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Multimodal cue integration and learning in a 
neural representation of head direction
 

Melanie A. Basnak, Anna Kutschireiter    , Tatsuo S. Okubo    , Albert Chen    , 
Pavel Gorelik, Jan Drugowitsch     & Rachel I. Wilson     

Navigation requires us to take account of multiple spatial cues with varying 
levels of informativeness and learn their spatial relationships. Here we 
investigate this process in the Drosophila head direction system, which 
functions as a ring attractor and a topographic map of head direction. Using 
population calcium imaging and multimodal virtual reality environments, 
we show that increasing cue informativeness improves encoding accuracy 
and produces a narrower and higher bump of activity. When cues conflict, 
the more informative cue exerts more weight. A familiar cue is weighted 
more heavily and used to guide the remapping of a less familiar cue. When 
a cue is less informative, it is remapped more readily in response to cue 
conflict. All these results can be explained by an attractor model with plastic 
sensory synapses. Our findings provide a mechanistic explanation for how 
the brain assembles spatial representations through inference and learning.

When we enter a new environment, we encounter a host of cues that 
might be useful for guiding navigation. Some cues are more useful than 
others because they are more salient or easily located; for example, the 
moon is more visible than a star. At the same time, the usefulness of a 
spatial cue also depends on its stability1. For example, a strong wind is 
salient because it can easily inform us about the direction we are fac-
ing, but only if the wind is blowing from a stable direction. Similarly, 
a faraway mountain and a nearby tree may be equally salient as visual 
objects but only the mountain will have a stable position on the horizon 
and, thus, it is much more informative about the direction we are fac-
ing. For this reason, we should assess the stability of each external cue 
by monitoring its position over time, relative to our own self-motion 
cues. As we acquire more familiarity with an external cue, we should 
logically ascribe it more weight (relative to self-motion cues), as long 
as the external cue appears stable1,2. Thus, a cue must be both stable 
and familiar to be highly informative for navigation.

Not surprisingly, behavioral studies have shown that navigating 
animals generally ascribe more weight to external cues that appear to 
be more stable and familiar, just as they ascribe more weight to cues 
that are more salient3–14. Moreover, neurophysiological studies in rats 
and mice have shown that salient or stable and familiar cues exert 
the strongest influence over the neurons in the brain’s navigation 
centers15–17. How does this work mechanistically? The brain’s navigation 
centers are thought to be organized around attractor networks (that is, 

networks with multiple stable states)18. Self-motion cues drive transi-
tions between different stable states, creating a working memory of the 
organism’s position on a map or its orientation in space. Specifically, 
the attractors that correspond to the sense of direction are thought 
to be ring attractors, meaning that their stable states form a closed 
circle in network state space19,20. Self-movement signals during head 
rotations would push the network state around this circle. It has been 
proposed that the sensory weights onto these ring attractors might 
be dynamically adjusted according to a Hebbian learning rule20–28. 
This would automatically allocate more weight (stronger synaptic 
connections) to environmental cues that are more salient, stable and 
familiar. Once stable environmental cues are familiar and, thus, well 
learned, they should improve the ring attractor network’s ability to 
accurately track head direction (HD) beyond what it can achieve on 
the basis of self-movement signals alone19,20. Although this model was 
originally proposed to explain HD cells, it has also been extended to 
explain grid cells29–31. However, all of these models have been largely 
untested at a mechanistic level.

Recently, the Drosophila HD network has emerged as a useful sys-
tem for testing these ideas. Genetic experiments have demonstrated 
that Drosophila HD cells are essential for navigation behavior32,33. All the 
HD cells in this network can be imaged simultaneously as a head-fixed 
fly navigates in a virtual reality environment33,34. Moreover, this net-
work’s anatomical connectivity is known in detail from connectome 
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fundamental tradeoff between stability and flexibility in the brain’s 
navigational centers.

Results
To study cue integration and learning in the Drosophila HD system, 
we expressed jGCaMP7f (ref. 40) in HD cells (equivalence potential 
gradient (EPG) neurons) under Gal4–UAS control41 and we imaged the 
EPG ensemble using a two-photon microscope as the fly walked freely 
on a spherical treadmill (Fig. 1e). By measuring the rotational velocity 
of the sphere, we can infer the fly’s intended rotational velocity. If we 
then rotate a direction cue around the fly in closed loop with the ball’s 
rotation, the EPG ensemble can track the fly’s fictive HD (Fig. 1f). Note 
that the head and body are rigidly coupled in our experiments; thus, 
HD is always equal to heading. The fly rotates its fictive HD and heading 
by maneuvering on the spherical treadmill.

Increasing cue intensity changes the bump profile
First, we examined how cue salience affects bump attractor dynam-
ics. In these experiments, we used intensity as a proxy for salience; 
we switched among a bright cue, a dim cue and no cue in randomized 

data35. This network functions as a ring attractor, which is also a topo-
graphic map36 (a ‘bump attractor’); it exhibits a persistent bump of 
activity, whose position stores a working memory of the fly’s current 
orientation (Fig. 1a). The bump’s position changes smoothly as the fly 
rotates, reflecting the influence of self-motion cues37,38 and external 
sensory inputs34,39 (Fig. 1b). The pattern of connection weights from 
sensory cells onto HD cells can change during spatial learning accord-
ing to a Hebbian learning rule, allowing this system to learn the pattern 
of visual cues in the current environment22–24 (Fig. 1c).

Here, we ask how the function of this network depends on cue 
salience and familiarity (Fig. 1d). We find that cue salience and famili-
arity alter the width and amplitude of the bump while also driving 
rapid spatial learning that continuously updates the properties of the 
network, such that salient and familiar cues are accorded more weight. 
Mechanistically, our results can be explained by a ring attractor model 
with a high rate of synaptic modification at sensory synapses onto 
HD cells. Conceptually, our findings show how continuous synaptic 
plasticity allows ongoing spatial learning and inference in a dynamic 
environment, albeit at the cost of reducing the stability of the system’s 
representational coordinate frame. Thus, our results highlight the 
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Fig. 1 | The Drosophila HD system. a, HD cells (EPG neurons) form a ring 
attractor network in the EB. Their axons project to the PB, where they form two 
linearized topographic maps of HD. b, The position of the EPG activity bump 
is influenced by ER neurons that encode the positions of visual HD cues or the 
direction of the wind. ER neurons are inhibitory and the most active ER neurons 
push the bump to the location where their inhibitory output is minimal. ER → EPG 
connections are anatomically all-to-all but their weights are shaped by Hebbian 
plasticity at ER → EPG synapses, such that each ER neuron generally makes 
functional synapses onto only a subset of EPG neurons. c, Schematic ER → EPG 
weights. Given a single visual cue and a steady wind direction, associative LTD 
is predicted to produce a diagonal notch of weak connections in each weight 
matrix. EPG neurons are sorted by their preferred HD. ER neurons are sorted 

by their preferred cue position. If the two cues are aligned in the simulated 
environment, Hebbian plasticity should align the notches. d, We hypothesize 
that cue salience and stability affect bump attractor dynamics and learning. e, We 
image EPG neurons in head-fixed flies walking on a spherical treadmill. As the fly 
turns on the spherical treadmill, the virtual environment rotates around the fly 
in the expected direction. Here, the environment contains a bright vertical stripe 
that serves as an HD cue. f, The bump of EPG activity tracks the fly’s fictive HD 
in a virtual reality environment, with a relatively constant angular offset. Bump 
position rotates clockwise in the EB (imaged from the posterior side of the head) 
as HD rotates counterclockwise; therefore, to account for this directionality, 
we always plot (−HD) to make it easier to visualize the correspondence between 
bump position and HD.
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interleaved 200-s blocks. For each cue intensity, we measured the accu-
racy of HD encoding (Fig. 2a). A perfectly accurate HD system should 
have a constant offset between HD and bump position. We, therefore, 
measured the circular variance in the offset over the duration of each 
block and we defined ‘HD encoding accuracy’ as 1 − circular variance 

(Fig. 2b). We cannot directly measure the informativeness of a spatial 
cue by measuring its physical properties14 but we can use HD encoding 
accuracy as an operational measure of a cue’s informativeness.

In pilot experiments, we lowered the intensity of the dim cue until 
HD encoding accuracy was only slightly better than no cue at all. We 
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Fig. 2 | Increasing cue intensity changes the bump profile. This figure shows 
data for 15 flies. a, EPG ΔF/F in the PB is used to infer the position of the EPG bump 
in the EB (green). When a visual cue is present, the bump tracks HD (blue). The 
offset between HD and bump is fairly constant when a bright visual HD cue is 
available. b, Offset distributions for the fly in a. Black lines are vector averages, 
with line length denoting HD encoding accuracy. Polar histograms are shown on 
the same scale. c, HD encoding accuracy in each condition. In c,d,f,g, single flies 
are shown in gray, mean values are shown in black and P values are shown  
(linear mixed-effects models with Tukey comparisons and Bonferroni corrections). 

d, Consistency of behavioral orienting in each condition. e, ΔF/F and fit 
(Extended Data Fig. 1) at two time points for the same fly. f, Bump width in 
each condition. g, Bump amplitude in each condition. h, Model of the effect of 
increasing cue intensity on HD encoding accuracy, EPG bump width, EPG bump 
amplitude and the range of ER → EPG weights (max–min). Mean of 100 simulation 
runs ± s.e.m. i, Model of the spatial profile of ER and EPG population activity at 
one HD for each condition. Bottom, ER → EPG weights at the end of each block. 
The maximum weight represents maximum inhibition. The bright cue produces a 
deeper notch in the weight matrix.
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then systematically compared HD encoding accuracy for all three cue 
conditions and we confirmed that HD encoding accuracy progres-
sively improves with higher cue intensity (Fig. 2c); this demonstrates 
that the bright cue actually conveys more information. This makes 
sense because a bright cue should have a higher signal-to-noise ratio. 
Moreover, with higher cue intensity, we found that flies also tended 
to orient in a more consistent direction in virtual space (Fig. 2d). If the 
brain’s internal estimate of HD is more accurate, it is logical that this 
should enable a more consistent behavioral orientation because flies 
use their HD system to orient toward an internal goal direction32,33,42.

Notably, when we increased cue intensity, we also found changes 
in the bump profile. Specifically, bump width decreased in a graded 
manner as visual cue intensity increased (Fig. 2e,f), mirroring the 
graded increase in HD encoding accuracy. Meanwhile, bump amplitude 
increased (Fig. 2g), although this effect was only clear for the highest 
cue intensity.

