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An opponent striatal circuit for distributional 
reinforcement learning

Adam S. Lowet1,2,3, Qiao Zheng1,4, Melissa Meng1,2, Sara Matias1,2, Jan Drugowitsch1,4 ✉ & 
Naoshige Uchida1,2 ✉

Machine learning research has achieved large performance gains on a wide range  
of tasks by expanding the learning target from mean rewards to entire probability 
distributions of rewards—an approach known as distributional reinforcement 
learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the 
mammalian brain by updating a representation of mean value in the striatum2,  
but little is known about whether, where and how neurons in this circuit encode 
information about higher-order moments of reward distributions3. Here, to fill this 
gap, we used high-density probes (Neuropixels) to record striatal activity from mice 
performing a classical conditioning task in which reward mean, reward variance and 
stimulus identity were independently manipulated. In contrast to traditional RL 
accounts, we found robust evidence for abstract encoding of variance in the striatum. 
Chronic ablation of dopamine inputs disorganized these distributional representations 
in the striatum without interfering with mean value coding. Two-photon calcium 
imaging and optogenetics revealed that the two major classes of striatal medium 
spiny neurons—D1 and D2—contributed to this code by preferentially encoding  
the right and left tails of the reward distribution, respectively. We synthesize  
these findings into a new model of the striatum and mesolimbic dopamine that 
harnesses the opponency between D1 and D2 medium spiny neurons4–9 to reap the 
computational benefits of distributional RL.

Midbrain dopamine neurons and their primary target, the striatum, 
constitute an evolutionarily ancient neural circuit that is critical for 
motivated behaviours10. Computationally, dopamine has long been 
thought to signal reward prediction error (RPE)2, reminiscent of the 
teaching signals used in many RL algorithms11. Consistent with this 
idea, dopamine is also known to modulate plasticity of corticostriatal 
synapses12–14, allowing neurons in the striatum to learn a representation 
of average anticipated reward15,16, often called ‘value’.

Despite the simplicity and popularity of this model, many aspects of 
the mesolimbic circuit remain unexplained. First, value representations 
reside not only in the striatum but also throughout the entire brain17–19. 
Second, the striatum is far from uniform, containing various interneu-
ron subtypes as well as D1 and D2 medium spiny neurons (MSNs), whose 
plasticity is modulated in opposite directions by dopamine12–14, and 
consequently, whose coding properties4,5 and effects on behaviour6–9 
differ. Third, dopamine activity is much more complex than a simple 
scalar RPE, varying both qualitatively across dopamine projection sys-
tems20,21 and quantitatively within systems22,23. Whether such diversity 
is cause to revise RPE-based accounts of dopamine3,24,25 or discard them 
altogether26,27 is currently the subject of intense debate.

In parallel to these questions about the neuronal representation 
of value, the striatum—and particularly the ventral striatum—has 
long been associated with decision-making under risk. Lesions in the 
ventral striatum28 and dopaminergic drugs29 can both impair risky 

decision-making, with some groups suggesting a particular role for 
D2 MSNs in the ventral striatum30. Nonetheless, RL models of the basal 
ganglia typically ignore the role of risk, and most theoretical investi-
gations of uncertainty focus on sensory noise rather than intrinsic, 
irreducible environmental stochasticity31,32.

Borrowing from tremendous successes in machine learning33,34, it 
has recently been proposed3 that the residual heterogeneity within 
RPE-coding dopamine neurons35–37 and perhaps other neuronal popula-
tions38 resembles the predictions of so-called expectile distributional 
RL (EDRL)39. This algorithm dramatically improves performance relative 
to traditional RL while unifying the learning of value and risk within 
the same framework. However, it fails to explain the molecular and 
functional diversity within the striatum and to rule out alternative 
explanations for the same dopamine data40–42.

Here we developed a novel computational model that combines 
these diverse dopamine inputs3 with opponent plasticity rules12–14 
to allow D1 and D2 MSNs to learn the right and left tails of the reward 
distribution, respectively. Our model makes several new experimen-
tal predictions about the representational geometry of the striatum, 
which we confirm using Neuropixels recordings, dopamine lesions, 
two-photon calcium imaging and optogenetics. Together, this study 
improves our understanding of the computational principles underly-
ing the reward circuitry of the brain and tightens the bonds between 
natural and artificial intelligence.
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A behavioural task to investigate distributional RL
Single-unit representations of reward variance have been previously 
observed in a number of brain regions43,44, but reports in the striatum 
have been limited45,46. We therefore designed a classical conditioning 
task in which mice were trained to associate random odour cues with 
probability distributions over reward amounts (Fig. 1a). Three different 
probability distributions (Fig. 1b) were used: Nothing (100% chance of 
a 0 μl reward), Fixed (100% chance of a 4 μl reward) and Variable (50% 
chance of a 2 µl or 6 μl reward). Fixed and Variable distributions had 
the same mean but different variance, so distributional RL predicts 

systematic differences in their underlying neural representations, 
whereas traditional RL does not. To ensure that any such differences 
did not reflect idiosyncratic odour preferences, two unique odours 
predicted each of the three distributions, allowing us to compare rep-
resentations of different odours both across distributions and within 
distributions.

Crucially, while the animals’ anticipatory licking revealed a clear pref-
erence for rewarded (Fixed and Variable) over unrewarded (Nothing) 
odours, it did not differ between the Fixed and Variable distributions 
(Fig. 1c). Additional behavioural data, including face motion, whisking, 
pupil area and running also did not support reliably distinguishing 
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Fig. 1 | A classical conditioning task and recording setup to investigate 
distributional RL. a, Head-fixed mice were trained to associate odours  
with stochastic rewards. CS, conditioned stimulus; ITI, inter-trial interval.  
b, Probability distributions over reward amounts, each of which was paired 
with two unique odours. c, Anticipatory lick rates for each trial type, computed 
during the late trace period (Nothing odours: P < 0.001 versus all others;  
Fixed 1: P = 0.502, 0.925 and 0.419 versus Fixed 2, Variable 1 and Variable 2, 
respectively; n = 12 mice, 104 sessions). The dashed line indicates the mean 
reward for that trial, given on the secondary y axis. Error bars indicate 95% 
confidence interval (c.i.). d, Cross-validated accuracy of a linear support vector 
classifier trained to predict distribution (pooled across odours) on the basis of 
licking, pupil area, whisking, running and face motion. Behavioural classifier 
accuracy across time (left), and quantification of classifier accuracy when 
trained separately on the entire late trace period (right; Fixed versus Variable: 

P < 0.001 versus others, P = 0.053 compared with chance level of 50%; n = 12 
mice, 101 sessions) are shown. Shaded area (left) and error bars (right) denote 
95% c.i. across mice. e, Reconstructed Neuropixels probe trajectories, aligned 
to the Allen Mouse Brain Common Coordinate Framework. f, Grand average of 
the z-scored firing rates of individual neurons. g, Time course of activity across 
trial types, projected onto PC1. h, Example peri-stimulus time histograms of 
two simultaneously recorded neurons in the ventromedial striatum. Spike 
rasters, aligned to odour onset and sorted by trial type (top), and mean ± s.e.m. 
firing to each trial type (bottom) are shown, including trials in which reward 
was delivered without being preceded by an odour (Unexpected, brown). Where 
indicated, statistical significance is derived from a linear mixed effects model 
across sessions with a random intercept (and, if applicable, random slope)  
for each mouse: ***P < 0.001, **P < 0.01, *P < 0.05 and not significant (NS) at 
α = 0.05.



Nature  |  Vol 639  |  20 March 2025  |  719

Fixed from Variable trials47 (Fig. 1d and Extended Data Fig. 1a–e). This 
implies that any ability to decode these trial types from neural data 
must be due to the associated probability distributions and not to 
differences in motivational value.

The animals’ anticipatory licking discriminated all trial types, includ-
ing Nothing odours, from baseline (Extended Data Fig. 1f), suggest-
ing that meaningful associations were formed with all six odours. 
Behavioural responses showed minimal trial-by-trial updating; licking 
(Extended Data Fig. 1g) as well as other behavioural variables (Extended 
Data Fig. 1h) did not change based on whether the previous Variable 
reward was greater or less than expected, probably because we were 
recording from expert mice in a stationary environment.

Striatum represents both mean and variance
Next, we used high-density electrophysiological probes (Neuropixels) 
to record activity from across a broad swathe of the anterior striatum 
(Fig. 1e and Extended Data Fig. 2a; n = 12 mice, 71 sessions, 13,997 neu-
rons). Consistent with previous work15,16, we found that both the average 
firing rate of all neurons (Fig. 1f and Extended Data Fig. 2b) and the time 
course of trial-type-averaged activity projected onto the first principal 
component (PC1; Fig. 1g) cleanly separated rewarded from unrewarded 
odours. Furthermore, a substantial fraction of individual neurons cor-
related significantly with expected reward, allowing us to reliably predict 
mean value from neural (pseudo-)population activity across all striatal 
subregions (Extended Data Fig. 2c–e). Other striatal neurons correlated 
significantly with RPE during the outcome period48, but these formed 
a smaller and mostly independent subset (Extended Data Fig. 2f–h).

