥1) + 𝟏𝐶 = max  {𝑥2:𝑁 < 𝑥1 | 𝑉(𝑡, 𝒙) = 𝑥1} + 𝟏𝐶 

= max  {𝑥2:𝑁
′ < 𝑥1

′  | 𝑉(𝑡, 𝒙′ − 𝟏𝐶) = 𝑥1
′ − 𝐶} 

= max  {𝑥2:𝑁
′ < 𝑥1

′  | 𝑉(𝑡, 𝒙′) = 𝑥1
′ } 

= 𝐵(𝑡, 𝑥1
′ ) 

= 𝐵(𝑡, 𝑥1 + 𝐶).          (7) 

Thus, 𝐵1(𝑡, x1 + 𝐶) = 𝐵1(𝑡, x1) + 𝟏𝐶 which implies that the decision boundaries are parallel to 

the diagonal.  

This implies that, for decision-making, only the accumulation space orthogonal to the direction 
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given by 𝟏  matters. Mapping onto this space could be achieved by 𝑦𝑖 = 𝑥𝑖 −  (𝑁 −

1)−1 ∑ 𝑥𝑗𝑗≠𝑖  , or other arbitrary projections on 𝑁 − 1 dimensional manifolds, which maps the 

accumulation into an 𝑁 − 1 dimensional subspace. 
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2 Neural circuit implementation of the decision policy 

In this section, we describe step-by-step the reason why the proposed recurrent neural circuit can 

approximate the optimal decision policy for 𝑁-alternative value-based decisions. Again, here we 

focus on the single-choice value-based decision tasks; the same arguments hold for the reward 

rate cases. 

Decision boundaries as a set of manifold intersections 

The optimal decision boundaries are determined by Bellman's equation, 

𝑉(𝑡, 𝒙) = max {max
𝑖

 �̂�𝑖(𝑡, 𝑥𝑖), 〈𝑉(𝑡 + 𝛿𝑡, 𝒙)〉 − 𝑐 𝛿𝑡},  (8) 

In the curled bracket, the first term corresponds to the value for deciding and choosing something 

right now, whereas the second term corresponds to the value for waiting (postponing the decision) 

to accumulate more evidence. Let us fix some time 𝑡 . For this fixed time, the boundaries 𝐵 

between deciding and waiting are defined as a set of states where those two value functions equal 

to each other, i.e., 

𝐵 ≡ {𝒙 | max
𝑖

 �̂�𝑖(𝑡, 𝑥𝑖) = 〈𝑉(𝑡 + 𝛿𝑡, 𝒙)〉 − 𝑐 𝛿𝑡 },  (9) 

which is described as a set of intersections between the following two 𝑁 − 1  dimensional 

manifolds, 

𝐿𝜃 ≡  {𝒙 | max
𝑖

 �̂�𝑖(𝑡, 𝑥𝑖) = 𝜃 } , 

𝑀𝜃 ≡  {𝒙 | 〈𝑉(𝑡 + 𝛿𝑡, 𝒙)〉 −  𝑐 𝛿𝑡 = 𝜃 },    (10) 

with a scalar reward parameter 𝜃 varied from −∞ to ∞. 𝐿𝜃 and 𝑀𝜃 represent the level sets 

of value functions for choosing either option right now and for waiting to accumulating more 

evidence, respectively. Just as 𝐵, 𝐿𝜃 and 𝑀𝜃 are defined for some fixed time 𝑡. As shown in 

Supplementary Math Note Figure 1a and S1b, 𝐿𝜃 represents one corner of an 𝑁-dimensional 

hypercube (i.e., an orthant, as described later) that is intersected by 𝑀𝜃 . The point of this 

intersection corresponds to the part of the decision boundary that promises reward 𝜃. Therefore, 

the complete set of decision boundaries 𝐵 can be expressed as a “chain” of intersections between 

the two manifolds 𝐿𝜃  and 𝑀𝜃 , ordered by the reward parameter 𝜃  (Supplementary Math 

Note Figure 1c): 

𝐵 = {𝐵𝜃 |−∞ < 𝜃 < ∞}     (11) 

𝐵𝜃 ≡ 𝐿𝜃 ∩ 𝑀𝜃.      (12) 

For each 𝜃  the dimensionality of 𝐵𝜃  is 𝑁 − 2  because it is an intersection of two 𝑁 − 1 

dimensional manifolds, which makes the full decision boundary 𝐵  an 𝑁 − 1  dimensional 

manifold. Recall that all the value functions are shift-invariant in the dimension parallel to the 

diagonal, and that the set of decision boundaries, 𝐵, is “parallel” to the diagonal. Using this fact, 

𝐵 can be expressed in a different way as follows: 
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𝐵 = {𝐵𝜃+Δ𝜃
 | −∞ < Δ𝜃 < ∞ }     

= {𝐵𝜃 + 𝟏Δ𝜃 | −∞ < Δ𝜃 < ∞ },     (13) 

where +𝟏Δ𝜃  represents a translational shift of the set along the diagonal vector, 𝟏 , with a 

distance Δ𝜃. Thus, rather than defining the set of all boundaries by the intersection 𝐵𝜃 between 

𝐿𝜃 and 𝑀𝜃 for all reward levels 𝜃 (first line), we can define it as one such intersection 𝐵𝜃 for 

some arbitrary fixed 𝜃, translated in directions of the diagonal 𝟏 (second line). 

 

 

Supplementary Math Note Figure 1. Manifold intersections define decision boundaries. 