To better understand why cue intensity should affect the bump 
profile, we modeled this network as a ring attractor with plastic sensory 
inputs. In this model, each EPG neuron excites its neighbors while also 
driving global inhibition35,36 (Fig. 1a). EPG neurons receive inhibitory 
input from ER neurons23, whose receptive fields tile visual space43 
(Fig. 1b). In agreement with anatomical data35, ER → EPG connections 
are all-to-all, with weights governed by a Hebbian learning rule22–24 that 
weakens inhibition between coactive ER–EPG pairs through associa-
tive long-term depression (LTD). At the same time, this learning rule 
also strengthens inhibition onto EPG neurons that are active without 
ER input through nonassociative long-term potentiation (LTP), which 
depends on postsynaptic activity alone. EPG neurons also receive noisy 
self-motion signals that tend to push the EPG bump in the correct direc-
tion during turning maneuvers37,38. For each simulation iteration, we 
generated a random sequence of turning maneuvers that specify HD, 
ER input and self-motion input.

In this model, increasing the intensity of a visual cue increases 
the accuracy of HD encoding (Fig. 2h). It also decreases bump width 
(Fig. 2h). This is because ER neurons are inhibitory and increasing the 
intensity of a visual cue recruits more inhibitory drive to the network. 
Meanwhile, in this model, increasing visual cue intensity produces 
nonmonotonic changes in bump amplitude, reflecting two compet-
ing effects. On the one hand, increasing inhibitory drive pushes bump 
amplitude down. On the other hand, increasing presynaptic activity 
promotes associative LTD, producing a deeper notch in the pattern of 
ER → EPG weights (Fig. 2i), leading to stronger disinhibition of the most 
active EPG neurons; this pushes bump amplitude up. If the cue is very 
bright, the latter effect wins, producing a net increase in bump ampli-
tude (Fig. 2h). In essence, the pattern of ER → EPG weights resembles 
the negative image of the cue and the intensity of that image reflects 
the intensity of the cue.

To summarize, we find that increases in cue brightness increase HD 
encoding accuracy and narrow the bump. Very bright cues also increase 
bump amplitude. All these changes in bump profile can be explained by 
the interaction of inhibitory sensory input and a Hebbian learning rule.

Thus far, we focused on average trends across flies but it is also 
instructive to examine individual differences in bump dynamics. In 
particular, we noticed that the same virtual reality environment could 
produce high HD encoding accuracy in some individuals (Fig. 3a) 
but lower accuracy in other individuals (Fig. 3b). Moreover, these 
variations were correlated with individual differences in bump width 
(Fig. 3c). We can recapitulate these results in the model by generating 
individual variations in the overall level of visually evoked activity in 
ER neurons. This produces variations in HD encoding accuracy and 
correlated changes in bump width (Fig. 3d). Bump amplitude varia-
tions are not so well correlated with HD encoding accuracy, both in our 
data (Fig. 3e) and in the model (Fig. 3f). In the model, this is because 
an increase in ER activity can produce opposing effects on bump 
amplitude (Fig. 2h).

In short, our results show that different individuals can experience 
the same cue as conveying more or less information. This produces cor-
related variations across individuals in bump width and HD encoding 
accuracy. Our model suggests that these individual variations arise with 
differences in the intensity of sensory input to the HD system, which 
might arise from individual differences in how flies process the visual cue.

More informative cues are accorded more weight
Next, to investigate how different cues are integrated, we introduced 
wind into our virtual reality environments. We delivered wind through 
a tube that we rotated around the fly whenever the fly turned on the 
spherical treadmill, such that the environmental wind direction 
appeared constant from the fly’s perspective. At the outset of each 
experiment, we presented the visual cue and the wind cue alone (Fig. 4a) 
and we confirmed that they produced similar HD encoding accuracy 
on average (Fig. 4b). However, in some individuals, HD encoding accu-
racy was higher with the visual cue, whereas, in other individuals, HD 
encoding accuracy was higher with the wind cue. In general, the cue 
that generated better HD encoding accuracy was the cue that produced 
the narrower and higher-amplitude bump (Fig. 4c). Thus, one cue was 
often experienced as conveying more information, although the two 
cues were equally informative on average.

After we combined the cues, we shifted one or the other every 
few minutes to create a conflict between them and to see which cue 
carried more weight. We saw that the bump sometimes followed the 
shifted cue while, in other instances, it did not move (Fig. 4d). Across 
all trials and all individuals, visual shifts and wind shifts had a similar 
influence on the bump (Extended Data Fig. 3). Nonetheless, some 
individuals systematically gave more weight to the visual cue, meaning 
that the bump followed visual shifts more than wind shifts. In general, 
these were the individuals where the visual cue produced higher HD 
encoding accuracy when it was presented alone (Fig. 4e). Conversely, 
other individuals gave more weight to the wind; these were the indi-
viduals where the wind produced higher HD encoding accuracy when 
presented alone (Fig. 4e). In short, the cue that produced better HD 
encoding was generally accorded more weight in cases of cue conflict.

Our model can reproduce our results if we have two populations 
of ER neurons and we vary the ER amplitude of one or the other popula-
tion. When each cue is presented individually, this produces correlated 
individual variations in HD encoding accuracy and bump width, as well 
as weak effects on bump amplitude (Figs. 2h and 4f). When the cues 
are presented together and one is shifted, we find that the relative HD 
encoding accuracy of the two cues is a good predictor of the bump 
preference index (Fig. 4g).

As an aside, we noticed that flies with visually biased HD systems 
sometimes showed clear behavioral reorientation into the wind after 
a wind shift (Extended Data Fig. 3). In these flies, the HD system evi-
dently interprets the wind shift as a shift in the wind’s environmental 
direction, not a shift in HD; nonetheless, these flies still reorient into 
the wind after it shifts. Here, behavioral reorientation into the wind is 
likely mediated by pathways for orientation control that bypass the 
HD system32,33,44. These observations confirm that these flies are able 
to detect both cues and the findings are consistent with a model where 
individual biases originate with ER neurons, as ER neurons are specifi-
cally devoted to the HD system.

To summarize, we find that the same cue produces a more accurate 
HD encoding in some individuals than in others. This implies that the cue 
carries more or less information for different individuals. Furthermore, 
each individual accords more weight to the cue they experience as more 
informative. We can account for these results by positing individual 
variations in the amplitude of the sensory responses in ER neurons.

Cue combinations change the bump profile and drive learning
Normally, the relationship between different cues should be relatively 
stable rather than constantly shifting. As the organism acquires more 
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familiarity with a given cue, it should ascribe more weight to this cue, 
as long as the cue continues to appear stable. In principle, this should 
produce a more accurate HD system and the multisensory environment 
should be encoded more accurately.

To test these predictions, we combined the two cues in a stable 
configuration after first testing them individually (Fig. 5a and Extended 
Data Fig. 4). We found that a stable configuration of these two cues 
increased HD encoding accuracy (Fig. 5b). This result confirms our 
expectation that the two cues together convey more information 
than either cue alone. Moreover, a stable configuration of these two 
cues also produced a narrower and higher-amplitude bump (Fig. 5b).

In the two-cue environment, we found that the bump generally 
retained its offset with respect to the cue that had been presented 
last (that is, the more recently familiar cue) (Fig. 5c,d). The more 
recently familiar cue was generally the dominant cue in the two-cue 
environment, regardless of whether that was the visual cue or the wind 
(Extended Data Fig. 4). Thus, when we moved the fly into the two-cue 
environment, its HD system continued to function seamlessly without 
a change in the representational coding frame.

When we retested each cue at the end of the experiment, we found 
that the system had reorganized to align the effects of the two cues. In 

general, the offset with respect to the less familiar cue (cue 1) changed 
dramatically, whereas the offset with respect to the familiar cue had 
changed much less. For example, in the first example shown in Fig. 5c, 
the wind and the visual cue have initial offsets almost 180° apart. Thus, 
when we place the visual cue in the upwind direction, the two cues are 
pushing the bump to opposite locations. In this fly, the visual cue was 
presented last and the bump retained its offset with respect to this 
cue. At the end of the experiment, we found that the wind offset had 
changed to match the visual offset.

Overall, we found that the change of each cue offset was predicted 
by the conflict during the two-cue epoch; here, we define conflict as 
the difference between the offset with both cues and the initial offset. 
Specifically, the bump offset often changed dramatically for the less 
familiar cue where the conflict was often large; conversely, the bump 
offset generally did not change for the more familiar cue where the 
conflict was generally small (Fig. 5e). These findings argue that the more 
familiar cue instructs the remapping of the less familiar cue to produce 
a self-consistent representation of the environment.

Our network model can explain all these results. When cue 1 
appears, the Hebbian learning rule progressively etches a notch into 
the weights associated with cue 1 (Fig. 5f,g), which slowly increases 
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shows offset distribution. b, Another fly in the same environment (HD encoding 
accuracy = 0.14). c, Individual variations in HD encoding accuracy correlate with 
bump width (P = 0.01, Pearson correlation). Data are from the first block where 
the dim visual cue was presented (200 s in duration). The dim cue produced the 

most individual variation (Extended Data Fig. 2). d, Model showing that, with the 
dim cue, small variations in ER amplitude produce strongly correlated changes in 
bump width and HD encoding accuracy. e, Individual variations in HD encoding 
accuracy do not correlate with bump amplitude (P = 0.18, Pearson correlation). 
All data are from the environment with the dim cue. f, Model showing that, with a 
dim cue, small variations in ER amplitude produce weakly correlated changes in 
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HD encoding accuracy. We see the same slow increase in HD encoding 
accuracy in our data (Fig. 5h). Note that LTD here represents ‘learn-
ing’. Next, cue 2 appears and synaptic plasticity progressively etches 
a notch in the weights associated with cue 2; meanwhile, the notch 

associated with cue 1 is gradually erased, as LTP (‘forgetting’) out-
weighs LTD (learning) when the cue is absent. This is because LTP 
depends only on postsynaptic activity. Then, when cue 1 reappears 
while cue 2 is still present, cue 2 is now dominant, because its weight 
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Fig. 4 | More informative cues are accorded more weight. This figure shows 
data for 13 flies. a, A bright visual cue and wind cue were tested individually 
and then combined. One cue was shifted 120° in an alternating sequence every 
5 min. In some experiments, the visual cue came first (as shown here) while, in 
others, the wind came first. b, In the initial single-cue epochs, mean HD encoding 
accuracy is similar for the two cues (P = 0.76, paired two-sided Wilcoxon test). 
Thick horizontal lines are mean values. Gray lines are individual flies. c, In the 
initial single-cue epochs, the difference in HD encoding accuracy for the two 
cues is correlated with the bump width difference (R2 = −0.68, P = 0.01, Pearson 
correlation) and the bump amplitude difference (R2 = 0.58, P = 0.04, Pearson 
correlation). d, Example responses to +120° shifts of the visual cue. In example 1, 
the bump shifts upward to follow the upward (positive) shift of the cue, whereas, 