However, not all neurons obeyed this simple pattern seen at the 
level of population averages. Some single neurons consistently 
preferred Variable odours, whereas others—even when recorded  
simultaneously—preferred Fixed odours (Fig. 1h). Such neurons fired 
similarly to both instances of the Fixed and Variable odours, suggesting 
that they abstracted over odour-specific details to instead encode infor-
mation about variance—even as the population as a whole contained 
ample odour information (Extended Data Fig. 2i–l).

To determine whether such distribution coding generalized to the 
complete population, we compared the cosine distances between the 
average population activity vectors in the 1-s window before reward 
delivery (late trace period) for each of the rewarded trial types (repre-
sentational dissimilarity analysis (RDA)). We found that the distances 
between across-distribution pairs were greater, on average, than 
between within-distribution pairs, consistent with distributional RL 
(Fig. 2a). The same was true for the performance of single-trial lin-
ear classifiers applied to pairs of rewarded trial types (Extended Data 
Fig. 3a,b) or to trial-type groupings that either respected or violated 
their distribution identities (Extended Data Fig. 3c,d). These latter 
analyses also confirmed that distributional decoding was orthogonal 
to mean value coding (Extended Data Fig. 3e–g) and stable over time 
(Extended Data Fig. 3h–j).

Distributional decoding was strongest in the more ventral and lateral 
parts of the striatum, particularly the lateral nucleus accumbens shell 
(lAcbSh; Extended Data Fig. 4a–d). An artificial neural network-based 
decoder trained on single pseudo-trial population activity from this 
distribution-coding subpopulation successfully predicted complete 
reward distributions and generalized to unseen odours (Extended 
Data Fig. 4e–l). Although we do not claim that the brain decodes dis-
tributions in the same manner, this shows, in principle, that there is 
sufficient information contained in striatal populations to perform 
distributional RL.

To further exclude alternative explanations for distributional cod-
ing, we fit a generalized linear model (GLM) to our data with separate 
regressors for trial history, reward, (distributional) reward prediction, 
sensory and motor-related variables (Extended Data Fig. 5; see Meth-
ods). Although motor activity explained a high fraction of deviance 

overall, as seen in previous work49,50, this trend was not uniform across 
brain regions. In particular, the ventrolateral parts of the striatum had 
the relatively weakest encoding of action and the strongest encoding 
of reward prediction, consistent with the preferential association of 
the dorsal striatum with motor control and the ventral striatum with 
state value15. Furthermore, motor encoding was uncorrelated with 
other task variables, whereas trial history and reward responses were 
positively correlated with distribution coding, suggesting that striatal 
neurons multiplex certain additional variables, but not behaviour, 
with reward prediction (see Extended Data Fig. 2h). Nonetheless, the 
magnitude of reward and (especially) trial history coding was weaker 
than that of reward prediction, making trial-by-trial updates unlikely 
to drive the observed differences between Fixed and Variable trials 
(Extended Data Fig. 5g–i).

Finally, an alternative hypothesis is that rather than represent reward 
variance in their mean firing rates within a trial, neurons instead encode 
reward variance in their spiking variability across trials51. However, 
across-trial variability was the same across trial types with different 
variances, ruling out such ‘sampling-based codes’ in this instance52 
(Extended Data Fig. 6).

Variance coding is abstract and at the population level
The preceding analyses show that the neural activities evoked by odours 
identifying the same distribution are more similar to one another than 
to those evoked by odours identifying distributions with the same mean 
but different variances. Let us now ask about the relationship between 
Fixed and Variable odour representations—specifically, whether vari-
ance is represented in an ‘abstract format’, that is, in a consistent way 
across odours that would support generalization to unseen situations53. 
To do so, we adapted two previously defined metrics53 to our task: paral-
lelism score and cross-condition generalization performance (CCGP; 
see Methods).

The parallelism score is simply the average cosine similarity between 
the two difference vectors pointing from Variable to Fixed population 
activity, one for each odour identifying the respective distribution. 
Across sessions and mice, these difference vectors were significantly 
more aligned than would be expected by chance (Fig. 2b). Similarly, 
a decoder trained on one Fixed versus Variable dichotomy and then 
tested on the held-out dichotomy achieved above-chance CCGP, aver-
aged across all four possible dichotomies (Fig. 2c).

Consistent coding of variance could arise due to linear encoding of 
reward variance in single-neuron firing rates, as has been observed in 
other brain regions43–45. However, unlike these previous studies, we 
found fewer striatal neurons encoding variance (or conditional value 
at risk, another risk measure) than would be predicted simply from 
the combination of mean reward and odour coding alone (Extended 
Data Fig. 2m–r). Variance coding in the striatum is thus an intrinsically 
population-level phenomenon.

Using striatal opponency for distributional RL
Next, we explored how such an abstract representation might be 
acquired. Although there exist multiple theories for how the brain could 
learn abstract reward distributions33,40, EDRL39 is especially promising 
because it requires only minimal modifications to existing, empirically 
tested models of the basal ganglia3. EDRL proposes not just a single 
value predictor but an entire family of predictors, Vi (parameterized by 
τi, the degree of optimism), each of which converges to an ‘expectile’ of 
the reward distribution. Expectiles generalize the mean just as quantiles 
generalize the median, and collectively, they completely characterize 
a probability distribution54 (Fig. 2d; see Methods).

Although EDRL has some appealing properties, it ignores the cel-
lular diversity within the striatum, most notably the presence of D1  
and D2 MSNs55. Instead, we start with the same piecewise linear 
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heterogeneity in dopamine responses3 (Fig. 2e) but combine it with an 
opponent plasticity rule (Fig. 2f, top) in which D1 MSNs increase their 
synaptic weights more from positive RPEs (ρm

+ ), whereas D2 MSNs 
increase their synaptic weights more from negative RPEs12–14 (ρm

−). 
Because of the symmetry between D1 and D2 plasticity functions, we 
call our implementation reflected EDRL (REDRL).

The opponency of the plasticity rule gives rise to opposite directions 
of value coding (Fig. 2f, bottom), with D1 MSNs4,5,56,57 and D2 MSNs4,5,58 
primarily correlating positively and negatively, respectively, with value. 
Meanwhile, its piecewise linear nature has the effect of extremizing 
value predictors—D1 MSNs are more optimistic, and D2 MSNs are more 
pessimistic, than their individual dopamine inputs would create on 
their own—while nonetheless converging mathematically to expec-
tile estimates (Fig. 2g). The ventral pallidum, which predominantly 
receives projections from D2 MSNs59, adds an extra inhibitory synapse 
and thereby flips the sign of this input before feeding these pessimistic 
value predictions back to dopamine neurons (Fig. 2h).

Validating the geometry of REDRL in striatal data
REDRL not only gives rise to abstract coding of variance in the 
striatum (Fig. 2a–c) but also makes specific predictions about the 

population geometry of striatal representations, which can then 
be compared to data and to alternative models (Extended Data 
Fig. 7a–m). Specifically, we projected either the REDRL value predic-
tors, or the trial-type-averaged firing rates of each session, onto their 
first and second principal components (accounting for 73.3 ± 2.3% 
and 10.9 ± 0.9% of the variance across trial types, respectively; 
mean ± s.e.m. across mice; see Methods). We then measured the Euclid-
ean distances in principal component space along each dimension  
(Fig. 2i).