Schematic illustrations of the decision boundaries defined by manifold intersections. A two-

alternative case is shown for the visualization purpose although the same argument applies 

to arbitrary 𝑁 -alternative problems. (a) The manifold set {𝐿𝜃}   which describes the value 

function for “deciding right now.” (b) The manifold set {𝑀𝜃}  which describes the value function 

for “waiting to accumulate more evidence.” (c) The set of decision boundaries  𝐵 ≡

{𝐵𝜃|−∞ < 𝜃 < ∞}  is defined as a set of intersections of 𝐿𝜃 and 𝑀𝜃. (d) Because the decision 

boundaries defined by different 𝜃 are all symmetric along the diagonal (the dashed line)  we 

can consider a lower-dimensional projection by fixing 𝜃. 
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Constrained states 

As a next step we demonstrate that, if we restrict our evidence accumulation process state 𝒙 to 

its projection 𝒙∗  parallel to the diagonal 𝟏  on the manifold 𝑀𝜃 , then we can make optimal 

choices as soon as this projected state reaches the manifold 𝐿𝜃, which implies reaching 𝐵𝜃 =

𝐿𝜃 ∩ 𝑀𝜃 (see also Supplementary Math Note Figure 1d). For now we assume some arbitrary 

fixed 𝜃, but will later discuss that the argument is valid for any 𝜃. More formally, fix some 

arbitrary 𝜃 (and some time 𝑡, as in the previous section) and consider the following map: 

𝜙𝜃: ℝ𝑁 →  𝑀𝜃,       (14) 

𝜙𝜃: 𝒙 ↦  𝒙∗ ≡  𝒙 + 𝟏Δ𝑥.      (15) 

which projects each state along the diagonal onto manifold 𝑀𝜃. We call 𝒙∗ the “constrained 

state.” For a particular state 𝒙 ∈ 𝑀𝜃+Δ𝜃
 the extent 𝛥𝑥 of this projection corresponds to Δ𝑥 =

−Δ𝜃, which yields the set of states that project into 𝐵𝜃 to be given by 

{𝒙 | ∃Δ𝜃: 𝒙 ∈ 𝐵𝜃 + 𝟏 Δ𝑥  } = {𝒙 | 𝒙∗ ∈ 𝐵𝜃} 

= {𝒙 | 𝒙∗ ∈ 𝐿𝜃 } 

= {𝒙 | max
𝑖

 �̂�𝑖 (𝑡, 𝑥𝑖
∗) = 𝜃},    (16) 

where the first equality follows from the definition of the projection, the second from the 

definition of 𝐵𝜃 as the intersection of 𝑀𝜃 and 𝐿𝜃 (recall that 𝒙∗ is in 𝑀𝜃 by definition), and 

the third from the definition of 𝐿𝜃. Note that by Equation (13) the states that project into 𝐵𝜃 

form the set of all decision boundaries 𝐵, such that we can re-express the above as 

{𝒙 | 𝒙 ∈ 𝐵} = {𝒙 | max
𝑖

 �̂�𝑖(𝑡, 𝑥𝑖
∗) = 𝜃},     (17) 

showing that, as long as the accumulation process is constrained to states in 𝑀𝜃, the decision 

boundary is formed by points on 𝐿𝜃. 

In the value-based case, as �̂�𝑖(𝑡, 𝑥𝑖) is an increasing function of 𝑥𝑖 for each 𝑖, 

there exists a unique scalar 𝜃𝑥 ∈ ℝ  such that �̂�𝑖(𝑡, 𝜃𝑥) = 𝜃 , with which the decision 

boundaries are described as 

{𝒙 | 𝒙 ∈ 𝐵} = {𝒙 | max
𝑖

 𝑥𝑖
∗ = 𝜃𝑥}.     (18) 

This equation shows that evaluating whether the state 𝒙 hits a decision boundary or not is 

equivalent to evaluating whether the largest component of the constrained state 𝒙∗ equals 

𝜃𝑥 or not. Since the choice of 𝜃 is arbitrary, we can choose any 𝜃 that makes 𝜃𝑥 constant 

over time. With such a time-invariant 𝜃𝑥 , the decision policy is implemented simply by 

evaluating whether the largest component of 𝒙∗ exceeds a fixed threshold. Note also that, 

because the value function is decreasing for each element 𝑥𝑖  as described previously 

(Supplementary Math Note 1), the manifold 𝑀𝜃 is also a decreasing function for each 

element, thus the projection of the states 𝒙  to 𝑀𝜃  is generally described as a mutual 

inhibition among the elements 𝑥𝑖 corresponding to the individual options. 



 

9 

The structure of 𝑳𝜽 and 𝑴𝜽 

As a next step, we investigate the structure of the two manifolds in order to find functional forms 

that capture the symmetry of those manifolds. 

As already described further above 𝐿𝜃  is a set of 𝑁 − 1  dimensional half-planes, 

{𝒙|𝑥𝑖 =  𝜃𝑥, 𝑥𝑗≠ 𝑖 ≤ 𝜃𝑥}  (𝑖 = 1, . . . , 𝑁). These half-planes collectively form the sides of an 𝑁-

dimensional orthant whose origin is at 𝜃𝑥𝟏 =  (𝜃𝑥, 𝜃𝑥, . . . , 𝜃𝑥)  (Supplementary Math Note 

Figure 1d). Due to this straight-forward form, 𝐿𝜃 does not need to be approximated. 