in example 2, it does not. In both cases, the wind does not shift. Extended Data 
Figure 3a shows these examples in more detail. e, The bump preference index is 
significantly correlated with relative HD encoding accuracy in the two single-cue 
environments (P = 0.03, Pearson correlation). Each gray line at a single encoding 
accuracy connects the data for one fly (four wind shifts in orange and four visual 
shifts in blue). An index of −1 means that the bump follows the visual cue, whereas 
+1 means that the bump follows the wind. This index is close to −1 for example 1 
and close to +1 for example 2 (blue numerals). f,g, Same as c (f) and e (g) but for 
model networks with two populations of ER neurons. In different simulation 
runs, we varied the amplitude of sensory activity of one ER population while 
holding the amplitude constant in the other population.
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Fig. 5 | Cue combinations change the bump profile and drive learning. This 
figure shows data for 18 flies. a, Experimental protocol. Each cue was tested 
alone, then the two cues were combined and, finally, each cue was retested alone. 
The first cue was either the bright visual cue or wind. During the initial single-
cue blocks, the two cues produce similar HD encoding accuracy and similar 
bump profiles, on average (Extended Data Fig. 4). b, HD encoding accuracy, 
bump width and bump amplitude for all three blocks; P values are for linear 
mixed-effects models with Tukey comparisons and Bonferroni corrections.  
c, Offset distributions for three example flies (Extended Data Fig. 4). d, Absolute 
difference between the offset with both cues and the initial offset. This difference 
is significantly smaller for cue 2, which is the more familiar cue (P value from 
paired two-sided Wilcoxon test). In most flies, cue 2 captures the bump during 

the epoch with both cues. e, Offset change (final − initial) versus offset conflict 
during the cue combination period (both − initial). There are two data points 
per fly, one for cue 1 (the less familiar cue) and the other for cue 2 (the more 
familiar cue). The line shown in the plot is a fit to all these points, based on the 
model that describes the offset change as a linear function of conflict with von 
Mises noise (Methods). f, Model showing the temporal evolution of max–min 
ER → EPG weight (that is, the range of weight values in the matrix), HD encoding 
accuracy, bump width and bump amplitude. g, Model showing ER → EPG weights 
at three time points (i, ii and iii). h, The same parameters tracked over time in 
the experimental data (mean ± s.e.m. across flies). Here, all parameters were 
measured in a rolling 60-s time window (Extended Data Fig. 5).
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notch is deeper; in other words, the memory of this cue is stronger 
because it has been familiar more recently (Fig. 5f). In the two-cue 
environment, the bump is narrow because there is more inhibitory 
drive to the network. Over time, synaptic plasticity recreates a notch 
in the weights associated with cue 1 but, now, the Hebbian learning rule 
ensures that the two notches are well aligned, which explains the offset 
changes we observed in our data (Fig. 5d,e). This causes the active EPG 
neurons to be even more disinhibited than they were previously, mean-
ing that bump amplitude increases (Fig. 5g). Subsequently, cue 2 disap-
pears but HD encoding accuracy remains high because cue 1 has been 
well learned (highly familiar) by this point; this is also a phenomenon 
we observe in our data (Fig. 5h). This ‘priming’ effect in the model is 
because of Hebbian plasticity. This priming effect can account for the 
observation that a salient cue can persistently increase HD encoding 
accuracy even after that cue is removed42. Lastly, the return to cue 2 

produces a drop in HD encoding accuracy because cue 2 has already 
been partially forgotten.

To summarize, our data show that cue combinations increase 
HD encoding accuracy, narrow the bump, increase bump amplitude 
and trigger learning. When two cues conflict, the more familiar cue is 
weighted more heavily and used to guide the remapping of a less familiar 
cue. All these findings can be explained by a ring attractor model with 
highly plastic sensory synapses. In essence, Hebbian plasticity stores 
the image of a familiar cue and subsequently uses this image to instruct 
a new round of plasticity at the synapses associated with the less familiar 
cue. Although we cannot observe synaptic weights in our experimental 
data, we can infer the pattern of weights by tracking the position and 
amplitude of the EPG activity bump; specifically, the bump’s position 
(relative to a cue) tells us the location of the notch in the weight matrix, 
while the bump’s amplitude tells us about the notch depth.
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c, Data from another example experiment. In this case, the HD system simply 
follows the visual cue for the entire inverted gain block and, thus, it does not 
accurately track HD.
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A cue that produces a wide bump is remapped more readily
There is a basic tradeoff between stability and flexibility in any rep-
resentation of the environment; when the representation is stable, it 
is accurate but this makes remapping more difficult. In particular, if 
the HD system ascribes too much weight to any particular cue, it may 
be difficult to learn a new interpretation of that cue. We can state this 
idea in mechanistic terms; if some sensory connections onto HD cells 
become dominant, then other inputs cannot compete with them and 
their weights cannot change. Therefore, a cue that is weighted heavily 
may be difficult to remap after the environment changes.

To test this prediction, we challenged flies to learn an inverted gain 
in virtual reality, such that the visual cue moves in the ‘wrong’ direc-
tion whenever the fly rotates (Fig. 6a). This is a dramatic change in the 
environment, which produces a strong conflict between the visual cue 
and the self-motion input to the HD system. In principle, it might seem 
that the HD system should simply ignore the visual cue in this situation 
but this would lead to poor HD encoding accuracy because this system 
requires feedback for accurate performance (Fig. 2c). Therefore, the 
network should ideally learn to invert the mapping of the visual cue 
onto the EPG cell ensemble. A previous study reported that an optoge-
netic method could be used to artificially create this type of inversion22 
and this motivated us to investigate whether it was possible to obtain 
the same type of inversion through visuomotor learning.

Notably, we found that some individuals were able to learn to 
invert the mapping of the visual cue. In these individuals, bump dynam-
ics were generally unpredictable during the initial part of the inverted 
gain experience; however, at some point, the bump would begin track-
ing HD fairly accurately (Fig. 6b). By contrast, other individuals never 
learned to invert their interpretation of the visual cue. In these cases, 
the bump generally just tracked the visual cue; thus, when the fly turned 
right, the HD system registered a left turn (Fig. 6c).

To quantify learning, we defined a remapping index, where +1 
means that the bump is correctly tracking the fly’s rotation, implying 
successful remapping; conversely, −1 means that the bump is moving 
against the fly’s rotation, implying no remapping (Fig. 7a). On average, 
the remapping index was significantly higher in the final part of the 
inverted gain block as compared to the initial part (Fig. 7b). Moreo-
ver, during the inverted gain block, the mean HD encoding accuracy 
increased (Fig. 7c) and the consistency of behavioral orienting also 
increased (Fig. 7d). Thus, spatial learning was clearly occurring during 
the inverted gain block.

Importantly, the individuals with high remapping indices were not 
simply learning to ignore the visual cue because their HD representa-
tion was much more stable than it would be in darkness. In darkness, 
HD encoding accuracy was always low (Fig. 2c), whereas HD encoding 
accuracy was relatively high by the final part of the inverted gain block, 
at least in some individuals (Fig. 7c). Thus, these individuals are not 
learning to discount the cue; rather, they are clearly learning to invert 
their interpretation of the cue.

We could predict which individuals would be successful at learning 
this inversion on the basis of the profile of the EPG bump in the normal 
gain block before the onset of inverted gain. Specifically, we found 
that individuals with the widest bumps (in the normal gain block) all 
had relatively high remapping indices at the end of the inverted gain 
block (Fig. 7e). In other words, a wider bump was predictive of better 
remapping. There was also a trend for these same individuals to have 
lower HD encoding accuracy during the normal gain block, consistent 
with their wider bumps, although this fell just short of statistical sig-
nificance (Extended Data Fig. 6). Bump amplitude in the normal gain 
block was not correlated with remapping (Fig. 7f).

Similarly, we found that our network model could also learn 
to invert its interpretation of the visual cue. This works because 
self-motion cues instruct Hebbian learning at ER → EPG synapses; 
thus, ER neurons can learn to push the bump in whatever direction 
is consistent with self-motion signals. In the model, we can obtain 

individual variations in performance by varying the amplitude of visu-
ally evoked activity in ER neurons (Figs. 3 and 4). We found that a lower 
ER amplitude allows faster remapping (Fig. 7g) because self-motion 
cues have more weight relative to the visual cue. This allows self-motion 
cues to better instruct the appropriate reinterpretation of the visual 
cue, thus more rapidly reversing the orientation of the notch in the 
ER → EPG weight matrix (Fig. 7h). A lower ER amplitude also produces a 
wider bump (Fig. 7g), which explains why a wider bump predicts faster 
learning (Fig. 7e). In the model, a lower ER amplitude also produces a 
smaller bump amplitude, which was not correlated with learning in 
our data; this may reflect our limited sample size or a real difference 
between the model and the actual network.

In summary, we found that, when a cue produces a wider bump, 
it is remapped more readily after a switch to inverted gain. We can 
reproduce this result in a network model where we vary the amplitude 
of the sensory inputs to the HD network. In this model, individuals 
that experience the cue as being less intense are better able to remap 
that cue after a switch to inverted gain. This result highlights a basic 
tradeoff between stability and flexibility in this system; when a spatial 
representation is highly stable, it is highly accurate but this also makes 
it more difficult to adjust this representation when conditions change.

Discussion
There is a tradeoff between stability and flexibility in neural network 
dynamics. On one hand, theoretical attractor networks are often tuned 
to be stable, such that the bump of activity in the network hardly varies 
in amplitude or width28,45,46; these networks are designed to support 
working memory but not learning. Theoretical attractor networks are 
sometimes also assumed to have fixed synaptic weights at their sensory 
inputs to minimize representational drift47,48. On the other hand, the 
biological attractor networks that underpin the brain’s navigational 
brain regions17 likely support learning about the relative positions 
of environmental cues and the stability of those cues. Thus, as cues 
change and learning proceeds, we might expect to see changes in syn-
aptic weights20–28 and resulting changes in profile49,50. We do not have a 
general understanding of how biological neural networks manage the 
tradeoff between stability and flexibility.

In the Drosophila HD system, the bump of activity has a stable posi-
tion when the fly is not moving, effectively storing a working memory 
of the fly’s orientation, using a ring attractor network. Here, we show 
that this bump varies systematically in width and amplitude depend-
ing on the intensity and familiarity of the cues in the environment. 
The changes we observe in the bump profile can be explained, in part, 
by changes in synaptic weights at sensory synapses onto HD cells. 
Although we cannot observe these synaptic weights directly, we can 
ascertain something about these weights on the basis of observed 
changes in bump profile. For example, when cue intensity increases 
or a cue becomes more familiar, we find that the bump becomes nar-
rower and this can be at least partly explained by a deeper notch in 
the synaptic weight matrix. Moreover, we show that increases in cue 
intensity and familiarity produce increases in HD encoding accuracy 
and the consistency of behavioral orientation; thus, a more intense and 
familiar cue is actually more informative. When we then introduce con-
flicts between cues, we find that the cue that produces higher encoding 
accuracy is generally accorded more weight and this is predicted by 
the bump profile in response to that cue. Moreover, the cue that pro-
duces higher encoding accuracy generally instructs spatial learning in 
response to the cue conflict, which resolves the conflict and increases 
encoding accuracy. Together, these results provide concrete evidence 
for the theoretical proposal20,21,26–31 that Hebbian plasticity can endow 
an attractor with the flexibility it needs to support learning about the 
relative positions of environmental cues and the stability of those cues.