PC1 mainly separated trial types according to their means, as 
expected (Fig. 2j). More surprisingly, but also consistent with REDRL, 
Variable odours elicited higher average firing rates than Fixed odours 
(Extended Data Fig. 7n) and so were more distant from Nothing odours 
along PC1 (Fig. 2k). Fixed and Variable odours also separated out along 
PC2, such that there was a greater distance between across-distribution 
odour pairs than within-distribution odour pairs (Fig. 2l). Across the 
population, substantial fractions of neurons correlated positively or 
negatively with expected reward across trials (Extended Data Fig. 7o), 
as would be expected for D1 and D2 MSNs, respectively, in REDRL. 
Although other distributional RL formulations predicted some of 
these effects, only REDRL and its close cousin, reflected quantile DRL, 
predicted all of them.
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dashed line). SVC, support vector classifier. d, Algorithmic REDRL model. With 
learning, value predictors (Vi) converge to the τi-th expectiles of the associated 
reward distribution. D1 MSN activity (τ > 0.5) is equal to Vi, whereas D2 activity 
(τ < 0.5) is sign-flipped and offset. e–g, Implementation of REDRL. Dopaminergic 
neurons are modelled using piecewise linear functions, with slopes α′i

− and α′i
+ 

in the negative and positive domain, respectively, and zero-crossing points 
equal to the τi-th expectile (vertical dotted lines; e)3. D1 and D2 MSNs have 
complementary, nonlinear plasticity rules13 (f, top), leading to positive and 

negative encoding of their respective value predictions4,5 (f, bottom). The net 
result is that D1 and D2 MSNs are biased optimistically and pessimistically 
relative to their dopamine input asymmetries (g). r, reward; w, synaptic weight. 
h, Hypothesized circuit basis74 of REDRL. VTA dopaminergic neurons convey 
distributional RPEs (δi) to the ventral striatum (VS). D1 MSNs feedback directly 
to optimistic VTA neurons, whereas D2 MSNs are routed to pessimistic VTA 
neurons via the ventral pallidum (VP). The schematic in panel h was adapted 
from ref. 74, Elsevier. i, 2D principal component projection of REDRL value 
predictors (top) and an example recording session (bottom). Grey dashed  
lines denote positions along PC1 and PC2 from which distances (coloured 
arrows) were measured. j–l, Euclidean distances along the indicated principal 
components are consistent between model (top) and data (bottom; PC1  
across versus within mean: P < 0.001 ( j); PC1 Nothing versus Fixed or Variable: 
P = 0.005 (k); and PC2 across versus within distribution: P = 0.012 (l)). Data  
in a–c and j–l (bottom) are mean ± 95% c.i. across mice, with statistical 
significance as indicated in the caption for Fig. 1.
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We demonstrated further support of REDRL across three addi-
tional classical conditioning tasks in three independent cohorts of 
mice, in which REDRL continued to predict the population geometry 
(Extended Data Fig. 8a–e) and single-neuron encoding properties 
(Extended Data Fig. 8f) of our recordings. In particular, we replicated 
the core findings that PC1, along with a sizeable portion of individ-
ual neurons, represents mean reward for these particular distribu-
tions. Distributions with the same mean but different higher-order 
moments separate out along PC2, without many individual neurons 
linearly encoding reward variance, including in the Bernoulli task, in 
which mean and variance were orthogonal by design. These features 
were most similar to the theoretical predictions of REDRL (Extended 
Data Fig. 8d).

A different set of distributions, which we call the Fourth Moments 
task, featured pairs of distributions (Uniform and Bimodal) with 
the same mean, variance and skewness, differing only at the fourth 
moment and above. Licking to the Bimodal distribution was modestly 
weaker than to Uniform in this cohort of mice, leading to separation 
along PC1 in addition to PC2, in contrast to theoretical predictions 
(Extended Data Fig. 8b–e). Nonetheless, the structure of this task 
allowed us to run more rigorous tests of distribution coding—CCGP, 
parallelism score, pairwise decoding and congruency analysis— 
following our approach for the main task. Ventrolateral subregions 
of the striatum, particularly the lAcbSh and core, continued to show 
signatures of distributional representations even with these more 
closely matched distributions, extending such coding as high as the 
fourth moment (Extended Data Fig. 8g–j).

Thus, REDRL provides a mechanistic account of distributional RL 
which quantitatively matches the structure of striatal representations 
across a diverse range of probability distributions. This permits us to 
reinterpret single-neuron activities in the striatum as linearly encoding 
specific (linear combinations of) expectiles of the reward distribution, 
explaining our ability to decode reward variance from neuronal popu-
lations in the absence of strong single-neuron variance correlations 
(Extended Data Figs. 2m–o and 8f).

Dopamine is necessary for distributional RL
If striatal representations are updated incrementally by dopamine 
RPEs as predicted by REDRL, then eliminating dopamine before learn-
ing should disrupt these distributional representations (Fig. 3a). To 
test this hypothesis, we injected the neurotoxin 6-hydroxydopamine 
(6-OHDA) unilaterally into the lateral ventral striatum in naive mice, 
which resulted in local lesions of dopamine neurons projecting to the 
injection site (Fig. 3b,c and Extended Data Fig. 9a). After recovery, 
we trained the mice on the original task and then recorded neurons 
in both the control and the lesioned hemisphere (n = 5 mice, 20 ses-
sions, 2,283 neurons from control; 19 sessions, 2,596 neurons from 
lesion). Unilateral lesions modestly impaired our ability to distinguish 
rewarded and unrewarded odours based on behavioural predictors, 
but mice nonetheless learned the task (Extended Data Fig. 9b,c), 
and neural encoding of motor behaviour and other variables was 
similar in the two hemispheres, as measured by our GLM (Extended 
Data Fig. 9d–f).

Projecting striatal activity from each hemisphere independently 
into principal component space suggested that distributions were 
less well separated in the lesioned hemisphere than in the control 
hemisphere (Fig.  3d). Indeed, when we quantified distances as 
before, we found unrewarded (Nothing) and rewarded (Fixed and 
Variable) odours to be equally well separated along PC1 for both 
hemispheres (Fig. 3e), but Fixed and Variable odours to be less well 
separated along PC2 in the lesioned hemisphere (Fig. 3f). Analogous 
effects were seen for parallelism score (Fig. 3g) and representational 
dissimilarity (Fig. 3h), with stronger (and abstract) variance coding 
in the control than in the lesioned hemisphere. The persistence of 

mean value coding in the lesioned hemisphere may reflect the ina-
bility of unilateral 6-OHDA to kill all dopamine neurons within the 
targeted hemisphere, the interhemispheric broadcasting of mean 
value information once it reaches the cortex17–19, or, more radically, 
the dispensability of dopamine for learning about mean value  
entirely.

In addition to supporting our mechanistic REDRL model, the selec-
tive disruption of variance coding by 6-OHDA gives us an experi-
mental tool with which to probe the role of distributional RL in the 
brain. When paired with deep neural networks, distributional RL is 
thought to boost performance mainly by improving state representa-
tions1,3,60. Because odour-specific information is multiplexed alongside 
reward distributions in the striatum (Extended Data Fig. 2i–l), it is pos-
sible to ask whether dopamine lesions—by perturbing distributional 
RL—also impair striatal representations of stimulus identity. We used 
multinomial logistic regression to decode odour identity from neural 
activity during the 1-s window following odour onset. Although we 
could decode odour identity well above chance for both hemispheres, 
decoding performance was significantly worse in the lesioned than 
in the control hemisphere (Fig. 3i). The lesion impaired decoding 
performance across nearly all trial types, with the main driver being 
increased confusion between Fixed and Variable odours (Fig. 3j,k). 
These results are consistent with distributional RL shaping the repre-
sentation of sensory inputs in biological brains, similarly to its role in 
artificial neural networks.

Opponent contributions of D1 and D2 MSNs to REDRL
We next tested the distinct contributions of D1 and D2 MSNs predicted 
by REDRL. A Ca2+ indicator, jGCaMP7s, was expressed in D1 or D2 MSNs 
in the lAcbSh (D1 n = 4 mice, 27 sessions, 945 neurons; D2 n = 4 mice, 
38 sessions, 1,106 neurons), and single-neuron activity was monitored 
using two-photon calcium imaging through implanted gradient refrac-
tive index lenses (Fig. 4a–c; 31.6 ± 17.4 cells per field of view, mean ± s.d. 
across sessions).

We observed different patterns of activity across D1 and D2 popula-
tions56–58 despite the fact that behaviour did not differ across groups 
(Extended Data Fig. 10a–c). Many D1 MSNs were activated more to 
rewarded than to unrewarded odours and outcomes, whereas the 
reverse was true, albeit less strongly, in D2 MSNs (Fig. 4d–f). Also 
consistent with our model, significant fractions of D1 and D2 MSNs 
increased and decreased their activities relative to baseline, respec-
tively, more on rewarded than on unrewarded trials; however, the 
pattern in D2 MSNs was again more heterogeneous than in D1 MSNs, 
with less consistent variability across trial types (Extended Data  
Fig. 10d,e).

We also found neurons that, like those that we recorded using 
electrophysiology, reliably distinguished between Fixed and Vari-
able odours during the late trace period (Fig. 4g). To test whether 
these trends were systematic, we performed the same analyses (CCGP, 
RDA and principal component analysis (PCA)) separately on D1 and 
D2 MSNs, while pooling across all mice to compensate for the lower 
cell counts and higher variability of Ca2+ signals. Consistently across 
disjoint subsets of pseudo-trials in both D1 and D2 MSNs, variance 
was encoded in an abstract format (Fig. 4h), and across-distribution 
pairs were represented more dissimilarly than within-distribution 
pairs (Fig. 4i).