On the other hand, 𝑀𝜃 is a surface of a "smoothed orthant," which we define here as a 

differentiable 𝑁 − 1  dimensional manifold that asymptotically approaches 𝐿𝜃′  (∃𝜃′)  in the 

limit of ∀𝑗 ≠ 𝑖 ∶ 𝑥𝑗 → −∞ for each 𝑖 (Supplementary Math Note Figure 1d); this is because 

when all the options except for option 𝑖 have infinitely low values, the decision-maker should 

choose option 𝑖, which makes the value for waiting equal the value for choosing option 𝑖 minus 

the cost of time. In particular, from the Bellman equation and the Bayes rule applied to our setup, 

𝜃′ could be defined explicitly as 

𝜃′ = 𝜃𝑥  + (
𝜎2

𝜎𝑧
2  +  𝑡)  𝑐 𝛿𝑡,      (19) 

where 𝜎2 and 𝜎𝑧
2 are the variances of the evidence noise and the prior, respectively. Using the 

symmetry along the diagonal line, 

𝐿𝜃′ = 𝐿𝜃𝑥
+ (

𝜎2

𝜎𝑧
2  +  𝑡)  𝑐 𝛿𝑡 𝟏,     (20) 

This equation implies that 𝐿𝜃′  and thus 𝑀𝜃 move along the diagonal as time elapses. 

Due to the symmetry, 𝑀𝜃  is invariant to permutations of the coordinates, 1, . . . , 𝑁 . 

Thus, at the point 𝒙 ∈ 𝑀𝜃 such that ∀ 𝑖, 𝑗 ∶  𝑥𝑖 = 𝑥𝑗, 𝑀𝜃 is orthogonal to the 𝑁-dimensional 

diagonal line, {𝒙|∀ 𝑖, 𝑗 ∶  𝑥𝑖 = 𝑥𝑗}. Note that 𝑀𝜃 has only one intersection with the diagonal line 

due to the decreasing property as we have described further above. Furthermore, as understood 

intuitively, if option 𝑗's value is very low, the problem becomes effectively a comparison among 

the remaining 𝑁 − 1 options, {1, . . . , 𝑁} ∖ j. Because we have the same symmetry as before but 

now among those 𝑁 − 1 options; i.e., in the limit of ∀ 𝑗 ∶  𝑥𝑗 →  −∞, 𝑀𝜃 is orthogonal to the 

vector 𝟏∖𝑗 that is defined by 𝟏𝑖
∖𝑗

 =  1 − δ𝑖𝑗  with Kronecker's delta, when 𝒙 ∈ 𝑀𝜃 satisfies 

∀ 𝑖, 𝑖′ ≠  𝑗 ∶  𝑥𝑖  =  𝑥𝑖′  . Similarly, if two options 𝑗  and 𝑗′  have infinitely low values, the 

effective problem becomes to compare the remaining 𝑁 − 2 options, {1, . . . , 𝑁} ∖ {𝑗, 𝑗′}, then 

the manifold is orthogonal to 𝟏∖{𝑗,𝑗′}  (where 𝟏𝑖

∖{𝑗,𝑗′}
 =  1 − δ𝑖𝑗δ𝑖𝑗′  ) when 𝒙 ∈ 𝑀𝜃  satisfies 

∀ 𝑖, 𝑖′ ∉  {𝑗, 𝑗′} ∶  𝑥𝑖  =  𝑥𝑖′  . Repeating the same argument reveals the whole hierarchy of 

symmetries in the manifold 𝑀𝜃. Note that when ∀ 𝑗 ≠  𝑖 ∶  𝑥𝑗 →  −∞, the problem reduces to 

choosing from only one option 𝑖; at this limit, 𝑀𝜃 is orthogonal to 𝟏∖({1,...,𝑁}∖𝑖) = 𝒆𝑖, agreeing 

with the aforementioned property that 𝑀𝜃 asymptotically approaches 𝐿𝜃′(∃𝜃′). 

These properties of 𝑀𝜃 are well-captured by a manifold defined as follows: 
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�̃�𝜃  =  {𝒙 | 
1

𝑁
∑ 𝑓(𝑥𝑖)𝑖 = 𝑢},      (21) 

where 𝑓(𝑥𝑖) is an arbitrary increasing, differentiable function that asymptotically approaches 

zero in the limit of 𝑥𝑖 →  −∞. Here, 𝑢 is a scalar value, which generally increases with elapsed 

time to capture the time-dependent property of 𝑀𝜃. Moreover, by varying the functional form of 

𝑓 and the value of parameter 𝑢, we can make �̃�𝜃 have the same position and curvature as 𝑀𝜃 

at its intersection with the diagonal line, {𝒙 | 𝒙 ∈ �̃�𝜃, ∀𝑖, 𝑗 ∶  𝑥𝑖 = 𝑥𝑗}. This indicates that �̃�𝜃 

can be a good approximation of 𝑀𝜃 around its intersection with the diagonal line, and thus �̃�𝜃 ≡

𝐿𝜃 ∩ �̃�𝜃 approximates 𝐵𝜃 well at points close to the diagonal line. The approximation around 

the diagonal line is particularly important because the assumed unbiased prior over rewards 

requires the initially expected rewards (at 𝑡 = 0 , before accumulating any evidence) to be 

symmetric across options, such that the decision variable 𝒙(𝑡) fluctuates around the diagonal 

line. 