The idea that spatial learning might involve synaptic plasticity 
is intuitive but it is technically difficult to observe synaptic weights 
evolve in real time in a biological network. Here, we took the bump 
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profile as a proxy for synaptic weights and showed that it takes min-
utes to achieve restabilization of the bump profile after a change 
in the environment; this result implies that it also takes minutes 
to achieve restabilization of synaptic weights. This timescale may 
represent a compromise between the demands of flexibility and 
stability; a faster timescale would accelerate learning but it would 
also accelerate forgetting when a cue transiently disappears and 
increase representational drift. In the Drosophila HD system, dopa-
mine controls the learning rate and dopamine increases with explora-
tory movements24; this provides a mechanism to increase network 
flexibility during exploration, conversely allowing more stability at 
other times.

It is less intuitive to think that synaptic plasticity can help cues to 
be weighted by their informativeness. Accurate inference requires that 
more informative cues should be weighted more heavily and, in some 
cases, this reweighting process can occur instantaneously; for example, 
we immediately ascribe less weight to a visual cue when it is blurred or 
degraded51,52. In these cases, there is no need for inference to involve 
neural plasticity. However, in other cases, the informativeness of a cue 
cannot be assessed immediately; for example, during navigation, the 
informativeness of a visual cue depends on its stability within the envi-
ronment, which can only be evaluated by learning. Hebbian plasticity 
has been suggested to assist inference under these conditions21,25,29–31 
and our work provides direct support for this suggestion.
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Fig. 7 | Bump width in normal gain predicts cue remapping in inverted gain. 
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flies did not receive a ‘darkness’ trial. a, Offset distributions for the two example 
flies from Fig. 6. The remapping index is positive for fly 1 because the offset with 
respect to HD is more stable. The remapping index is negative for fly 2 because 
the offset with respect to the visual cue is more stable. b, Remapping index in 
the initial and final part of the inverted gain block. Across all flies, the remapping 
index is larger in the final part (P value from two-sided Wilcoxon test). Black 
and gray lines denote individuals with final remapping indices above or below 
the mean (horizontal bar); this is preserved in c–f. c,d, HD encoding accuracy 
(c) and consistency of behavioral orientation (d) in darkness versus inverted 
gain (P values from linear mixed-effects models with Tukey comparisons and 
Bonferroni corrections). e,f, Final remapping index is predicted by bump width 
(e; P = 0.02, Pearson’s correlation) but not bump amplitude (f; P = 0.79, Pearson’s 

correlation) during the preceding normal gain block (n = 14 flies) (Extended Data 
Fig. 6). g, Model showing the effect of varying the amplitude of visual responses 
in ER neurons. Lower ER amplitude produces a faster recovery of HD encoding 
accuracy after the onset of inverted gain. Note that lower ER amplitude produces 
lower overall HD encoding accuracy; to facilitate a comparison between 
conditions, we show the normalized HD encoding accuracy (normalized to 1 at 
end of normal gain epoch) beginning halfway through the normal gain epoch 
(arrow). Results are shown as the mean ± s.e.m. across 100 simulation runs. Panel 
h shows weight matrices for the indicated time points (i, ii and iii). h, Model 
showing ER → EPG weights at the end of the normal gain block (i), soon after the 
onset of inverted gain (ii) and when remapping is nearly complete (iii). Results are 
shown for two ER amplitudes (1.327 and 2.123). At the intermediate time point (ii), 
remapping has progressed further with the lower ER amplitude.
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Importantly, our model can explain many features of animal navi-
gation behavior. For example, navigating animals assign more weight 
to spatial cues that are more salient or more stable and familiar; this 
is true in both insects8–13 and vertebrates3–7,14. Our results imply that 
these types of cues can create stronger spatial modulations in synaptic 
weights from sensory cells. Previous work has also demonstrated that 
insects can form arbitrary learned associations between the angular 
positions of the wind and the sun8,9,27. Our results show how an arbitrary 
cue configuration can be stored in the pattern of synaptic weights 
from sensory cells.

Our results also provide insight into mechanisms underlying 
individual differences in navigation behavior53,54. Specifically, we 
showed that different individuals have different levels of encoding 
accuracy in the same virtual reality environment. Moreover, individu-
als with higher accuracy had significantly narrower bumps of activity. 
On the other hand, individuals with wider bumps were better able to 
reorganize their HD representations when the environment changes. 
In our model, we could recapitulate all these individual differences 
by varying the amplitude of sensory inputs to the HD system. Impor-
tantly, individual variation is not specific to flies; human subjects 
also show marked idiosyncratic differences in cue weighting during 
navigation14,55–58. Individual differences may reflect variations in each 
individual’s past experiences. Alternatively, they may reflect an evo-
lutionary strategy; for example, it might be useful for the species if 
some individuals have more stable mental representations of space 
(sacrificing flexibility), while others have more flexible representa-
tions (sacrificing stability).

The fact of individual differences in navigation should make it 
obvious that navigation is not always optimized. Although the model 
network we describe here has some remarkable features, it cannot 
perform optimal Bayesian inference, even in the absence of these 
individual differences. Optimal inference would require the network 
to store the certainty associated with the network’s HD estimate, for 
example through some mechanism of persistent activity that boosts 
bump amplitude after an informative cue is presented, such that 
bump amplitude remains persistently high for some time after the 
cue disappears49,50. Our data imply that this does not occur (Extended 
Data Fig. 8); accordingly, our model network in this study does not 
store certainty about HD, instead storing information about the sali-
ence, stability and familiarity of each cue. Curiously, there are hints 
that the insect brain does have a way to represent certainty during 
navigation. For example, homing ants will search for their nest over 
a wider radius if they have just returned from a longer trip, which 
suggests that they keep track of their certainty and use this to adjust 
their search strategy59. Moreover, ants will steer further downwind 
of their expected nest site when they have returned from a longer 
trip, which should help them to use odor filaments as a guideline 
back to their nest when their certainty is low60. In the future, it will be 
interesting to investigate whether these behaviors actually arise from 
a neural representation of certainty or whether they reflect simpler 
behavioral strategies27.
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Methods
Experimental model and subject details
Drosophila melanogaster were raised on cornmeal and molas-
ses (Archon Scientific) under a 12-h light–dark cycle at 25 °C. 
Experiments were performed on 1-day-old virgin females with the 
genotype w/+;+;P{R60D05-Gal4}attP2/P{20XUAS-IVS-jGCaMP7f }
VK00005. Both P{R60D05-Gal4}attP2 and P{20XUAS-IVS-jGCaMP7f }
VK00005 were obtained from the Bloomington Drosophila Stock 
Center (RRID:BDSC_39247 and RRID:BDSC_79031, respectively). 
P{R60D05-Gal4}attP2 drives Gal4 expression in EPG neurons, as 
reported previously34,41, and its construction was described previ-
ously61. P{20XUAS-IVS-jGCaMP7f }VK00005 was also described 
previously40.

Fly selection and housing
Virgin female flies were anesthetized on CO2, collected at least 12 h 
before the experiment and then allowed to recover on molasses food. 
Imaging experiments were conducted the following day, 14–36 h after 
eclosion. Before the experiment, flies were starved for 0–24 h on a piece 
of damp laboratory tissue (Kimtech). The starvation time was chosen on 
the basis of our observations for what resulted in the best fly behavior 
during the months in which each experiment was conducted (Figs. 2 
and 3 and Extended Data Figs. 2, 5, 7 and 8: 5–24 h; Fig. 4 and Extended 
Data Fig. 3: 0 h; Fig. 5 and Extended Data Fig. 4: 0–3 h; Figs. 6 and 7 and 
Extended Data Fig. 6: 18–27 h). No statistical methods were used to 
predetermine sample sizes but our sample sizes are similar to those 
reported in previous publications23,24,33,34,37,38.

Fly preparation and dissection
Flies were briefly cold-anesthetized in a glass vial (V7005-500EA, 
Sigma-Aldrich) on ice and placed inside a custom-made inverted 
pyramidal platform CNC machined from black Delrin (Protolabs Inc.). 
The head was tilted forward to make the posterior part of the brain 
more accessible during imaging. Because of the head’s angle and the 
pyramidal shape of the holder, the majority of each eye was positioned 
below the holder and, therefore, able to see the visual stimuli. The wings 
were removed and the head and thorax were secured to the holder using 
ultraviolet-curable glue (Loctite AA 3972) and cured with ultraviolet 
light (LED-200, Electro-Lite). To prevent large brain movements, the 
proboscis was removed (we again briefly cold-anesthetized the animal 
during this process). The head was then bathed in an extracellular 
saline solution with the following composition: 103 mM NaCl, 3 mM 
KCl, 5 mM TES, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM 
NaH2PO4, 1.5 mM CaCl2 and 4 mM MgCl2 (osmolarity 270–275 mOsm, 
bubbled with 95% O2 and 5% CO2, to reach a final pH of ~7.3). A window 
was opened in the head cuticle and the trachea and fat were removed 
to better expose the brain. To reduce additional brain movements, 
muscle 16 was clipped.

Two-photon calcium imaging
We performed in vivo calcium imaging with a two-photon laser scan-
ning microscope with a galvo-resonant scanner (Bergamo II, Thorlabs). 
We used a femtosecond Ti:sapphire laser with dispersion precompen-
sation (Vision-S, Coherent) tuned to 940 nm to achieve two-photon 
excitation. To image, we used a ×20 objective (numerical aperture: 
1.0; XLUMPFLN, Olympus) mounted on a fast objective scanner (P-725, 
Physik Instrumente). The emission from our samples was detected with 
a GaAsP photomultiplier tube (PMT) detector (Hamamatsu) equipped 
with a 525-nm bandpass filter (Thorlabs). We collected imaging data 
using National Instruments PXIe-6341 hardware with ScanImage62 
2018b or 2020 (Vidrio Technologies, RRID:SCR_014307). We defined 
an image as 256 × 128 pixels encompassing the protocerebral bridge 
(PB). We acquired a volume of 12 slices, with 5-μm steps separating 
consecutive slices, at a rate of 9.18 volumes per second. We discarded 
the slices corresponding to ‘flyback’ frames post hoc.