REDRL not only predicts the existence of distributional coding 
in D1 and D2 MSNs independently but also specifies the ways in 
which this coding should differ. For example, pessimistic (τ < 0.5) 
REDRL predictors associate Variable odours with lower-than-average 
rewards. We therefore expect their representation of Nothing odours 
to be more similar to that of Variable odours than to Fixed odours, 
whether assessed via PCA or RDA. Meanwhile, the opposite should 
be true of optimistic (τ > 0.5) predictors (Fig. 4j–m). D1 and D2 MSNs 
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mirrored these predictions precisely (Fig. 4n–q), strongly support-
ing the notion that they encode the right and left tails of the reward 
distribution, respectively.

Perturbing REDRL with optogenetics
As a final test of REDRL, we sought to independently manipulate D1 and 
D2 MSNs while mice performed a similar classical conditioning task. 
To do so, we expressed either the excitatory opsin CoChR (n = 12 mice,  
96 sessions) or the inhibitory opsin GtACR1 (n = 13 mice, 92 sessions) 

in D1 or D2 MSNs and implanted an optical fibre in lAcbSh (Fig. 5a). 
We then manipulated these neurons during the 2-s trace period and 
quantified licking just before reward delivery (Fig. 5b).

To generate model predictions for these manipulations, we clamped 
the simulated values of inhibited and excited predictors, respectively, 
at 0 µl and 8 μl, the maximum reward size that we delivered in these 
experiments. We performed these simulated manipulations separately 
on optimistic and pessimistic predictors and computed the predicted 
value estimate of the mouse as the mean across all predictors (Fig. 5c,d 
and Extended Data Fig. 11a–i; see Methods). We then took the difference 
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Fig. 3 | Dopamine is necessary for learning distributional representations. 
a, Dopamine lesions (pink ‘x’) are predicted to disrupt representations of the 
reward distribution in the striatum. b, Schematic74 of the dopamine lesion 
experiment (n = 5 mice). AP, anteroposterior. The schematic was adapted  
from ref. 74, Elsevier. c, Histology from an example 6-OHDA mouse showing 
Neuropixels probe tracks (red and yellow), dopaminergic axons (green; tyrosine 
hydroxylase (TH)) and lesion boundary (white dashed line). Scale bar, 500 μm. 
d, Principal component projection from the control (left) and lesioned (right) 
hemispheres for an example mouse. e, Distance along PC1, although significantly 
higher for across-mean than for within-mean pairs (P < 0.001), does not differ 
between hemispheres (P = 0.676). f, By contrast, the difference in distance 
along PC2 between across-distribution and within-distribution pairs is 
significantly positive (P = 0.033) and greater in the control than in the lesioned 
hemisphere (P = 0.026). g, Parallelism score is significantly positive (P = 0.029) 
and greater in the control than in the lesioned hemisphere (P = 0.009).  

h, Similarly, the difference in representational dissimilarity between across- 
distribution and within-distribution pairs is significantly positive (P = 0.036) 
and greater in the control than in the lesioned hemisphere (P = 0.005). i, Six-way 
odour classification accuracy during the odour period is above chance 
(P < 0.001) and is higher in the control than in the lesioned hemisphere 
(P < 0.001). j, Difference in odour classifier confusion matrices between the 
lesioned and control hemispheres. The probability of correct classification 
(main diagonal) decreases for nearly all trial types upon lesioning. k, The 
decrement in odour coding due to the lesion is mainly due to an increase in 
across-distribution, within-mean classification errors (P < 0.001) and a 
concomitant decrease in within-distribution classification (P < 0.001 for 
across-distribution versus within-distribution difference). Data in e–i,k are 
mean ± 95% c.i. across mice, with statistical significance as indicated in the 
caption for Fig. 1.
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d, Deconvolved Ca2+ activity from example D1 (left) and D2 (right) MSNs, as in 
Fig. 1h. Shaded grey bar denotes period of odour delivery. Bottom, shaded 
regions denote mean ± s.e.m. across trials. e, Percentage of significant cells 
that correlate positively with mean (left) or reward (right) during the late trace 
and outcome periods, respectively. There are more cells than expected by 
chance (grey dashed line) for D1 (paired samples Student’s t-test: P = 0.009  
and 0.006; mean ± s.e.m. = 28.79 ± 4.78 and 18.06 ± 2.58 for mean and reward, 
respectively), but not D2 (P = 0.113 and 0.107; mean ± s.e.m. = 4.90 ± 2.21  
and 3.68 ± 1.61, for mean and reward, respectively; n = 8 mice). f, Same as  
panel e, but for significant negative correlations. There are more cells  
than expected for D2 (P = 0.013 and 0.001; mean ± s.e.m. = 4.39 ± 0.81 and 
6.76 ± 0.56, for mean and reward, respectively) but not D1 (P = 0.736 and 0.433; 

mean ± s.e.m. = –1.29 ± 3.48 and 1.76 ± 1.95, for mean and reward, respectively). 
g, Same as panel d, but showing MSNs that discriminate Fixed and Variable 
odours. h, CCGP is above chance (grey dashed line) for both D1 (one-sample 
Student’s t-test, P < 0.001, mean ± s.e.m. = 0.0473 ± 0.0051) and D2 (P = 0.048; 
mean ± s.e.m. = 0.0202 ± 0.0072; n = 5 pseudo-populations per genotype).  
i, For representational dissimilarity, cosine distance is greater for across- 
distribution than for within-distribution pairs for both D1 (P = 0.022; n = 4 pseudo- 
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genotype). j, 2D principal component plots for simulated optimistic and 
pessimistic REDRL value predictors. k,l, Predicted distance along PC1 (k) and 
RDA (l) for the REDRL model, averaged across n = 4 odour pairs. m–o, Same as 
panels j,k, but showing data collected from D1 and D2 MSNs (distance along 
PC1: P = 0.001 for D1, P < 0.001 for D2 and the relative differences; RDA: P = 0.489 
for D1, P < 0.001 for D2 and the relative differences; n = 4 pseudo-populations 
per genotype). Unless otherwise noted, data in h,i,n,o are mean ± 95% c.i.  
across pseudo-populations, and statistical significance is as indicated in the 
caption for Fig. 1.



724  |  Nature  |  Vol 639  |  20 March 2025

Article

between the estimated mean values of the model in manipulation versus 
no manipulation trials for each trial type (Fig. 5e and Extended Data 
Fig. 11j,k) and compared them with the differences in anticipatory lick-
ing by the mouse.

REDRL not only captured the main effects of ‘go’ and ‘no-go’ path-
ways61 but also predicted precise patterns of licking across trial types, 
even for the same type of manipulation (Fig. 5f). This could not be 

explained simply by ceiling effects, as the increase in licking was some-
times greater for rewarded than for unrewarded odours, and average 
lick rates were far below physiological limits (Extended Data Fig. 11n). 
Quantitative comparison confirmed that reflected expectile-like 
models outperformed alternatives in fitting the licking data (Fig. 5g), 
arguing that the value predictions learned by REDRL are used online 
to guide behaviour.
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and manipulation (‘x’) conditions. The middle column shows the resulting effect 
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inhibition. e, Summary of REDRL model predictions for differences between 
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f, Difference in anticipatory licking between manipulation and no manipulation 
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excitation, P = 0.032 Nothing). The black asterisks over single trial types 
indicate significant differences between genotypes (inhibition: P = 0.001 
Fixed, P = 0.005 Variable; excitation: P < 0.001 Nothing), and statistical 
significance is as indicated in the caption for Fig. 1. g, Summary panel showing 
the mean coefficient of determination for each model, when predicting the 
average difference in licking across trials. AU, actor uncertainty.
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Discussion
Here we have combined large-scale electrophysiology with cell-type- 
specific recordings and manipulations to develop the REDRL model of 
the basal ganglia. This model maintains the algorithmic advantages of 
distributional RL1 while lending itself to a biological implementation 
that is consistent with observed dopamine population activity3 and 
dopamine-mediated plasticity rules12–14, as well as the hypothesized 
computational role of dopamine as a RPE signal (as opposed to directly 
influencing causal associations26 or learning rate27; see Supplementary 
Discussion). This dopamine activity is also what led us to favour REDRL 
over the conceptually similar reflected quantile code, which made 
similar predictions for MSNs across the distributions that we tested, 
but differed at the level of dopamine neurons (see Supplementary 
Discussion).

The most notable feature of REDRL is the distinct roles played by D1 
and D2 MSNs, which specialize in the right and left tails of the reward dis-
tribution, respectively. This bifurcated layout resembles other neural 
systems, such as ON/OFF pathways in vision, and probably has similar 
benefits, such as efficient coding62, flexibility63 and perhaps robustness 
to noise (Extended Data Fig. 8d). For example, certain computations, 
such as expected value estimation, would benefit from combining 
information from D1 and D2 MSNs, but others, such as risk-sensitive 
behaviour, might depend on just one tail (and thus neuronal cell type) 
or the other. Furthermore, this architecture simplifies the problem of 
connectivity: genetically defined subsets of dopamine neurons64 could 
form independent closed loops with D2 (via the ventral pallidum) and 
D1 MSNs, thereby helping to keep separate pessimistic and optimistic 
RPE channels (Fig. 2h). These predictions should form the basis of future 
anatomical investigations into the mesolimbic dopamine circuitry, 
as well as theories of alternative architectures that might obviate this 
need65, which is shared by EDRL. It will also be important to record 
from dopamine neurons in similar task settings, to ensure that their 
degree of optimism is consistent across different cues35 and perhaps 
organized topographically22.