A recurrent circuit that approximates the constraining manifold 

We design a neural mechanism that constrains the neural population activity that encodes 

evidence accumulation to the manifold �̃�𝜃. Consider a map that projects each state along the 

diagonal onto the manifold �̃�𝜃, as follows: 

�̃�𝜃 ∶  ℝ𝑁  →  �̃�𝜃,        (22) 

 �̃�𝜃 ∶  𝒙 ↦  �̃�∗ ≡ 𝒙 + 𝟏Δ�̃� ,       (23) 

Based on the arguments in the previous sections (Supplementary Note 1), the decision boundary 

{𝒙 | 𝒙 ∈ 𝐵} is approximated by {𝒙 | max
𝑖

�̃�𝑖
∗ = 𝜃𝑥}. That is, evaluating whether the state x hits 

a decision boundary or not is equivalent to evaluating whether the largest component of the 

constrained state �̃�∗ equals 𝜃𝑥 or not. Again, �̃�𝜃 also depends on time, thus so does the map 

�̃�𝜃. As shown in the previous section, the map �̃�𝜃 can be implemented by a circuit that computes 

Δ�̃� satisfying the following property: 

�̃�∗ ∈ �̃�𝜃 ⇔
1

𝑁
∑ 𝑓(�̃�𝑖)𝑖 = 𝑢,       (24) 

⇔  𝑢 −
1

𝑁
∑ 𝑓(𝑥𝑖 + Δ�̃�)𝑖 = 0.     (25) 

If we define 𝐸 ≡
1

2
 (𝑢 −

1

𝑁
∑ 𝑓(𝑥𝑖 + Δ�̃�)𝑖 )

2
 its gradient is given by 

−
𝜕𝐸

𝜕Δ�̃�
 =  (

1

𝑁
 ∑ 𝑓′(𝑥𝑖 + Δ�̃�)𝑖 ) (𝑢 −

1

𝑁
 ∑ 𝑓(𝑥𝑖 + Δ�̃�)𝑖 ).     (26) 

Note that the first term on the left hand side of the equation is always zero or positive because 𝑓 

is an increasing function as described in the previous section. Therefore, the following update rule 

is able to find Δ�̃� by approximate gradient descent:  
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Δ�̃� ⟵ Δ�̃� + 𝛾 (𝑢 −
1

𝑁
∑ 𝑓(𝑥𝑖 + Δ�̃�)𝑖  ),     (27) 

where 𝛾 is a small positive scalar that determines the update rate. The update process terminates 

when the term in the parenthesis becomes zero. This update rule is implemented by the recurrent 

neural circuit with activity normalization (implementing the projection) and urgency signal 

(realizing the time-variant nature of 𝑀𝜃) as mentioned in the main text.  

Corresponding to the update of Δ�̃�, each neuron’s output is updated as follows: 

𝑓(�̃�𝑖) ⟵ 𝑓(�̃�𝑖 + Δ�̃�).      (28) 

Given that 𝑓  is invertible in �̃�𝑖 ≥ 0 , this update is the same as �̃�𝑖 ← �̃�𝑖 + Δ�̃�.  In our 

implementation, the projection was performed by applying Eqs. (27) and (28) 5 times for each 

evidence input at time 𝑡, assuming that the relaxation of neural activity is faster compared to the 

time scale of the evidence dynamics. Within every time step 𝑡, 𝑓(�̃�𝑖) was after the projection 

compared to a constant threshold 𝜃 ≡ 𝑓(𝜃𝑥) , which, for the monotonically increasing 𝑓 , is 

equivalent to comparing �̃�𝑖 with 𝜃𝑥.  
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3 Experimental predictions 

Here we provide a list of detailed predictions derived from our theoretical results. All of them can 

be tested with neurophysiological or behavioral experiments. We consider human or animal 

subjects performing a standard 𝑁-alternative value-based decision-making task with a reaction-

time paradigm, in which the subjects choose one of 𝑁 options at their own pace, while trying to 

maximize the total reward within a session of fixed duration (i.e., they can make more choices if 

each of them is faster). 

Suppose that we record the activity of a decision-related neuronal population (serially or 

simultaneously) during the task. We denote the entire population state by 𝒙(𝑡) =

(𝑥1(𝑡), … , 𝑥𝐷(𝑡)), where 𝐷 is the number of recorded neurons. 

Physiological predictions 

Here we provide a list of detailed predictions derived from our theoretical results. All of them can 

be tested with neurophysiological or behavioral experiments. We consider human or animal 

subjects performing a standard N-alternative value-based decision-making task with a reaction-

time paradigm, in which the subject choose one of N options at their own pace, while trying to 

maximize the total reward within a session of fixed duration (i.e., they can make more choices if 

each of them is faster). 

Suppose that we record the activity of a decision-related neuronal population (serially or 

simultaneously) during the task. We denote the entire population state by 𝑥(𝑡) =

(𝑥1(𝑡), … , 𝑥D(𝑡)), where D is the number of recorded neurons. 
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Predictions about the dynamics of evidence accumulation 

1. The neural population activity is constrained on a low-dimensional manifold: at each time 

point 𝑡 , the neural population state 𝒙(𝑡)  is constrained on an 𝑁 − 1  dimensional 

manifold, ℳ(𝑡) (the ‘constraining manifold’, the gray surface in Supplementary Math 

Note Figure 2). 

2. The 𝑁 − 1 dimensional manifold is nonlinear: although the topological dimensionality 

(i.e., a locally defined dimensionality) of the constraining manifold ℳ(𝑡)  is 𝑁 − 1 , 

ℳ(𝑡) is curved and embedded within an 𝑁-dimensional space. 