Fly locomotion
The platform holding the fly was positioned above a spherical treadmill, 
consisting of a 9-mm-diameter ball made of foam (FR-4615, General 
Plastics). The ball was floated on a steady stream of medical grade 
breathing air at ~0.2–0.3 L min−1 in a custom holder three-dimensionally 
(3D) printed using Grey Pro v2 resin (Formlabs). An irregular black 
pattern was painted on the ball (Vallejo Black Model Color Paint) to 
allow tracking of the ball surface with machine vision. The fly was posi-
tioned on the ball under visual control, using a side camera (CM3-U3-
13Y3M-CS, forward-looking infrared (FLIR); InfiniStix lens 94 mm, 
×0.50, Infinity Photo-Optical) and a front camera (BFS-U3-13Y3M, 
FLIR; InfiniStix lens 94 mm, ×0.50, Infinity Photo-Optical). The ball was 
illuminated with a round board of 36 infrared light-emitting diodes 
(LEDs) (SODIAL). The image from one of the cameras was acquired 
at 50 Hz and analyzed using FicTrac63 version 2.1.1 (rjdmoore.net/
fictrac/) to track the position of the ball in the pitch, yaw and roll axes, 
thereby reconstructing the fly’s locomotor trajectory. This camera 
was positioned at an angle to ensure that a sufficient fraction of the 
ball surface was always visible, avoiding occlusion by the rotating air 
nozzle used to deliver the wind.

Visual stimuli
Visual stimuli were displayed on a custom-built cylindrical panorama 
of LEDs adapted from published prototypes64. The panorama covered 
the entire 360° range of azimuthal angles. It consisted of two rows and 
12 columns of square blue LED panels (peak: 470 nm), with each panel 
consisting of 8 × 8 pixels. One panel was removed in the top row (on 
the fly’s right) to accommodate the side camera used for fly position-
ing and ball tracking. The visual arena was tilted forward to match the 
inclination of the fly’s head in the platform.

The LED panels were covered with a diffuser material (SXF-0600, 
snow-white light diffuser, Decorative Films). Moreover, five layers of 
gel filters were used to reduce overlap in spectra and to decrease the 
intensity of the stimuli: three layers of Tokyo blue (Rosco, RE071), one 
layer of 0.3 neutral density (Rosco, RE209) and one layer of marine blue 
(Rosco, RE131). Additionally, the back, top and bottom of the panorama 
were covered with black tape to further reduce the amount of LED light 
reaching the PMTs.

The visual cue consisted of a blue vertical stripe (two pixels wide, 
7.5°), spanning the vertical extent of the panorama. Visual stimuli were 
programmed in Matlab 2020a (MathWorks, RRID:SCR_001622). Cus-
tom Python software was used to read FicTrac outputs and generate 
analog voltage signals through a Phidget analog output device (Phidget 
Analog 4-Output 1002_0B). For closed-loop control of the stimulus, 
the ball displacement in the yaw axis was used to update the azimuthal 
position of the visual cue (refresh rate ≥ 372 Hz). Analog output signals 
from the visual panel system were digitized with a NI-DAQ PCI-6351 
(National Instruments) at 4 kHz. The intensity of the background was 
0/15. The bright cue had an intensity of 15/15, whereas the dim cue had 
an intensity of 1/15. These intensity values were chosen empirically on 
the basis of the results of pilot experiments, to ensure that HD encod-
ing accuracy was lower for the dim cue versus the bright cue, but HD 
encoding accuracy was still higher for the dim cue than in conditions 
of darkness. We also deliberately chose values of cue brightness and 
wind speed (discussed below) such that the bright cue and the wind 
were roughly equally informative, meaning that they produced similar 
values of HD encoding accuracy (averaged across flies).

Wind stimuli
Wind stimuli were delivered using a custom-built device that is con-
ceptually similar to a previously published device65. Our device uses a 
commutator to maintain the air flow as the nozzle rotates around the 
fly in 360°. The commutator was 3D-printed from Rigid 4000 resin 
(Formlabs) in two pieces. The base piece had a ball holder and two air 
intake ports (one for the air-supported ball and another for the wind 
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delivery). The top piece had an air nozzle (inner diameter: 2.8 mm) that 
rotated around the fly. When the nozzle was in front of the fly, it was 
positioned 10 mm from the antennae. A ball bearing (McMaster-Carr, 
5908K19) was used to create a smoothly rotating interface between the 
top and bottom pieces. To rotate the air nozzle, a timing belt (0.25-inch 
width; McMaster-Carr, 6484K118) was attached to the top part of the 
commutator and connected to a pinion pulley (Servocity SKU, 615424), 
which was mounted on the shaft of a stepper motor (Pololu, 1204). The 
entire wind delivery device was designed such that it would fit inside 
the 360° visual panorama described above.

The air nozzle was printed from black material (Black Resin, Form-
labs) to reduce its visibility. Control experiments were performed to 
ensure that the nozzle did not interfere with the fly’s ability to see the 
LED arena and that the nozzle itself was not acting as a visual cue. In 
these control experiments, each fly received three stimulus blocks: a 
block in a closed loop with a high-contrast visual cue, a block in a closed 
loop with wind and a block in a closed loop with ‘wind’ but with the air 
turned off (meaning that the nozzle moved around the fly as normal 
but no air was flowing). We found that the bump had a consistent offset 
relative to the virtual environment in the first two blocks (as expected) 
but it drifted relative to the environment in the third block (as we would 
expect from a fly walking in darkness); in other words, HD encoding 
accuracy was high in the first two blocks and low in the third block. 
This result confirmed that the visual image of the nozzle did not act 
as an effective HD cue.

Wind direction was controlled using Python and Arduino. 
The stepper motor was controlled using a controller board 
(X-NUCLEO-IHM02A1, STMicroelectronics) and Arduino UNO. Arduino 
code allowed us to specify the location of the air nozzle in the next 
time step and a custom Python code communicated with the Arduino 
through serial port to generate the pattern of nozzle movements. When 
the wind was in closed loop with the fly’s rotation, the Python code 
obtained the current HD of the fly through FicTrac (as described above) 
and generated the command to move the air nozzle in the appropriate 
location, such that the allocentric wind direction remained constant, 
from the fly’s perspective.

The wind speed was 0.2 m s−1, measured with a hot-wire anemome-
ter (A004, Kanomax) at the fly’s location. Air flow was regulated through 
a mass flow controller (Aalborg, GFC17A-VAL6-C0). Before each experi-
ment involving wind stimuli, we confirmed that the air nozzle was 
accurately pointing at the fly’s antennae by observing the movement 
of the aristae in response to wind using a camera (BFLY-PGE-31S4M, 
FLIR) equipped with a high-magnification lens (InfiniStix lens 44 mm, 
×3.00, Infinity Photo-Optical).

Stimulus protocols
For Figs. 2 and 3 and Extended Data Figs. 2 and 8, flies were in a closed 
loop for 20 min with a stimulus that switched across three contrast 
levels in 200-s blocks. The bright cue was a bright stripe (brightness 
level 15/15) against a black background (0/15). The dim cue was a dim 
stripe (1/15) against a black background (0/15). In the no-cue condi-
tion, the panorama displayed a black background (0/15). The block 
sequence was drawn randomly for each fly. Figure 2 uses data from all 
blocks, while Fig. 3 focuses only on each fly’s first block with the dim 
cue, because that was the block where HD encoding accuracy was most 
variable across individuals. Extended Data Fig. 2 uses data from the first 
block of each type. Extended Data Fig. 8 uses data from the transitions 
between darkness and the bright cue.

For Fig. 4 and Extended Data Fig. 3, flies were first in a closed loop 
for 10 min with a single cue: a bright stripe (15/15) against a dark back-
ground (0/15) or wind. Then, flies were in a closed loop for 5 min with 
the cue they did not receive in the first block. Next, the flies were in 
a closed loop with both cues for 45 min. Every 5 min, one of the cues 
shifted, with alternating visual shifts and wind shifts. If the fly had been 
presented with a visual cue as the first stimulus, then the visual cue was 

the first cue to jump and vice versa. Cue shifts were +120° or −120°, 
with the direction determined randomly for each shift. Because of the 
nature of our stimulus delivery, the visual cue shift occurred essentially 
instantaneously but the wind shift was limited by the stepper motor 
speed, taking ~0.4 s to rotate to its new location.

For Fig. 5 and Extended Data Fig. 4, flies were first in a closed loop 
for 10 min with a single cue: a bright stripe (15/15) against a black back-
ground (0/15) or wind. Then, flies were in closed loop for 10 min with 
the cue they did not receive in the first block. The block order (visual 
then wind or wind then visual) was drawn randomly for each fly. Next, 
flies were in a closed loop with both cues presented simultaneously 
for 800 s. In the fourth block, flies were again in a closed loop with the 
initial single cue, this time for 5 min. Finally, flies were in a closed loop 
with the second single cue, also for 5 min.

For Figs. 6 and 7 and Extended Data Fig. 6, flies were first in a closed 
loop with a bright stripe (15/15) for 15–20 min to allow the compass system 
to stabilize; data from this stabilization epoch are not shown in the figures 
but instead used for Extended Data Figs. 5 and 7 (top). Next, flies were in 
a closed loop with a bright stripe for 20 min. For the first 200 s, the gain 
between the fly’s movement and the cue movement was set to 1 (normal 
gain); for the next 800 s, it was set to −1 (inverted gain); for the final 200 s, 
it was reverted back to 1. Finally, flies walked in darkness for 200 s.

For Extended Data Figs. 5 and 7 (top), flies were in closed loop with 
a bright stripe (15/15) against a black background (0/15) for 15–20 min.

For Extended Data Fig. 7 (bottom), these panels show responses 
to an open-loop presentation of a rotating visual cue. The cue was a 
bright stripe (15/15) against a black background (0/15). Each fly received 
14 60-s blocks, with the cue rotating at 30°, 60°, 90°, 120°, 150°, 180° 
or 200° per second (two blocks per stimulus speed, with speed order 
randomized).

Randomization and blinding. The experimenter was not blind to 
the experimental conditions assigned to each fly. Blinding is only 
potentially relevant to experiments where different flies experienced 
different experimental treatments (for example, different genotypes 
or different drug treatments). However, there was only one experiment 
where different flies experienced different experimental treatments, 
namely the cases where the order of the different brightness blocks 
was randomized (Figs. 2 and 3 and Extended Data Figs. 2 and 8). Here, 
the experimenter could not be blinded to the experimental condition 
because the stimulus apparatus delivered the stimulus in a manner 
that was visible to the experimenter.