At the level of the striatum, REDRL helps to unify previous approaches 
to understanding D1 and D2 MSNs within a single, normative frame-
work. Although D1 and D2 MSNs are known to frequently behave in 
an opponent manner4–9, this has generally been attributed to go/no- 
go pathways and modelled using a single value predictor or action 
channel61,66. Here we have shown how, far from being a bug or redun-
dancy in the RL architecture, such diversity could actually be a feature, 
biasing convergence to optimistic or pessimistic value predictors. 
More speculatively, it could also explain why D1 and D2 MSNs are not 
simply inverses of each other67–69. The tendency for both pathways 
to activate before movement onset, for example, may not only be a 
consequence of the role of the (dorsal) striatum in action selection; 
such co-activation would also be predicted for the ventral striatum if 
these transition points coincide with increases in the predicted vari-
ance (and thus the density on both the left and the right tails) of the 
reward distribution.

The present studies could only infer motivational value, and not 
risk attitudes, from the conditioned responding of mice, and many 
questions remain as to how the brain transforms high-dimensional 
reward distributions into a single choice. Nonetheless, it is tempt-
ing to speculate that this process corresponds to the dimensionality 
reduction that takes place throughout the various nuclei of the basal 
ganglia70, ultimately collapsing onto a unitary value estimate in the 
thalamus that defines the choice axis. Notably, such a ‘distributional 
critic’—centred here in the lAcbSh, a region that receives RPE-like 
dopamine input20–22—could integrate seamlessly into a broader RL 
framework71, with the dorsal striatum likely playing the role of the 
‘actor’ and choosing actions in continuous, high-dimensional spaces. 
More work is needed in operant or unconstrained contexts—including 
those requiring response inhibition9,58—to establish the ubiquity of 

distributional representations of reward, explore how such coding 
intersects with choice and tease apart candidate neural architectures. 
Furthermore, it remains to be clarified how distributional information 
may help to tune state representations in the cortex without making use 
of backpropagation—and, more generally, how MSN activity evolves 
with learning.

Modifications of the encoded reward distribution, such as by dopa-
minergic drugs29, or of the downstream basal ganglia circuit, might 
bias risky choice on rapid or developmental timescales30. Various psy-
chopathologies—such as depression, in which patients learn more 
from losses than gains72, or addiction, in which patients systematically 
overweight the right tail of the reward distribution73—could similarly 
stem from the dysfunction of this core distributional RL circuitry. Thus, 
REDRL can serve as a bridge between RL, behavioural economics, com-
putational psychiatry and systems neuroscience, demonstrating how 
the circuit logic of the striatum can combine with vector-valued dopa-
mine signals to realize the computational benefits of distributional RL.
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Methods

Experimental procedures
Mice. A total of 56 adult C57BL/6J ( Jackson Laboratory) male and female 
mice were used in these experiments. Twelve wild-type animals (6 males 
and 6 females) were used for Neuropixels recordings in the original 
task, of which 5 (2 males and 3 females) were also included in unilateral 
6-OHDA experiments. The Bernoulli, Diverse Distributions and Fourth 
Moments tasks made use of three (one male and two female), three (one 
male and two female) and five (2 male and 3 female) animals, respec-
tively. For two-photon imaging, four Drd1-cre (B6.FVB(Cg)-Tg(Drd1-cre)
EY262Gsat/Mmucd, RRID: MMRRC_030989-UCD; three male and one 
female) and four Adora2a-cre (B6.FVB(Cg)-Tg(Adora2a-cre)KG139Gsat/
Mmucd, RRID: MMRRC_036158-UCD; one male and three female) mice 
were used75–77. For optogenetic excitation, we used five Drd1-cre (two 
male and three female) and seven Adora2a-cre (three male and four 
female) animals. For optogenetic inhibition, we crossed these lines with 
a Cre-dependent GtACR1 reporter mouse78,79 (R26-CAG-LNL-GtACR1- 
ts-FRed-Kv2.1, RRID: IMSR_JAX:033089). Five Drd1-cre;GtACR1 (two 
male and three female) and eight Adora2a-cre;GtACR1 (four male and 
four female) mice were used. All transgenic mice used for experiments 
were backcrossed with C57BL/6J and heterozygous for the relevant  
allele (or alleles). Sample size was chosen based on similar experiments 
performed previously in the laboratory. No randomization or blinding 
was performed, other than randomization of odours to distributions.

Animals were housed on a 12-h dark–12-h light cycle and performed 
the task at the same time each day (±1 h), during the dark period. Ambi-
ent temperature was kept at 75 ± 5 °F, and humidity was kept below 50%. 
Animals were group-housed (2–5 animals per cage) until surgery, then 
individually housed throughout training and testing. All procedures 
were performed in accordance with the US National Institutes of Health 
Guide for the Care and Use of Laboratory Animals and approved by the 
Harvard Institutional Animal Care and Use Committee.

Surgeries. All surgeries were performed under aseptic conditions. Mice 
(over 8 weeks of age) were anaesthetized with isoflurane (3.5% induc-
tion, followed by 1–2% maintenance at 1 l min−1), and local anaesthetic 
(lidocaine, 2%) was administered subcutaneously at the incision site. 
Analgesia (buprenorphine for pre-operative treatment, 0.1 mg kg−1,  
intraperitoneal (i.p.); ketoprofen for post-operative treatment, 
5 mg kg−1 i.p.) was administered for 2 days after surgery. After level-
ling, cleaning and drying the skull, we affixed a custom-made titanium 
head plate to the skull with adhesive cement80 (C&B Metabond, Parkell).

For all injections, the solution (6-OHDA or virus) was backfilled 
into a pulled glass pipette (5-000-1001-X, Drummond), followed by 
mineral oil and a plunger. A small craniotomy (less than 1 mm in diam-
eter) was made using a dental drill, and then the pipette assembly was 
mounted on the stereotaxic holder, lowered to the desired coordinate 
and injected slowly (approximately 100 nl min−1) to minimize damage to  
the surrounding tissue (MO-10, Narishige). After each injection, we 
waited at least 10 min to allow the solution to diffuse away from the 
pipette tip before slowly going up to the next coordinate or retracting 
the pipette from the brain. Target coordinates for the lAcbSh were 
the same across experiments: anteroposterior 1.1 mm from bregma, 
mediolateral 1.7 mm and dorsoventral 4.2 mm from the pial surface.

6-OHDA procedure. To unilaterally ablate dopamine neurons project-
ing to the lateral ventral striatum, we followed an existing protocol24,81. 
The following solution was injected (i.p.) into animals at 10 mg kg−1 
immediately before surgery: 14.25 mg desipramine (D3900-1G, 
Sigma-Aldrich); 3.1 mg pargyline (P8013-500MG, Sigma-Aldrich); and 
5 ml distilled water.

Most animals (weighing roughly 25 g) received approximately 
250 μl of this solution, which was given to prevent dopamine uptake 
in noradrenaline neurons and to increase the selectivity of uptake by 

dopamine neurons. We additionally prepared a solution of 10 mg ml−1 
6-OHDA (H116-5MG, Sigma-Aldrich) and 0.2% ascorbic acid in saline 
(0.9% NaCL; PHR1008-2G, Sigma-Aldrich). The ascorbic acid in this 
solution helps to prevent 6-OHDA from breaking down. The control 
hemisphere was either injected with vehicle ascorbic acid solution or 
uninjected; we observed no differences between these groups and so 
combined them. To further prevent 6-OHDA from breaking down, we 
kept the solution on ice, wrapped in aluminium foil and used it within 
3 h of preparation. If the solution turned brown during this time (indi-
cating that 6-OHDA had broken down), it was discarded and a fresh 
solution was made. In total, 225 nl of 6-OHDA (or vehicle) was injected 
unilaterally into the lAcbSh.

Surgeries occurred at least 1 week before the start of behavioural 
training. We lesioned nine mice and included control hemisphere data 
for all of them in the main dataset. However, four of these mice either 
died before we could record from the lesioned hemisphere or were 
not correctly targeted for the lesion and/or recording, and so were 
excluded from the lesion dataset.