3. The 𝑁 − 1 dimensional manifold evolves over time: the constraining manifold ℳ(𝑡) 

varies over time, meaning that the 𝑁 − 1 dimensional manifold can only be observed for 

a fixed time. Otherwise, we would only observe an 𝑁-dimensional structure, resulting 

from the 𝑁 − 1 dimensional manifold being smeared out over time. 

4. The effects of prior belief: the position and the shape of the constraining manifold ℳ(𝑡) 

depend on the prior knowledge about the value distribution (e.g., mean value over trials), 

but the dimensionality is always 𝑁 − 1. 

5. The stability against the trial-to-trial option contingency: the constraining manifold 

ℳ(𝑡) is invariant to the option values within each trial. That is, if we compare a trial set 

with 𝑁 high-valued options against another trial set in which low and high values are 

mixed, the neural state trajectories can differ between those trial sets, but all the 

trajectories are constrained on the same 𝑁 − 1 dimensional manifold ℳ(𝑡). 

6. The constraining manifold ℳ(𝑡)  has a hierarchical symmetry as follows: on ℳ(𝑡) , 

𝑥𝑖(𝑡) is a decreasing function of 𝑥𝑗(𝑡) for all 𝑖 ≠ 𝑗. In particular, ℳ(𝑡) is orthogonal 

to the vector (1,1, … ,1)  when the neural state 𝒙(𝑡)  is nearly proportional to 

 

Supplementary Math Note Figure 2. The manifold constraining neural population state. 
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(1,1, … ,1)—which happens when all the options have equal values. ℳ(𝑡) is orthogonal 

to the vector (1,1, … ,1,0)  when 𝒙(𝑡)  is nearly proportional to (1,1, … ,1,0)  —which 

happens when we have 𝑁 − 1 equally high-valued options and a low-valued option 

7. The uniqueness of the manifold over time: for two different time points 𝑡 and 𝑡′, the 

constraining manifolds ℳ(𝑡) and ℳ(𝑡′) do not intersect with each other. 

8. The diffusion process can be recovered by a renormalization: when we renormalize the 

neural activity 𝒙(𝑡) by projecting it onto an 𝑁 − 1 dimensional hyperplane (the triangle 

in Fig. 2a) orthogonal to diagonal vector (1,1, … ,1), the temporal evolution of population 

state on this plane is a standard 𝑁 − 1  dimensional diffusion process. Namely, the 

variance of temporal derivative of neural population activity is uniform over time in those 

dimensions. 

9. The effect of opportunity cost: the position and speed of the constraining manifold ℳ(𝑡) 

depend not only on the number of options but also on the reward rate. This means that 

the offset activity of neurons should depend on the average reward size over trials or inter-

trial interval, not only on the number of options. 

Predictions about the neural states at the termination of evidence accumulation 

Let 𝒙(𝑡|choose 𝑖) denote the neural population state at the end of evidence accumulation, right 

before choosing option 𝑖. 

10. The low-dimensional structure of the neural activity at the end of evidence accumulation: 

the neural activity when the stopping boundary is hit, 𝒙(𝑡|choose 𝑖), is constrained on 

the 𝑁 − 2 dimensional manifold 𝐵𝑖(𝑡) (the ‘end-point manifold’) that is defined as the 

intersection of the constraining manifold ℳ(𝑡) and a hyper-plane, 𝑥𝑖(𝑡|choose 𝑖) = 𝜃𝑖, 

where 𝑥𝑖(𝑡|choose 𝑖)  is the 𝑖 th compornent of 𝒙(𝑡|choose 𝑖) , and 𝜃𝑖  is a constant 

which is invariant to option sets. 

11. The symmetry in the end-point manifolds: for different options 𝑖 and 𝑗, two end-point 

manifolds 𝐵𝑖(𝑡) and 𝐵𝑗(𝑡) do not intersect with each other. Moreover, on each 𝐵𝑖(𝑡), 

𝑥𝑗(𝑡|choose 𝑖) < 𝜃𝑗 for all 𝑗 ≠ 𝑖, and the distance between 𝐵1(𝑡) and 𝐵2(𝑡) is almost 

constant when the state 𝒙(𝑡) is proportional to (1,1,0, … ,0,0). 

Behavioral predictions 

12. The choice accuracy depends on time, the option set size, and the reward: the choice 

accuracy (the frequency of choosing the best options) decreases with reaction time. The 

choice accuracy also depends on the number of options as well as the reward rate. 

13. The transitions of behavior between the ‘max-vs.-next’ and the ‘max-vs.-average’ strategy 

within a same task: in trials with 𝑁 almost equally-valued options, or with one high-
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valued option and 𝑁 − 1 low-valued options, the subject behavior (e.g., the reaction time 

dependency on choice contexts) is similar to what is predicted by the ‘max-vs.-average’ 

strategy (i.e., the strategy such that the decision is driven by the difference between the 

best option and the average of all the options.). In trials with two high-valued options and 

𝑁 − 2 low-valued options, the subject behavior is similar to what is predicted by the 

‘max-vs.-next’ strategy (i.e., the strategy such that the decision is driven by the difference 

between the best and the second-best options.). In other trials, the results differ from either 

of ‘max-vs.-average’ and ‘max-vs.-next’ strategies. 
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4 Evidence with short- and long-range temporal correlations  

Here we consider the modifications required to the optimal policy if the evidence features 

temporal short- and long-range correlations. In our discussion, we focus on positive temporal 

correlations. Similar arguments can be made for negative correlations. Both short- and long-range 

correlations reduce the amount of information available to the decision maker per unit time, but 

in different ways. 