Data analysis
Data analysis was performed using Matlab R2021a (MathWorks, 
RRID:SCR_001622), Python 3.7 and 3.9 (www.python.org /, 
RRID:SCR_008394), Stan66 (mc-stan.org/, RRID:SCR_018459), PyStan 
2.19.0 (pystan2.readthedocs.io/en/latest/), R 4.1.3 (www.r-project.
org/, RRID:SCR_001905) and RStudio 2022.02.0 (www.rstudio.com/, 
RRID:SCR_000432). Tukey tests and Pearson correlations assumed 
that data were distributed normally but this was not formally tested. 
No flies were excluded from analyses.

Preprocessing imaging data. The NoRMCorre algorithm67 (https://
github.com/flatironinstitute/NoRMCorre) was used to perform rigid 
motion correction in the x, y and z dimensions. Then, the maximum 
z-projection was used to select a mask around the PB and define our region 
of interest (ROI). The PB was divided along its horizontal axis into 25–40 
ROIs (Extended Data Fig. 1). The change in fluorescence (∆F/F) was com-
puted for each ROI, with the baseline fluorescence F defined as the bottom 
tenth percentile of fluorescence values for the trial for that ROI.

Analysis of locomotion data. The position of the ball in all three axes 
was computed by FicTrac at 50 Hz. This was used to infer the position of 
the fly in fictive two-dimensional space. Position data were unwrapped 
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and then smoothed using locally weighted scatter plot smoothing 
(LOWESS smoothing). The velocity was computed in all three axes and 
smoothed again with the LOWESS method. The smoothed data were 
then downsampled to match the imaging volume rate.

Bump width and amplitude. A von Mises function of the form 
f(x) = α exp(κ cos(x − μ)) + c was fit to each time point of our ∆F/F  signal 

with Matlab’s ‘fit’ function using the nonlinear least squares method 
and the trust-region algorithm for optimization. The estimated value 
of μ represents the bump’s position. The fit coefficients were then used 
to compute the bump width and amplitude:

bump width = 2 |||cos
−1 [ 1κ log (

1
2 (exp(κ) + exp(−κ)))]

|||

bump amplitude = a (exp(κ) − exp(−κ))

A goodness-of-fit metric (adjusted R2) was obtained for each 
time point and time points were discarded from group analyses if the 
adjusted R2 was below 0.5. Extended Data Figure 1 shows examples of 
a good fit and a poor fit.

HD. HD was taken as the time integral of the fly’s rotational velocity on the 
spherical treadmill, relative to the position with the cue directly in front 
of the fly (0°). In the two-cue environment in Fig. 5, the wind tube was 
aligned with the visual cue; thus, HD = 0° corresponded to the position 
where both the wind tube and the visual cue were directly in front of the 
fly. The bump position rotates clockwise in the ellipsoid body (EB; imaged 
from the posterior side of the head) as HD rotates counterclockwise; 
therefore, to account for this directionality when we plotted HD over time 
(for example, in Fig. 1f and elsewhere), we always plotted (−HD) to make it 
easier to visualize the correspondence between bump position and HD.

Offset and HD encoding accuracy. The offset of the bump relative 
to HD was computed as the circular distance between bump position 
and HD. Bump position rotates clockwise in the EB (imaged from the 
posterior side of the head) as HD rotates counterclockwise; therefore, 
to account for this directionality, we used (−HD) rather than HD:

offset = bump position − (−HD)

In a single-cue environment, we defined HD = 0° as the value of 
HD that places the cue directly in front of the fly; thus, an offset of 
+90° means that the bump is positioned at +90° (on the right-hand 
edge of the EB) when the fly is facing the cue. To compute HD encoding 
accuracy, each offset value was treated as a unit vector and the vector 
strength of these values was calculated. HD encoding accuracy was 
computed only over the time points when the fly was moving; that is, 
moments of immobility were excluded.

Bump preference index and behavioral preference index. In Fig. 4 
and Extended Data Fig. 3, we computed a bump preference index for 
each cue shift. Here, we first obtained the mean value of the visual cue 
and wind offset before the cue shift (calculated over the 2-min window 
preceding each shift) and following the cue shift (calculated over a 
2-min window starting 30 s after the cue shift because we found that 
it took about 30 s for the offset to stabilize after a cue shift). We then 
calculated the change in visual cue offset and wind offset by taking the 
difference between the postshift and preshift values. We computed 
the bump preference index as follows:

bumppreference index = |change in visual cueoffset|−|change inwindoffset|
|change in visual cueoffset|+|change inwindoffset|

The stickiness index was obtained in the same way, except that the 
offset here was computed relative to the shifted cue and the nonshifted 

cue. Here, a value of +1 means that the bump ‘sticks’ with the nonshifted 
cue, whereas a value of −1 means that the bump follows the shifted cue:

stickiness index = |change in shifted−cueoffset|−|change in nonshifted−cueoffset|
|change in shifted−cueoffset|+|change in nonshifted−cueoffset|

The behavioral preference index was computed in the same way, 
except that the offset here was the angular difference between the fly’s 
HD and the cue position:

behavioral preference index = |change in visual cueoffset|−|change inwindoffset|
|change in visual cueoffset|+|change inwindoffset|

Offset changes during configurational learning. In Fig. 5, we defined 
the amount of conflict in the two-cue environment as follows:

θn = offset with both cues − initial single cue offset

The resulting offset change was determined as follows:

ϕn = final single cue offset − initial single cue offset

In Fig. 5d, to fit the relationship between the conflict θn and the 
amount of remapping ϕn, we used a probabilistic model:

μn = a⋅θn + b

ϕn ∼ von Mises(μn, κ)

In other words, we assumed that ϕn is generated by adding a noise 
(distributed according to the von Mises distribution) to an intermediate 
variable μn, which is assumed to be a linear function of θn with slope a 
and offset b. The magnitude of the noise is characterized by the con-
centration parameter κ of the von Mises distribution. We obtained 
estimates of parameters α, b and κ by performing Bayesian analysis 
with the following prior distributions over the parameters:

a ∼ N(0, 1)

b ∼ uniform(−π,π)

κ ∼ inverse gamma(1.91,6.47)

We chose a prior over parameter a on the basis of prior knowledge 
that a slope with large magnitude is highly unlikely. We chose a uniform 
prior over the offset b. We chose an inverse gamma distribution over 
the concentration parameter κ to suppress large κ values (all points 
lie perfectly on a straight line) and to strongly suppress small κ values 
(large noise)68. The parameters of the inverse gamma were chosen such 
that <2% of κ fell below 1 or above 50. We confirmed that these prior 
choices are reasonable according to prior predictive simulations.

We estimated the three parameters by obtaining samples from 
the posterior using the Hamiltonian Monte Carlo implemented 
in Stan 2.19.0 (ref. 66) (four chains with 1,000 samples each after 
1,000 samples of warm-up, no thinning) accessed using PyStan2. 
Diagnostics of the Hamiltonian Monte Carlo did not show any issues 
with the fit, examination of the posterior distribution using the pair 
plots indicated no signs of multimodality and the posterior retrod-
ictive checks showed no obvious discrepancies between the model 
and the data69.

Remapping in inverted gain. In Fig. 7 and Extended Data Fig. 6, the 
remapping index is the difference between the HD encoding accuracy 
with respect to the fly’s HD and the HD encoding accuracy with respect 
to the visual cue position, excluding time points where the fly was 
immobile. Specifically,
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remapping index

= vector strength (offsetbump−HD) − vector strength(offsetbump−visual)

Data points when the fly was immobile were discarded from the 
remapping index calculation. This index is designed to be robust to the 
spontaneous alterations in the fly’s behavior. For example, if the fly were 
to walk perfectly straight for some time and if its EPG activity bump 
did not move during this time, then vector strength(offsetbump−HD) and 
vector strength(offsetbump−visual) would both be 1; taking the difference 
between these two vector strength values yields a remapping index of 
0, which captures the fact that the bump would be equally well aligned 
with the fly’s self-motion and the visual cue.

Network model
Our network model follows the structure of a previously published ring 
attractor model22,24, with several key modifications. First, we systemati-
cally varied the amplitude of sensory (ER) inputs to the ring attractor. 
Second, we gave the attractor network two independent streams of 
sensory input, with distinct ER → EPG weights. Third, we updated two 
learning parameters (wmax and g0) to promote stable outcomes after 
learning, while also maintaining the sensitivity of the network to all 
available cues. Details on these changes are provided below, along with 
a summary of the model infrastructure.

In this model, the firing rate dynamics of the N simulated EPG 
neurons are given by

τ dfn
dt

= −fn + [αfn + D( fn−1 + fn+1)

+ v(t)
vrel

1
2
( fn+1 − fn) − β∑l fl + In,1(t) + In,2(t) + 1]+

where fn is the firing rate of neuron n, τ  is the network’s time constant, [⋅]+ 
is the linear-rectifying function that returns [a]+ = a if a > 0 and [a]+ = 0 
otherwise, α and D control the local self-excitation, v(t) is the fly’s current 
angular velocity, vrel is a parameter that controls how this angular velocity 
impacts EPG activity, β controls the amount of global inhibition and In,k(t) 
is the external input from cue k ∈ {1, 2} to EPG neuron n.

Inhibitory inputs indicating cue positions, Ik = (I1,k,⋯ , IN,k)
T , are 

formed by

Ik(t) = −Wk(t)gk(t)

where gk = (g1,k,…,M,k) is the vector defining the activity of the M ER neu-
rons associated with cue k and Wk is the N × M weight matrix whose nmth 
element Wk,nm specifies the synaptic weight from the mth ER neuron 
to the nth EPG neuron. Weights are non-negative; thus, Ik ≤ 0. These 
synaptic weights are continuously updated according to a postsynapti-
cally gated learning rule

dWk,nm

dt
= η|v(t)|fn(wmax(1 − gk,m(t)/g0) −Wk,nm(t))

where η(|v(t)|) is the learning rate (which depends on the absolute value 
of the fly’s rotational velocity v(t)) and wmax and g0 are parameters that 
control the learning dynamics of the different parts of the learning 
rule. This learning rule can be rewritten as follows:

dWk,nm

dt
= η|v(t)|fn(wmax −Wk,nm(t)) − η(|v(t)|)fnwmaxgk,m(t)/g0

where the first term represents nonassociative LTP and the second term 
represents associative LTD. Here, nonassociative LTP depends on post-
synaptic activity but not presynaptic activity; by contrast, associative 
LTD depends on both presynaptic and postsynaptic activity. Activity 
of the kth ER neuron population is given by

gk,m(t) = εER(t) + Ak exp[κk cos(θ(t) − θm) − 1]

where the upper bound of the uniformly distributed baseline noise 
εER(t) ∼ uniform(0,bER∑l fl

ss) is the summed activity of the EPG neurons 
in a steady state without external inputs, In,1(t) = In,2(t) = 0, scaled by a 
constant factor bER, Ak is the amplitude of the population activity profile 
(ER amplitude), κk is the precision (inverse width) of the population 
activity profile and θm is the preferred HD of the mth ER neuron.