Viruses. To express constructs specifically in D1 or D2 MSNs, we  
injected viruses into Drd1-cre and Adora2a-cre mice. For imaging  
experiments, we unilaterally injected 450 nl AAV9-hSyn-flex-GCaMP7s 
(at least 1 × 1013 vg ml−1, Addgene)82 into the lAcbSh. For optogenetic acti-
vation experiments, we bilaterally injected AAV9-hSyn-flex-CoChR-GFP 
(5.1 × 1012 vg ml−1, UNC Vector Core, NC)83 at anteroposterior 1.1 mm and 
mediolateral ±1.7 mm in 300-nl increments at four separate depths 
below the pial surface: 4.2, 3.4, 2.6 and 1.8 mm.

GRIN lens and fibre implantations. Before the GRIN lens surgery,  
we injected animals i.p. with 50 μl dexamethasone (2 mg ml−1; Vedco) 
to reduce inflammation. Before virus injection, a needle was mounted 
on the stereotaxic holder, connected to light suction and lowered to 
3.4 mm below the pial surface to gently aspirate away the overlying 
brain tissue. After virus injection, a singlet GRIN lens (0.5 NA, 0.6 mm 
diameter, 7.3 mm length, 0–200 µm working distance, 3/2 pitch;  
1050-004597, Inscopix) was mounted onto a stereotaxic cannula holder 
(Doric) and then slowly lowered over at least 30 min to its target depth, 
200 μm above the injection site and 3.8 mm below the pial surface. 
Metabond was used to secure the GRIN lens on all sides and allowed 
to dry completely before removing the cannula holder and covering 
everything with another layer of Metabond mixed with charcoal powder 
to block out light. Finally, a plastic cap was attached with Kwik-Cast 
(World Precision Instruments) to protect the lens from damage.

For optogenetic manipulation, we bilaterally implanted tapered 
fibres84 (0.66 NA, 200 μm diameter, 3 mm emitting length, 5 mm 
implant length; Optogenix) in the lAcbSh after virus injection, at a 
depth of 4 mm. Each fibre was secured using Metabond and then pro-
tected with a fitted cap.

Behavioural setup and tasks. Behavioural events were controlled 
(and licking was monitored) using custom-written software in MAT-
LAB (Mathworks) and the Bpod library (Sanworks) interfacing with 
the Bpod state machine (1024 and 1027, Sanworks), valve module 
(1015, Sanworks) and port interface board (1020, Sanworks)/water 
valve (LHDA1233115H, Lee Company) assembly. Odours were deliv-
ered using a custom olfactometer85, which directed air through one 
of eight solenoid valves (LHDA1221111H, Lee Company) mounted on a 
manifold (LFMX0510528B, Lee Company). Each odour was dissolved 
in mineral oil at 10% dilution, and 30 μl of diluted odour solution was 
applied to a syringe filter (2.7 μm pore, 13 mm diameter; 6823-1327, 
Whatman). Wall air was passed through a hydrocarbon filter (HT200-4, 
Agilent Technologies) and split into a 100 ml min−1 odour stream and 
900 ml min−1 carrier stream using analogue flowmeters (MFLX32460-
40 and MFLX32460-42, Cole-Parmer), which were recombined at the 
odour manifold before being delivered to the nose of the mouse. Licking 
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was monitored using an infrared emitter–photodiode pair positioned 
just in front of the plastic lick spout, positioned at the mouth of the 
mouse. Following previous work, we assumed that the level of Pavlovian 
conditioned responding provides a readout of the motivational value 
estimates of the mouse80,86.

Animals used for Neuropixels recording and two-photon imaging 
were conditioned with five to six (depending on the task) different 
neutral odours, chosen at random from these seven: isoamyl acetate, 
p-cymene, ethyl butyrate, (S)-(+)-carvone, (±)-citronellal, α-ionone and 
l-fenchone. Mice in the optogenetic manipulation experiment used 
only the first three odours. In all experiments, the mapping between 
physical odour and conceptual trial type was randomized across mice. 
Each trial began with a 1-s odour presentation, followed by 2-s trace 
period and then reward delivery. There was a minimum of 4.6 s before 
the next trial (4.1 s for optogenetic manipulation mice), plus a variable 
inter-trial interval (ITI) drawn from a truncated exponential distribu-
tion with a mean of 2 s, minimum of 0.1 s and maximum of 10 s. For 
two-photon imaging experiments, this was extended to a mean of 10.5 s, 
minimum of 6.5 s and maximum of 18.5 s, to account for the slower 
kinetics of the calcium indicator relative to electrophysiology.

The main recording task consisted of three different reward distribu-
tions: Nothing, Fixed and Variable (Fig. 1b). Each distribution was then 
paired with two unique odours, for a total of six odours. The distribu-
tions were as follows:
•	 Nothing: 100% chance of 0 μl water
•	 Fixed: 100% chance of 4 μl water
•	 Variable: 50% chance of 2 μl water or 50% chance of 6 μl water.

The task used for optogenetic manipulation was simplified in two 
ways. First, we used only one odour per distribution, for a total of three 
odours. Second, we modified the Variable distribution to be 50/50% 
between 0 µl and 8 μl, because our model predicted that increasing 
the variance would lead to a greater behavioural difference between 
Fixed and Variable odours.

Behavioural training. Water restriction began no earlier than 5 days 
after recovery from surgery. The condition of the mice was monitored 
daily to ensure that mice did not dip below 85% of their free-drinking 
body weight, including supplementing with additional water after the 
task to bring their total daily intake to approximately 1.2 ml. Over the 
course of three successive habituation days, mice were (1) handled 
gently for several minutes in their home cage, (2) permitted to freely 
roam around the platform in the behaviour rig to collect water, and 
then (3) head-fixed while receiving frequent (inter-reward interval of 
4–5 s) 6 μl water rewards.

The optogenetic manipulation task proceeded in only one phase, 
with up to 110 Nothing, 110 Fixed and 114 Variable trials, randomly 
interleaved. By contrast, training for the recording task took place in 
three phases, each with a maximum of 300 trials.
•	 Phase 1: both Nothing odours and both Fixed odours with equal prob-

abilities
•	 Phase 2: all six odours, but with the Variable odours 5.5× more frequent 

than the others
•	 Phase 3: all six odours at a final ratio of 4:4:7 (Nothing:Fixed:Variable), 

to increase the statistical power for analysing responses to different 
reward sizes.

We trained animals in three additional tasks to test the generality 
of REDRL (Extended Data Fig. 8). Each of these tasks also had its own 
shaping procedure.

Bernoulli task:
•	 Phase 1: 0% and 100% odours with equal probabilities
•	 Phase 2: 0%, 50% and 100% odours at a ratio of 3:10:3
•	 Phase 3: 0%, 20%, 50% and 80% odours at a ratio of 2:15:8:15
•	 Phase 4: all five odours at a final ratio of 1:2:2:2:1.

Diverse Distributions task:
•	 Phase 1: conditioned stimulus 1, 2 and 6 with equal probabilities
•	 Phase 2: conditioned stimulus 1, 2, 3 and 6 at a ratio of 4:3:50:3
•	 Phase 3: conditioned stimulus 1, 3 and 4 at a ratio of 1:5:9
•	 Phase 4: conditioned stimulus 1, 2, 3, 4 and 6 at a ratio of 4:9:8:30:9
•	 Phase 5: conditioned stimulus 1, 3, 4 and 5 at a ratio of 2:2:5:21
•	 Phase 6: all six odours at a ratio of 9:9:20:50:203:9
•	 Phase 7: all six odours at a final ratio of 23:25:80:70:77:25.

Fourth Moments task:
•	 Phase 1: both Nothing and both Uniform odours at a ratio of 74:77
•	 Phase 2: all six odours, but with the Bimodal odours 5.5× more  

frequent than the others
•	 Phase 3: all six odours at a final ratio of 39:56:56.

On recording days, animals experienced a maximum of 20 additional 
unexpected reward trials, in which 4 μl of water was delivered without 
being preceded by an odour cue. All trials were randomly interleaved 
in all phases.

For all tasks, animals completed at least 150 trials per day, and almost 
always more than 250. The experiment might have been terminated 
early by the experimenter if the mice stopped licking in anticipation (or 
consumption) of the rewards due to satiety. A behavioural session was 
considered significant if the lick rate during the last half second before 
reward delivery was significantly different between rewarded (Fixed 
and Variable) and unrewarded (Nothing) odours (Mann–Whitney U-test, 
α = 0.05) and the effect size was at least 0.75 licks per second. Animals 
were advanced to the next phase, or to habituation for recording or 
manipulation, after at least 2 consecutive days with significant behav-
iour. On recording or manipulation days, only significant behavioural 
sessions were included for neural or behavioural analysis.