Short-range correlations 

In the main text we have assumed the momentary evidence to be drawn i.i.d. according to 

𝛿𝒙𝑛|𝒛 ∼ 𝒩(𝒛𝛿𝑡, 𝜮𝑥𝛿𝑡) , resulting in cov(𝛿𝒙𝑛, 𝛿𝒙𝑚) = 𝛿𝑚𝑛𝜮𝑥𝛿𝑡 , where 𝛿𝑚𝑛 = 1  if 𝑚 = 𝑛 , 

and 𝛿𝑚𝑛 = 0  otherwise. That is, the momentary evidence provides independent information 

about 𝒛  within each small time-bin. This makes summing up this momentary evidence the 

optimal thing to do. 

Let us now consider what happens if the momentary evidence becomes correlated across 

time. We first focus on short-range correlations, which could arise if the momentary evidence 

with white noise is passed through a circuit that low-pass filters this evidence. Then, we have 

cov(𝛿𝑥𝑛, 𝛿𝑥𝑛+𝑚) > 0 for sufficiently small time-differences 𝑚𝛿𝑡, and an autocorrelation that 

drops to zero with increasing 𝑚𝛿𝑡 . What is the impact of these correlations on evidence 

accumulation and the optimal decision policy? 

One effect of such correlations is that the amount of independent information about 𝒛 

per unit time is reduced. This is because consecutive pieces of momentary evidence are correlated, 

such that their associated noise does not average out when summing them. However, as long as 

the momentary evidence’s auto-correlation structure is known and sufficiently well-behaved, we 

can apply a linear filter to the incoming momentary evidence to whiten it (e.g., Papoulis & Pillai, 

20021). This will result in another stream of momentary evidence that has the overall same amount 

of information about 𝒛, but whose individual pieces of evidence are independent across time. 

Thus, the re-formatted momentary evidence satisfies the assumptions underlying the model 

developed in the main text, such that its conclusions still apply. 

What are the limitations of this approach? First, temporal whitening of the momentary 

evidence requires knowledge of its auto-correlation structure. Knowing the statistics of the 

incoming evidence in a general pre-requisite to finding the optimal stopping boundaries, as 

finding them involves computing an expectation over potential future values of the accumulated 

evidence. Without knowing these statistics, we would not be able to find optimal stopping 

boundaries. This also applies to the auto-correlation structure. Second, despite temporal 

correlations, the amount of information per unit time needs to remain constant. For the original 

i.i.d. momentary evidence, this was satisfied by a likelihood 𝑝(𝛿𝒙𝑛|𝒛)  that had a fixed 

covariance structure. For correlated momentary evidence, this remains satisfied as long as its auto-

correlation structure does not vary across time. Similar approaches to identifying optimal stopping 

boundaries can also be applied to scenarios in which the informativeness of momentary evidence 

fluctuates across time, but the resulting policies will become significantly more complex (e.g., 

Drugowitsch et al. , 20142). 
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Long-range correlations 

In the context of long-range correlations, we consider the case where the momentary evidence 

associated with each option is offset by a random, unknown, amount that is fixed within each trial. 

Let us denote this amount 𝑦𝑗 for option 𝑗 and assume it to be drawn independently in each trial 

from a zero-mean Gaussian with variance 𝜎𝑦
2, that is 𝑦𝑗 ∼ 𝒩(0, 𝜎𝑦

2). The momentary evidence 

in this trial is then drawn according to 𝛿𝑥𝑗,𝑛|𝑦𝑗, 𝑧𝑗 ∼ 𝑁(𝑧𝑗 + 𝑦𝑗, 𝜎𝑥
2). 

One extreme of this scenario are ballistic accumulator models3,4, in which the only 

stochastic element is 𝑦𝑗, whereas the momentary evidence is noise-free, that is 𝜎𝑥
2 = 0. In this 

case it becomes superfluous to accumulate evidence, as evidence samples beyond the first do not 

yield any additional information. Thus, the optimal policy would be to await this first sample and 

decide immediately after that. 

For noisy momentary evidence, when 𝜎𝑥
2 > 0 , it remains optimal to accumulate 

momentary evidence. In this case, the only impact of an unknown 𝑦𝑗 is that the prior over the 

mean of the momentary evidence becomes less certain. Specifically, it grows in variance by 𝜎𝑦
2. 

As a consequence, we can handle this case by ignoring the 𝑦𝑗’s, while at the time widening the 

prior over 𝑧 by 𝜎𝑧
2. Therefore, it reduces to the case discussed in the main text, and results in the 

same optimal policy. 

In summary, both short- and long-term temporal correlations in the momentary evidence 

reduce the amount of evidence we have about the true values of the underlying latent states 𝒛. 

Short-term correlations do so by reducing the information in each piece of evidence, effectively 

making the likelihood less certain. Long-term correlations, in contrast, make the underlying mean 

less certain, effectively making the prior less certain. Both cases thus impact particular parameters 

of the model, while leaving the general structure unchanged. Therefore, while they impact the 

optimal decision boundaries quantitatively, they don’t change our conclusions qualitatively. 
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5 Discrete implementation of circuit with divisive normalization 

In this section, we derive equations for our circuit model that approximates the optimal policy. 