We simulated the fly’s HD sequence by drawing a sequence of HD 
displacements, du(t) ∼ N(0,σu2dt) , from a zero-mean Gaussian with 
variance σu2dt, which we then turned into a sequence of angular veloci-
ties du(t)/dt . To ensure a smooth angular velocity sequence, we then 
applied a running window average of the du(t)/dt  sequence (centered 
window, size 2.5 s) to generate the actual angular velocity sequence 
vtrue(t). This sequence was integrated across time to yield the HD 
sequence θtrue(t). The activity of the EPG neurons fn was driven by a noisy 
version of this angular velocity, v(t) = vtrue(t) + εAV(t), where εAV(t) is a 
Gaussian white noise process with s.d. σAV that has been smoothed with 
a running window average (centered window, size 0.04 s).

In all network simulations, we either simulated individual trials 
or simulated a set of trials and then averaged across those trials. In 
each trial, the EPG activity and synaptic weight dynamics were simu-
lated by Euler integration and the ER activity and the fly’s HD sequence 
were generated in time steps of Δt = 2.5 ms. The EPG activity was ini-
tialized by a cosine profile and then simulating the network for 20 s 
in the absence of both angular velocity and external inputs, 
In,1(t) = In,2(t) = 0, such that the EPG activity reached an approximate 
steady state fss. The synaptic weights were initialized randomly by 
drawing their elements from a uniform distribution over  
[0, 1) and subsequently normalized to reach an initial matrix  
Frobenius norm of ||Wk||F = 1.5. This was followed by a burn-in period 
(analysis-dependent duration; discussed below) such that synaptic 
weights could approximately reach a steady state. What followed was 
dependent on the specific analysis in question and is described in 
detail below. Unless otherwise mentioned, we simulated a network 
with N = M = 32 EPG and ER neurons (per external input) and used the 
following parameters: EPG network time constant τ = 50 ms, local 
excitation α = −8.93 and D = 5.19, global inhibition β = 0.11, angular 
velocity scaling vrel = 3.64 , synaptic weight learning rate η = 0.34 , 
learning parameters wmax = 1/17  and g0 = 1, input activity baseline 
noise factor bER = 0.45, fly motion noise σu = 8 radians per second and 
angular velocity noise σAV = 1  radians per second. Note that these 
values of wmax and g0 are different from those used in previous studies; 
we found that it was necessary to change these values to balance 
stability and flexibility during learning. In particular, if learning led 
to weight magnitudes that were too large, the network model ignored 
angular velocity inputs; on the other hand, if learning led to weight 
magnitudes that were too small, the network model never established 
a stable ER → EPG mapping. To simulate the ER activity gk(t), we speci-
fied a scale factor Ãk  (analysis-dependent scale factor; discussed 
below) that was multiplied by the amplitude of the steady-state EPG 
activity bump fss (~1.062) to obtain the ER amplitude Ak ≈ 1.062Ãk. For 
all simulations, we set the width of the ER activity bump to be  
wk = 0.8  for all k, which was then converted to the precision by 
κk = log(2)/(1 − cos(wk/2)). For simulations in which only a single cue 
was present, we fixed I2,n = 0 for all n. In the list of parameter values 
above, all reported times are simulation times. When plotting time 
courses, we converted them to experiment time by assuming that 
24 s of experiment time corresponded to 1 s of simulation time. We 
assessed HD encoding accuracy by first computing the circular vari-
ance between HD θtrue and the position of the EPG activity bump 
argmax

l
fl  on [−π, π) over a causal 8-s window. The HD encoding accu-

racy was defined as 1 − circular variance . We computed bump width 
and amplitude by finding the full width at half maximum and the 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01823-z

difference between the peak and the trough, respectively, of the EPG 
activity bump. We computed the weight matrix notch depth by first 
smoothing the weight matrix Wk with a Gaussian filter with s.d. 
σsmooth = 2 and then finding the difference between the maximum and 
the minimum matrix elements.

Impact of cue intensity on bump parameters and across-individual 
variability. In Figs. 2h,i and 3d,f, we simulated a network with a single 
external input with different cue intensities (41 values of Ãk  from 0 to 
2 in steps of 0.05). We assessed the bump parameters in a 30-s period 
after a burn-in period of 120 s. The bump parameters shown in Fig. 2h 
are averages across 100 simulated trials for each cue intensity. To 
simulate across-individual variability, we generated individual varia-
tions in ER amplitude in response to a given cue. We, thus, plotted the 
bump width (Fig. 3d) and bump amplitude (Fig. 3f) over HD encoding 
accuracy for different cue intensity (11 values of Ãk from 0.5 to 1 in steps 
of 0.05) and five different simulated trials per cue intensity.

Impact of individual variations in experienced cue intensity on 
cue weighting. In Fig. 4f,g, we simulated a network with two external 
inputs. To introduce variations and differences in experienced cue 
intensity, we varied the ER amplitude (11 values of Ãk  from 0 to 1 in 
steps of 0.05) of one ER population while holding the ER amplitude of 
the other ER population constant (ER amplitude scale set to 0.75) and 
vice versa, producing 22 ER amplitude pairs. ER amplitude was set to 
0 when the associated cue was off. Each simulated trial began with a 
30-s burn-in period during which both cues were off. The burn-in 
period was followed by two single-cue blocks where each cue was 
turned on for 25 s one at a time. We assessed the bump width, ampli-
tude and HD encoding accuracy during the second half of each 
single-cue block. After the single-cue blocks, both cues were on for a 
total of 262.5 s. Every 12.5 s, one of the cues shifted, with the shifts 
alternating between visual cue and wind cue. Thus, each simulated 
trial comprised 20 cue shifts with ten shifts per modality. Cue shifts 
were +120° or −120°, with the direction determined randomly for each 
shift. If visual cue was on in the first single-cue block, then visual cue 
was the first cue to shift and vice versa. The order was balanced across 
trials such that visual cue shifted first in half of the trials. For each cue 
shift, we computed a bump preference index (discussed above) using 
simulated data from a 5-s period before and a 5-s period after the cue 
shift. We simulated three trials for each combination of ER amplitude 
pair and cue order, producing 132 trials in total. The scatter points in 
Fig. 4f and vertical lines in Fig. 4g each represent a single simulated 
trial. Each scatter point in Fig. 4g is an average across ten cue shifts of 
the same modality from the same trial.

Temporal evolution of bump parameters during cue combination. 
In Fig. 5f,g, we simulated a network with two equally strong external 
inputs. When a cue was on, its associated Ãk  was set to 2; when a cue 
was off, its associated Ãk  was set to 0. Each simulated trial began with 
a burn-in period of 30 s during which both cues were off. The burn-in 
period was followed by two 25-s single-cue blocks; cue 1 was on while 
cue 2 was off in the first single-cue block and vice versa in the second 
single-cue block. This was followed by a two-cue block during which 
both cues were on for 32.5 s. The two-cue block was followed by two 
12.5-s single-cue blocks, again with cue 1 on in the first and cue 2 on in 
the second. We visualized the temporal evolution of the bump param-
eters after the burn-in period (Fig. 5f). The bump parameters shown in 
Fig. 5f are averages across 100 simulated trials.

Impact of variation in ER amplitude on remapping during inverted 
gain. In Fig. 7g,h, to model across-individual variability, we simulated 
a network with a single external input with five values of Ãk  ranging 
from 1 to 2 in steps of 0.25. Each simulated trial began with a burn-in 
period of 60 s during which the gain between the simulated fly’s 

movement and the cue movement was set to 1. Following the burn-in 
period, the gain remained at 1 for another 8 s (normal gain), after which 
it was set to −1 for 32 s (inverted gain). We visualized the temporal 
evolution of the bump parameters after the burn-in period (Fig. 7g). 
The bump parameters shown in Fig. 7g are averages across 100 simu-
lated trials for each ER amplitude.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available from the DANDI repository (https://dandiarchive.
org/dandiset/000289).

Code availability
Data analysis code is available via Zenodo at https://doi.org/10.5281/
zenodo.15733533 (ref. 70). The model code is also available via Zenodo 
at https://doi.org/10.5281/zenodo.13270653 (ref. 71). Simulated data 
to recreate figures with the model code are available via figshare at 
https://doi.org/10.6084/m9.figshare.26510239 (ref. 72).
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Extended Data Fig. 1 | Fitting the bump of activity in the HD system.  
a. Schematic illustrating procedure for dividing the PB into spatial bins. First, 
the maximum z-projection was used to draw a mask around the protocerebral 
bridge (gray). Then, the drawpolyline function in Matlab was used to trace a line 
(black) composed of many short segments (25-40 segments) running along 
the midline of the PB. Each segment defines a spatial bin (that is,a region of 
interest or ROI). Next, a custom algorithm was used to find the line bisecting each 
segment perpendicularly (a normal line), and then to find the shortest distance 
between each pixel in our PB mask and one of the normal lines. The signal from 
each pixel is then assigned to the ROI corresponding to that normal line, with the 
entire array of ROIs representing an angular distance of 675°, that is one complete 
HD representation (360°) plus 7/8 of a second representation (315°)41. Note that 
previous studies have divided the PB into 16 spatial bins37,38, but here we use many 
more spatial bins (up to 40). This is justified because the fluorescence emission 

from each EPG neuron will tend to “spill out” from its home glomerulus, due 
to (1) the scattering of fluorescence emission into adjacent glomeruli, and (2) 
the presence of stray EPG axonal branches in adjacent glomeruli. As a result of 
this spillover, fluorescence signals are not perfectly compartmentalized within 
glomeruli. Thus, dividing the protocerebral bridge into more spatial bins should 
improve our ability to resolve the amplitude and shape of the bump of activity. 
Indeed, we found that this approach produced a more reliable measure of bump 
width, as indicated by higher variance explained (adjusted R2) when fitting linear 
models to bump width data (as in Figs. 3, 4, 7 and Extended Data Figs. 2, 5, 7).  
b. ΔF/F and fitted function for two example time points. Shown are a case with 
very good goodness of fit (top), and a case with a borderline fit quality. In the 
latter case, adjusted R2 = 0.5, which is our threshold for discarding data points 
from the analysis. c. Fit from the top example in panel b, showing the two 
parameters that we extract from the fit.
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Extended Data Fig. 2 | Individual variation in responses to cue brightness. 
This figure provides additional detail related to the 15 flies in Fig. 3. a. Variations 
in HD encoding accuracy correlate with bump width, pooling data across all three 
cue conditions and all 15 flies (p < 0.001, Pearson’s correlation). Gray points (dim 
cue) are reproduced from Fig. 3c. Black and blue points show data from the other 
two conditions (no cue and bright cue). b. There is a trend for variations in HD 
encoding accuracy to be correlated with bump amplitude, but the relationship 

falls just short of significance (p = 0.06, Pearson’s correlation). c. Mean head 
direction for each individual for all three cue conditions. The length of each line 
represents vector strength (that is, “consistency of behavioral orientation”, or 
1-circular variance). Note that consistency of behavioral orientation increases 
with increasing cue brightness. Different flies choose different goal directions, 
which is typical of navigation driven by the HD system32,33,42.
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Extended Data Fig. 3 | Effects of cue shifts. This figure shows additional details 
regarding the 13 flies in Fig. 4. a. Responses to cue shifts. In both these examples, 
the visual cue shifted while the wind did not shift. In Example 1, the EPG bump 
follows the shift in the visual cue, so that the offset relative to that cue is restored. 
In Example 2, when the visual cue shifts, the bump does not shift, and so it retains 
its offset relative to the wind. b. Mean bump amplitude and mean bump width  
(± s.e.m.) around the time of cue shifts. Cue shifts produce no significant change 
in bump amplitude or width (p = 0.10 for bump amplitude, p = 0.26 for bump 
width, 2-sided Wilcoxon signed rank tests, comparing 1 sec before vs 1 sec after a 
shift). c. Bump preference index for each cue shift, for each fly, with flies sorted by 
mean bump preference index. Each thin vertical line connects the data for  
4 wind shifts (orange) and 4 visual shifts (blue) for the same fly. Thick horizontal 
lines show mean values for each fly. This plot reproduces data from Fig. 4e.  