Neuropixels recordings. The day before recording, mice were habitu-
ated to the recording setup by covering their heads with a plastic sheet 
to block their view of the probe and manipulator. We then turned on the 
lamp, ran the brushed motor controller (KDC101 and Z825B, Thorlabs) 
up and down for about 30 s, tapped on the skull several times with 
fine forceps, and left the mouse head-fixed for at least 30 min before 
beginning the behavioural protocol. If necessary, we repeated this 
habituation protocol every day until the behaviour of the mouse was 
significant (see ‘Behavioural training’). After this, we anaesthetized 
the mouse to make a small craniotomy, which was then covered with 
Kwik-Cast. The craniotomy was guided by fiducial marks made at the 
target sites for probe insertion during headplate implantation using a 
fine-tipped pen. Target coordinates included: anteroposterior 0.9 mm 
and mediolateral 1.7 mm (lAcbSh); anteroposterior 1.1 mm and medi-
olateral 1.4 mm (nucleus accumbens core); and anteroposterior 1.4 mm 
and mediolateral 0.6 mm (medial accumbens shell (mAcbSh)). For the 
first craniotomy, a ground pin was inserted into the posterior cortex 
and a custom-made plastic recording chamber was fixed to the top of 
the headplate, both using 5-min epoxy (Devcon).

The next day, we head-fixed the mouse, covered its head as 
before, removed the Kwik-Cast and flushed the craniotomy with 
saline. For the first recording in each craniotomy, we coated the 
probe in lipophilic dye at 10 mg ml−1. DiI (1,1′-dioctadecyl-3,3,3′,3′- 
tetramethylindocarbocyanine perchlorate; 100 mg; 42364, Sigma- 
Aldrich) and DiD (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodica
rbocyanine, 4-chlorobenzenesulfonate; 10 mg; 60014, Biotium) 
were dissolved in 100% ethanol (V1001, Koptec), and DiO (3,3′- 
dioctadecyloxacarbocyanine perchlorate; D275, Thermo Fisher) was 
dissolved in 100% N,N-dimethylformamide (Sigma-Aldrich, D4254). 
The coated Neuropixels 1.0 (ref. 87) or four-shank Neuropixels 2.0  
(ref. 88) probe was then mounted on the manipulator and connected to 
the ground pin via a wire soldered onto the reference pad and shorted 
to ground. In the event the external reference was unstable, we used 



tip referencing instead. All recordings were performed in SpikeGLX 
software (https://github.com/billkarsh/SpikeGLX), with a sampling 
rate of 30 kHz, local field potential gain of 250 and action potential 
gain of 500, and we analysed only the action potential channel (which 
was high-pass filtered in hardware with a cut-off frequency of 300 Hz).

We inserted the probe into the brain at 9 μm s−1 before slowing to 
2 μm s−1 when we were 500 μm above the target depth. We stopped 
insertion when we saw ventral pallidal activity, characterized by 
large-amplitude, high-frequency spikes, on the first 40 channels or 
so (or 5 channels for Neuropixels 2.0). This point was usually reached 
around 5.2 mm below the visually identified pial surface. After reach-
ing the target depth, the probe was allowed to settle for 30 min before 
starting the experiment and Neuropixels recording. Behavioural and 
neural recordings were synchronized using a transistor–transistor logic 
(TTL) pulse sent from the Bpod to the PXIe acquisition module SMA 
input at the start of every trial. After the experiment, the probe was 
retracted at 9 μm s−1, and the craniotomy was resealed with Kwik-Cast. 
Neuropixels data were spike sorted offline with Kilosort 3 (ref. 89) with 
default parameters, followed by manual curation in Phy (https://github.
com/cortex-lab/phy).

Two-photon imaging. Imaging data were acquired using a custom-built 
two-photon microscope. A resonant scanning mirror and galvanomet-
ric mirror (CRS 8 KHz and 6210H, Cambridge Technology) separated 
by a scan lens-based relay on the scan head (MM201, Thorlabs) allowed 
fast scanning through a dichroic beamsplitter (757-nm long pass, Sem-
rock) and 20×/0.5 NA air immersion objective lens (Plan Fluor, Nikon). 
Green and red emission lights were separated by a dichroic beamsplit-
ter (568-nm long pass, Semrock) and bandpass filters (525/50 nm and 
641/75 nm, Semrock) and collected by GaAsP photomultiplier tubes 
(H7422PA-40, Hamamatsu) coupled to transimpedance amplifiers 
(TIA60, Thorlabs). A diode-pumped, mode-locked Ti:sapphire laser 
(Spectra-Physics) delivered excitation light at 920 nm with an aver-
age power of approximately 60 mW at the top face of the GRIN lens90, 
modulated by a Pockels cell (350-80, Conoptics). The microscope was 
controlled by ScanImage (v4; Vidrio Technologies). The behavioural 
platform was mounted on an XYZ translation stage (LTS150 and MLJ050, 
Thorlabs) to position the mouse under the objective, and the top face of 
the GRIN lens was first located using a 470-nm LED (M470L2, Thorlabs).

Owing to the limited axial resolution of the implanted GRIN lens, we 
acquired only a single imaging plane at 15.2 Hz unidirectionally with 
1.4× digital zoom and a resolution of 512 × 512 pixels (approximately 
0.7 μm per pixel isotropic). Imaging was either continuous or triggered 
2.6 s before odour or unexpected reward onset, depending on the ses-
sion. Bleaching of GCaMP7s was negligible over this time. TTL pulses 
were sent from the microscope to Bpod to synchronize imaging and 
behavioural data. Imaging typically began approximately 4 weeks after 
GRIN implantation, to allow sufficient time for the virus to express and 
for inflammation to clear.

Two-photon preprocessing. We used the Suite2p toolbox91 (v0.10.3) to 
register frames, detect cells, extract Ca2+ signals and deconvolve these 
traces. We used parameter values of tau = 2.0 (to approximately match 
the decay constant of GCaMP7s82), sparse_mode=False, diameter=20, 
high_pass=75, neucoeff=0.58; fs was set to the measured frame rate for 
that session (approximately 15.2 Hz), and all other parameters were 
set to their defaults. In brief, non-rigid motion correction was used 
in blocks of 128 × 128 pixels to register all frames to a common refer-
ence image using phase correlation. Cell detection consisted of find-
ing and smoothing spatial principal components and then extending  
region of interests (ROIs) spatially around the peaks in these principal 
components. Next, Ca2+ traces were extracted from each ROI after 
discarding any pixels belonging to multiple ROIs. Finally, neuropil 
contamination and deconvolved spikes were estimated in a single step 
from Ca2+ fluorescence in each ROI using the OASIS algorithm92 with 

a non-negativity constraint. This deconvolved activity was used for 
all subsequent analysis. ROIs were manually curated on the basis of 
anatomical and functional criteria using the Suite2p GUI to exclude 
neuropil and ROIs with few or ill-formed transients.

Face and body imaging. In addition to the lick port, we monitored  
behaviour using two cameras at 30 Hz, one pointed at the face 
(FL3-U3-13Y3M, PointGrey) and one pointed at the body (CM3-U3-
13S2C, PointGrey) under both visible and infrared LED illumina-
tion. Cameras were synchronized from Bpod once per trial using 
general-purpose input/output (GPIO) inputs, and data were written 
to disk via Bonsai93. Behavioural features were extracted using custom 
code alongside Facemap49 (v0.2.0). Face motion energy was computed 
as the absolute value of the difference between consecutive frames 
and summed across all pixels to yield the ‘whisking’ signal. In addition, 
we performed singular value decomposition on the motion energy 
video (in chunks, following ref. 49) and projected the movie onto the 
top 50 components to obtain their activity patterns over time. Pupil 
area was estimated simply as the mean (inverse) pixel value within a 
mask, after interpolating over blink events. Running was computed 
using the phase correlation of the cropped body video, to take into 
account limb and tail movements.

Optogenetic manipulation. Laser light (473 nm; LRS-0473-GFM- 
00100-03, Laserglow Technologies) was delivered to the implanted 
tapered fibres using a custom-built rig (modelled after refs. 94,95) 
coupled to a high-performance patch cord (0.66 NA, OPT/PC-FC-LCF-
200/230-HP-2.2L KIT, Plexon). In brief, light was split into two identical 
paths using a 50/50 beamsplitter cube (CCM1-BS013, Thorlabs). Each 
path was then focused onto a galvanometric mirror (Novanta 6210K) 
and re-collimated using an achromatic doublet (AC508-100-A-ML, 
Thorlabs), before being focused onto the back of the patch cord using 
an aspheric condenser lens (ACL50832U, Thorlabs). This setup allowed 
us to modulate the angle at which light entered the patch cord, and 
thus the distance at which it exited the tapered fibre. We delivered 
light at two different angles (three in some experiments), but here we 
analysed only ventral manipulation trials, in which the incident angle 
of light was approximately 0°, light exited near the tip of the fibre, and 
coupling between the patch cord and fibre was approximately 50%94.

The laser output (and the angle of the galvanometric mirrors) was 
controlled by Bpod via PulsePal96 (v2; 1102, Sanworks). Stimulation 
was delivered bilaterally during the 2-s-long trace period, immedi-
ately before the reward. For CoChR excitation experiments, we used 
10-ms pulses at 20 Hz with an output power at the tapered fibre of 
100 μW. For GtACR1 inhibition, we used a constant, 1-mW pulse for 
the full 2 s. In both cases, stimulation was delivered on 45.5% of tri-
als, uniformly at random across manipulation locations and trial  
types.