Our network operates at two time-scales. On the slower time-scale, neurons accumulate (noisy) 

momentary evidence independently across options according to:  

𝒙𝒕  =  𝐶𝑡 𝛿𝒙𝑡 +  
𝐶𝑡

𝐶𝑡−1
𝒙𝑡−1                                                                     (30) 

where 𝒙𝒕 is the vector of accumulated evidence at time 𝑡, 𝛿𝒙𝑡~𝒩(𝒛𝑡𝑑𝑡, 𝛴𝑡𝑑𝑡) is the vector of 

momentary evidence at time 𝑡 , where 𝒛𝑡  is the vector of “true” rewards, 𝛴𝑡  is a covariance 

matrix that makes the momentary evidence noisy, and 𝐶𝑡  is the commonly used divisive 

normalization term5,6:  

𝐶𝑡 =
𝐾

𝜎ℎ  + ∑ 𝑥𝑛(𝑡)𝑁
𝑛=1

                                                                        (31) 

On the faster time scale, activity is projected onto a manifold defined by 
1

𝑁
∑ 𝑓(𝑥𝑖) =𝑖 𝑢(𝑡) , 

(shown as a gray surface in Supplementary Math Note Figure 2) where 𝑢(𝑡) is the urgency 

signals. This operation is implemented by iterating: 

𝑥𝑖 ← 𝑥𝑖 + 𝛾 (𝑢(𝑡) −
1

𝑁
∑ 𝑓(𝑥𝑖)

𝑖
)                                                     (32) 

until convergence, where 𝛾 is the update rate and  𝑓 is a rectified polynomial non-linearity. 

Ignoring the fast dynamics, Equation (30) can be rearranged to get: 

𝒙𝒕 − 𝒙𝑡−1  =  𝐶𝑡 𝛿𝒙𝑡  +
𝐶𝑡 − 𝐶𝑡−1

𝐶𝑡−1
𝒙𝑡−1                                                            (33) 

𝑑𝒙𝑡 = 𝐶𝑡 (𝒛𝑡𝑑𝑡 + 𝛴𝑥

1
2𝑑𝑊𝑡) +

𝑑𝐶𝑡

𝐶𝑡
𝒙𝑡                                                  (34) 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
= 𝐶(𝑡)𝛿𝒙𝑡 +

1

𝐶(𝑡)

𝑑𝐶(𝑡)

𝑑𝑡
𝑥𝑗(𝑡)                                                  (35) 

From Equation (31), it can be shown that 

𝑑𝐶(𝑡)

𝑑𝑡
=  −

𝐶2(𝑡)

𝐾
∑

𝑑𝑥𝑛(𝑡)

𝑑𝑡

𝑁

𝑛=1

                                                           (36) 

Combining Equations (35) and (36), we get 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
= 𝐶(𝑡)𝛿𝒙(𝑡) −

𝐶(𝑡)

𝐾
 𝑥𝑗(𝑡) ∑

𝑑𝑥𝑛(𝑡)

𝑑𝑡

𝑁

𝑛=1

                           (37) 
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Equation (37) captures the slow dynamics of our circuit model. On a faster time-scale 𝜏 ≪ 𝑑𝑡, 

this activity is further projected on to the manifold 
1

𝑁
∑ 𝑓(𝑥𝑖(𝑡)) = 𝑢(𝑡)𝑖 , which can be expressed 

as: 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
= 𝐶(𝑡) (𝛿𝒙(𝑡) +

1

𝜏
(𝑢(𝑡) −

1

𝑁
∑ 𝑓 (

𝑥𝑛(𝑡)

𝐶(𝑡)
)

𝑁

𝑛=1

) −
1

𝐾
 𝑥𝑗(𝑡) ∑

𝑑𝑥𝑛(𝑡)

𝑑𝑡

𝑁

𝑛=1

)         (38) 

This can be written in vector form as: 

1

𝐶(𝑡)

𝑑𝒙(𝑡)

𝑑𝑡
= 𝛿𝒙(𝑡) +

1

𝜏
(𝑢(𝑡) −

1

𝑁
(𝟙 ⋅ 𝑓 (

𝒙(𝑡)

𝐶(𝑡)
))) − 𝒙(𝑡) (𝟙 ⋅

𝑑𝒙(𝑡)

𝑑𝑡
)                         (39) 

= 𝛿𝒙(𝑡) +
1

𝜏
(𝑢(𝑡) −

1

𝑁
(𝟙 ⋅ 𝑓 (

𝒙(𝑡)

𝐶(𝑡)
))) − 𝒙(𝑡) (

𝐶(𝑡)(𝟙 ⋅ 𝛿𝒙(t))

𝐾 + 𝐶(𝑡)(𝟙 ⋅ 𝒙(𝑡))
)          (40) 

where the explicit Equation (40) follows by summing Equation (39) and substituting the last term 

on its right-hand side. 

 

Supplementary Math Note Figure 3. Geometry of the projection and divisive normalization. 

Geometric depiction of the projection due to the linear constraint (𝑢(𝑡) − 𝑁−1 ∑ 𝑥𝑛(𝑡) = 0𝑁
𝑛 ) and 

divisive normalization. Note that the nonlinearity in (𝑢(𝑡) − 𝑁−1 ∑ 𝑓(𝑥𝑛(𝑡)) = 0𝑁
𝑛 ) makes the blue 

triangle (plane) a curved surface  thereby disallowing a closed-form solution. However  the 

geometric intuition for projection and divisive normalization remains the same. 𝒙 is an arbitrary 

initial point. 𝒙𝑝 is obtained by projecting 𝒙 according to the linear constraint mentioned above. 

Further applying divisive normalization to 𝒙𝑝 gives 𝒙𝑝𝑑  i.e. 𝒙𝑝𝑑 = 𝐶𝒙𝑝  where 𝐶 is defined in Eq. 