d. Same but for the “stickiness index”. This index is a metric for how much the 
bump tends to follow the cue that does not shift (that is, how sticky’ the bump 
is). A value of +1 means that the bump sticks with the non-shifted cue, whereas a 
value of -1 means that the bump follows the shifted cue. There were no flies where 
the bump tended to prefer either the shifted cue or the non-shifted cue. Flies are 
sorted as in (c). e. Same but for the “behavioral preference index”. Here, -1 means 
the visual cue dominates the fly’s behavioral orientation, whereas +1 means the 
wind dominates. For example, if the wind shifts by -120° and the fly then executes 
a -120° turn, the index would be +1 for that trial. The mean behavioral preference 
index was near zero for all individuals, meaning they reoriented with equal 
frequency in response to visual cue shifts and wind shifts. This was true even in 
the flies with a strongly biased HD system (for example, Fly 1 or Fly 13).
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Extended Data Fig. 4 | Comparing one-cue environments and a two-cue 
environment. This figure shows additional detail for the 18 flies in Fig. 5.  
a–c. There is no difference between the visual cue and the wind in terms of HD 
encoding accuracy (p = 0.28; a), bump width (p = 0.27; b), or bump amplitude 
(p = 0.20, paired 2-sided Wilcoxon tests; c). These plots show data from the two 
initial single-cue environments, prior to the onset of the two-cue environment. 
Thick horizontal lines are mean values. d. The offset during the two-cue block 
is equally similar to the initial offset with respect to the visual cue and the initial 
offset with respect to the wind (p = 0.52, paired Wilcoxon test). e. Offset data for 
both initial single-cue environments and the two-cue environment, for all 18 flies. 

The angle of each line indicates the mean offset during that block; the length 
of each line indicates the vector strength of the offset (that is, HD encoding 
accuracy). Note that there is no relationship between the initial visual offset and 
the initial wind offset. Note also that there is no tendency for the visual cue or 
the wind to dominate the offset in the two-cue period. f. Same but now color-
coded by cue order. Note that the offset in the two-cue environment is generally 
similar to the offset in the environment with cue 2. The exceptions to this rule are 
generally flies where the offset was not stable (for example, the fourth fly in the 
top row, or the fifth fly in the bottom row).
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Extended Data Fig. 5 | Acquiring familiarity with a virtual environment. 
This figure shows data from 28 flies walking in the environment with the  
bright visual cue, beginning when they are first exposed to this environment. In 
a-c, The first two plots show data from two example flies and the third plot shows 
data for all flies (mean ± s.e.m). Each variable was smoothed with a 60-s moving 
window, after first excluding time points where the fly was immobile or goodness 
of fit was below threshold. a. Mean HD encoding accuracy increases over time. 
Over all flies, there is a significant effect of time in a linear mixed-effects model 

(p < 0.001). b. Mean consistency of behavioral orientation increases over time. 
Over all flies, there is a significant effect of time in a linear mixed-effects model 
(p < 0.001). c. Mean bump width decreases over time. Over all flies, there is a 
significant effect of time in a linear mixed-effects model (p < 0.001). d. Mean 
bump amplitude increases during the first 10 min. in the environment, and then 
decreases. Over all flies, there is a significant effect of time in a linear mixed-
effects model (p = 0.03). e. Mean rotational speed and forward velocity for the 
same flies over this time period (± s.e.m).
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Extended Data Fig. 6 | Learning in inverted gain. This figure shows additional 
details regarding the 14 flies in Fig. 7. a. In the initial normal-gain segment, 
bump width is significantly negatively correlated with HD encoding accuracy 
(p < 0.001, Pearson’s correlation). There is a trend for bump amplitude to be 
positively correlated with HD encoding accuracy, but this relationship falls short 
of statistical significance in this group of flies (p = 0.08, Pearson’s correlation). 
b. There is a trend for the remapping index (in the final part of the inverted gain 
block) to be negatively correlated with HD encoding accuracy (in the preceding 

normal gain block), but this relationship falls short of statistical significance 
(p = 0.06). c. We finished each experiment by returning to normal gain for 200 s. 
This panel shows the entire experiment (including this last normal gain block) 
for one example fly. This is the same example fly shown in Fig. 7b. Note that the 
EPG bump tracks HD accurately during the final normal gain block. d. On average, 
HD encoding accuracy was no different in the first and last normal gain block 
(p = 0.67, paired 2-sided Wilcoxon test).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01823-z

Extended Data Fig. 7 | Correlations between bump profile and rotational 
speed. Panels a-d show data from 28 flies walking in a virtual reality environment 
with a bright visual cue. Each variable was smoothed with a 10-s moving window, 
after first excluding time points where the fly was immobile or goodness of fit 
was below threshold. a. Example fly. Here and elsewhere in this figure, we used 
a 10-s rolling window to compute the rotational speed, bump width and bump 
amplitude values. b. Mean HD encoding accuracy (± s.e.m.) versus the fly’s 
rotational speed. As the fly’s rotational speed increases, HD encoding accuracy 
decreases (linear mixed-effects model, p < 0.001). c. Mean z-scored bump width 
(± s.e.m.) versus the fly’s rotational speed. As the fly’s rotational speed increases, 
so does bump width (linear mixed-effects model, p < 0.001). d. Mean z-scored 
bump amplitude (± s.e.m.) versus the fly’s rotational speed. As the fly’s rotational 
speed increases, so does the bump amplitude (linear mixed-effects model, 

p < 0.001). Panels e-g show data from 7 flies tested in separate experiments where 
we displayed a bright visual cue rotating around the fly. The cue rotated at a 
different speed for each block of the experiment. e. Mean cue position encoding 
accuracy (± s.e.m.) versus cue rotational speed. Cue position encoding accuracy 
is computed in the same way that we compute HD encoding accuracy, except 
that it measures encoding of cue position rather than HD. For example, a value 
of 1 would mean that the EPG bump perfectly tracks the cue, whereas a value of 
0 would mean that the bump moves independently from the cue. Cue position 
encoding accuracy decreases as cue speed increases (linear mixed-effects model, 
p < 0.001). f. Mean bump width (± s.e.m.) versus cue rotational speed. Bump 
width increases as cue speed increases (linear mixed-effects model, p = 0.007). 
g. Mean bump amplitude (± s.e.m.) versus cue rotational speed. Bump amplitude 
decreases as cue speed increases (linear mixed-effects model, p < 0.001).
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Extended Data Fig. 8 | Bump profile around the time of a cue change. a. Bump width over time (mean ± s.e.m.), around transitions between darkness and the bright 
visual cue. This plot shows data from the 15 flies in Fig. 2. Note that bump width decreases abruptly at the time of cue onset, and it increases abruptly at the time of cue 
offset. b. Same but for bump amplitude.

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Matlab 2020a, 2021a; ScanImage 2018b or 2020; FicTrac v2.1.1; Python 3.7, 3.9

Data analysis Matlab 2020a, 2021a; Python 3.7, 3.9; RStudio 2022.02.0; R 4.1.3; Stan 2.19.0; PyStan 2.19.0; NoRMCorre

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data are available from the DANDI repository (https://dandiarchive.org/dandiset/000289).
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All sample sizes were chosen based on standard sample sizes in the field.  These sample sizes are conventionally determined on the basis of 

the expected magnitude of animal-to-animal variability, given published results and pilot data. Our sample sizes are similar to those reported 

in previous publications (refs 23,33,34,37,38,62). 

Data exclusions No flies were excluded from analyses.

Replication All results reported are based on multiple replicates, with n values stated in the legends. All of the results in the study were found to be 

reproducible.

Randomization Following the initial period with a bright cue, the order of the different brightness blocks in the experiment displayed in Figures 2-3 and 

Extended Data Figures 2 and 8 was randomized, as noted in the Methods. 

The experimental configuration assigned to each fly for the experiment corresponding to figs. 4-5 and sup figs 3-4 (order of wind and visual 

cues) was also randomized.

Blinding The experimenter was not blind to the experimental conditions assigned to each fly. Blinding is only potentially relevant to experiments where 

different flies experienced different experimental treatments (e.g., different genotypes or different drug treatments). However, the was only 

one experiment in the paper where different flies experienced different experimental treatments, namely the cases where the order of the 

different brightness blocks was randomized (Figures 2-3 and Extended Data Figures 2 and 8). Here, the experimenter could not be blind to the 

experimental condition because the stimulus apparatus delivered the stimulus in a manner that was visible to the experimenter.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals All experimental animals were 1 day old virgin Drosophila melanogaster with the genotype w/+ ; + ; P{R60D05-Gal4}attP2 / 

P{20XUAS-IVS-jGCaMP7f}VK00005. Both P{R60D05-Gal4}attP2 and P{20XUAS-IVS-jGCaMP7f}VK00005 were obtained from the 

Bloomington Drosophila Stock Center (RRID:BDSC_39247 and RRID:BDSC_79031, respectively). Virgin female flies were anesthetized 

on CO2 and collected at least 12 h before the experiment, then allowed to recover on molasses food. Imaging experiments were 

conducted the following day, 14-36 h after eclosion.

Wild animals No wild animals were used in this study.

Reporting on sex Given their larger size, which makes dissections easier, and usually results in better behavior in tethered animals, we relied purely on 

females for this study. This is a standard practice for researchers in the field conducting neurophysiological experiments in fruit flies.

Field-collected samples No field samples were collected for this study.

Ethics oversight No ethical approval was required because experiments were performed on Drosophila melanogaster.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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