31. On the other hand  𝒙𝑑 is obtained by applying divisive normalization to 𝒙  i.e. 𝒙𝑑 = 𝐶𝒙  and 

further projecting 𝒙𝑑  according to the linear constraint mentioned above gives 𝒙𝑑𝑝 . nn the 

following section  we analytically show that 𝒙𝑑𝑝 = 𝒙𝑝𝑑  or that the diffusion is unaffected if one 

were to apply the constraint first followed by divisive normalization or vice versa.  
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Optimal evidence accumulation 

Our full model approximates the optimal policy by accumulating evidence and then projecting it 

on a non-linear manifold at each time-step. If we rescale the entire evidence accumulation space 

after this process at each time-step, then the relative distances between the accumulators and 

decision threshold are preserved, leaving the choices optimal. Mathematically, divisive 

normalization rescales the evidence accumulation space. As we just argued, doing so after the 

projection preserves optimality. 

However, different instances of the discrete implementation may reverse this order – one may 

perform the rescaling before projecting at each time-step. Fortunately, it is possible to show 

analytically that, at least in the linear case, i.e. when 𝑓(𝑥) = 𝑎𝑥 + 𝑏, the order is irrelevant. For 

simplicity, but without loss of generality, we will show this for 𝑓(𝑥) = 𝑥. 

To formally analyze this problem, we make use of some geometric intuition (see Supplementary 

Math Note Figure 3). In 3-dimensional evidence accumulation space, consider an arbitrary initial 

point, 𝒙 = (𝑥1, 𝑥2, 𝑥3) , that has not hit any decision boundary. If we were to apply divisive 

normalization to this point, we would get 𝒙𝑑 = (𝑥1
𝑑 , 𝑥2

𝑑 , 𝑥3
𝑑), and further applying the projection 

would yield 𝒙𝑑𝑝 = (𝑥1
𝑑𝑝

, 𝑥2
𝑑𝑝

, 𝑥3
𝑑𝑝

), where the subscripts 𝑑 and 𝑝 are defined respectively by 

the form of divisive normalization and projection on a linear or a non-linear manifold (along the 

diagonal) as noted in Equations 36-37. On the other hand, if we were to project the initial point 

𝒙  first, that would give us 𝒙𝑝 = (𝑥1
𝑝

, 𝑥2
𝑝

, 𝑥3
𝑝

) , and then implementing divisive normalization 

would yield 𝒙𝑝𝑑 = (𝑥1
𝑝𝑑

, 𝑥2
𝑝𝑑

, 𝑥3
𝑝𝑑

). Our goal is to show that 𝒙𝑑𝑝 = 𝒙𝑝𝑑 . 

In the linear case, 

𝑥𝑖
𝑝

= 𝑥𝑖 + 𝑢 −
1

𝑁
∑ 𝑥𝑛

𝑁
𝑛=1           (36) 

𝑥𝑖
𝑑 = 𝐶𝑥𝑖        

= 
𝐾 𝑥𝑖

𝜎ℎ + ∑  𝑥𝑛
𝑁
𝑛=1

       (37)  

Using these, we can calculate 𝑥𝑖
𝑝𝑑

 as 

    𝑥𝑖
𝑝𝑑

= 
𝐾 𝑥𝑖

𝑝

𝜎ℎ + ∑  𝑥𝑛
𝑝𝑁

𝑛=1

       

= 
𝐾 𝑥𝑖 + 𝐾𝑢 −

𝐾

𝑁
∑ 𝑥𝑛

𝑁
𝑛=1

𝜎ℎ + ∑ 𝑥𝑛
𝑁
𝑛=1  + 𝑁𝑢 − ∑ 𝑥𝑛

𝑁
𝑛=1
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= 
𝐾 𝑥𝑖 + 𝐾𝑢 −

𝐾

𝑁
∑ 𝑥𝑛

𝑁
𝑛=1

𝜎ℎ + 𝑁𝑢
      

and 𝑥𝑖
𝑑𝑝

 as 

        𝑥𝑖
𝑑𝑝

= 𝑥𝑖
𝑑 + 𝑢𝑑  −

1

𝑁
∑ 𝑥𝑛

𝑑𝑁
𝑛=1     …... 

               = 
𝐾 𝑥𝑖 

𝜎ℎ + ∑ 𝑥𝑛
𝑁
𝑛=1  

 + 
𝐾 𝑢 

𝜎ℎ + ∑ 𝑥𝑛
𝑁
𝑛=1  

 − 

𝐾

𝑁
 ∑ 𝑥𝑛

𝑁
𝑛=1  

𝜎ℎ + ∑ 𝑥𝑛
𝑁
𝑛=1  

    

= 
𝐾 𝑥𝑖 + 𝐾𝑢 −

𝐾

𝑁
∑ 𝑥𝑛

𝑁
𝑛=1

𝜎ℎ + ∑ 𝑥𝑛
𝑁
𝑛=1

   

= 𝑥𝑖
𝑝𝑑

             (∵ ∑ 𝑥𝑛
𝑁
𝑛=1 = 𝑁𝑢 after projection) 

Thus, the order does not matter in the linear case. 

Adding the nonlinearity does not allow a closed form solution. The projection now takes place 

iteratively as 𝒙(𝑡)  ← 𝒙(𝑡)  + 𝛼[𝑢(𝑡) −
1

𝑁
𝛴𝑛𝑥𝑛(𝑡)] until convergence. It is important to note that 

though the projection is on a non-linear manifold, the direction of the projection is parallel to the 

diagonal; only the magnitude of the distance is determined iteratively.  
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