Histology and immunohistochemistry. Mice were deeply anaesthe-
tized with ketamine–dexmedetomidine (80 and 1.1 mg kg−1, respectively)  
and then transcardially perfused using 4% paraformaldehyde. The brains 
were sliced at 100 μm into coronal sections using a vibratome (Leica) 
and stored in PBS. If performing immunostaining, slice thickness was 
75 μm. These slices were then permeabilized with 0.5% Triton X-100, 
blocked with 10% FBS and stained with rabbit anti-TH antibody (AB152, 
EMD Millipore; RRID: AB_390204) at 1:750 dilution at 4 °C for 24 h to 
reveal dopamine axons in the striatum. Next, slices were stained with 
fluorescent secondary antibodies (Alexa Fluor 488 goat anti-rabbit 
secondary antibody; A-11008, Invitrogen; RRID: AB_143165) and DAPI at 
1:500 dilution at 4 °C for 24 h. Slices were then mounted on glass slides 
(Vectashield antifade mounting medium, H-1000, or with DAPI for non- 
stained slices, H-1200, Vector Laboratories) and imaged using a Zeiss 
Axio Scan Z1 slide scanner fluorescence microscope. We visually veri-
fied the placement of all GRIN lenses and fibres to be within the lAcbSh.

https://github.com/billkarsh/SpikeGLX
https://github.com/cortex-lab/phy
https://github.com/cortex-lab/phy
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Data analysis
Atlas registration. For electrophysiology experiments, we registered 
slices to the Allen Mouse Brain Atlas with SHARP-Track97 and used it to 
trace dyed probe trajectories in the anteroposterior and mediolateral 
directions, as well as visualize the registered trajectories as a coronal 
stack. We also used this registration to define the unique dorsoventral 
extent of the lateral ventral striatal 6-OHDA lesion of each mouse, and 
we considered only neurons that fell within this range to have been 
lesioned. To more accurately ascertain the depth of recordings, we used 
the Ephys Atlas GUI by the International Brain Lab (https://github.com/
int-brain-lab/iblapps/tree/master/atlaselectrophysiology), focusing on 
the boundary between the ventral pallidum and nucleus accumbens 
due to the abrupt change in electrophysiological characteristics at this 
interface. When necessary, we also adopted their convention that in 
Allen Common Coordinate Framework98 coordinates, bregma = 5400 
anteroposterior, 332 dorsoventral and 5739 mediolateral. For plotting 
probe trajectories in 3D, we used the Brainrender library99.

For more fine-grained analysis of subregions, we used the Kim Lab 
atlas100 accessed through the BrainGlobe Atlas API101. This atlas applies 
the Franklin and Paxinos74 labels to the Allen Common Coordinate 
Framework98, with additional striatal subregions defined by Hintiryan 
et al.102. For some subregions, the parcellation was finer than we needed, 
so we pooled subregions (as defined by refs. 100,102) as follows:
•	 Olfactory tubercle: Tu1; Tu2; Tu3
•	 Ventral pallidum: VP
•	 Medial nucleus accumbens shell: AcbSh
•	 Lateral nucleus accumbens shell: lAcbSh; CB; IPACL
•	 Nucleus accumbens core: AcbC
•	 Ventromedial striatum: CPr, imv; CPi, vm, vm; CPi, vm, v; CPi, vm, cvm
•	 Ventrolateral striatum: CPr, l, vm; CPi, vl, imv; CPi, vl, v; CPi, vl, vt; 

CPi, vl, cvl
•	 Dorsomedial striatum: CPr, m; CPr, imd; CPi, dm, dl; CPi, dm, im; CPi, 

dm, cd; CPi, dm, dt
•	 Dorsolateral striatum: CPr, l, ls; CPi, dl, d; CPi, dl, imd.

Unit inclusion criteria. To be included for analysis, units from Neuro
pixels recordings had to have a minimum firing rate of 0.1 Hz and to 
have been stable, defined as a coefficient of variation of firing rate 
(computed in 10 equally sized, contiguous, disjoint blocks during the 
session) less than 1. 13,997 single units survived these inclusion crite-
ria in the main dataset. In the lesion dataset, we additionally filtered 
neurons by their dorsoventral position: only those that fell within the 
dorsoventral range of the lesion were included in the matched control 
dataset for that mouse. Of the 9,081 neurons that survived the electro-
physiological criteria, 4,879 were in the correct anatomical location, of 
which 2,283 came from the control and 2,596 came from the lesioned 
hemisphere.

Putative cell-type identification. We assigned units to putative cell 
types using previously established criteria103. In brief, to be considered 
MSNs, units were required to have broad waveforms (Kilosort template 
trough-to-peak waveform duration of more than 400 μs) and post-spike 
suppression of 40 ms or slower. For the latter, we used the autocor-
relation function with a bin width of 1 ms. Post-spike suppression was 
quantified as the duration for which the autocorrelation function was 
less than its average during lags between 600 ms and 900 ms.

Statistical software. All statistical analysis, except where explicitly 
stated, was performed in Python using the NumPy (v1.22.3), SciPy 
(v1.7.3), pandas (v1.1.4), scikit-learn (v1.0.2), statsmodels (v0.14.0), 
Matplotlib (v3.5.1) and seaborn (v0.12.2) packages104–110. All reported  
P values are two-tailed. We did not perform tests for normality or cor-
rect for multiple comparisons. If not otherwise specified, statistical 
tests used linear mixed effects models (LMEs) with a random intercept 

for each mouse, and, if applicable, a random slope for each mouse as a 
function of grouping (for example, across versus within distribution), 
implemented in statsmodels. Full model specifications for every LME 
can be found in Supplementary Table 1.

Units of analysis. For the behaviour, control and manipulation datasets 
(Figs. 1, 2 and 5), each observation was an individual session—that is, 
we used simultaneously recorded neurons and behaviour and com-
puted effects (PCA, RDA, parallelism score and classification) on a 
session-by-session basis. This was also the case for parallelism score 
in the lesioned dataset (Fig. 3g), as this analysis already requires sub-
sampling to 100 neurons (see below). However, given the limited spatial 
extent of our lesion and our lower number of simultaneously record-
ed neurons, for the remainder of the lesion dataset (Fig. 3) we used 
pseudo-populations. More specifically, we created pseudo-populations 
by splitting the dataset into disjoint sets of trials111, which were stitched 
across sessions, but not across animals. Within each session, we used 
simultaneously recorded trials across neurons to preserve noise cor-
relations where possible. For these LMEs, pseudo-populations provided 
the observations, and ‘mouse’ was again the grouping variable for ran-
dom effects. The same procedure was used for all subregion-specific 
analyses (Extended Data Figs. 2e,l, 4a–d and 8g–j) and artificial neural 
network (ANN)-based decoding (Extended Data Fig. 4g–j), again due 
to the lower number of simultaneously recorded neurons available 
for these analyses.

For the imaging dataset (Fig. 4) and ANN-based transfer (Extended 
Data Fig. 4k,l), we did not have enough neurons in all animals to assess 
distributional coding. We therefore pooled neurons not only across 
sessions but also across animals within genotype. Pseudo-populations 
were otherwise constructed exactly as in the lesion case. To be consist-
ent with the parametric nature of LMEs while recognizing that observa-
tions were no longer specific to individual mice, we used one-sample 
Student’s t-tests to assess statistical significance relative to chance 
levels and LMEs (with just one observation per group) to assess differ-
ences between groupings.

Neuron-level analyses (for example, Extended Data Figs. 2d,g,n,o,q,r, 
5d,g,h and 7n) treated neurons as individual observations, with random 
effects of ‘session’ nested within mouse.

Plotting conventions. In the figures, the asterisks over lines connecting 
different groupings indicate significant differences between groups, 
whereas asterisks without corresponding lines indicate that the group is 
significantly different from chance. Chance levels are indicated by grey 
dashed lines. The shaded regions from 0 to 1 s represent the interval 
of odour delivery, and the vertical lines at 3 s indicate reward timing. 
Except where otherwise noted, vertical bars or shading around data 
points indicate the mean ± 95% confidence interval (c.i.) of the relevant 
units of analysis, be they mice or pseudo-populations.

Time periods for analysis. In general, we analysed behavioural and 
neural data during the late trace period, 1–0 s before reward delivery. 
However, for licking comparisons before and after odour onset, we also 
used the baseline period (1–0 s before odour onset); for odour decoding, 
we used the odour period (0–1 s after odour onset); and for reward or 
RPE coding, we used the outcome period (0–1 s after reward delivery). 
Analysis of variability across trials (Extended Data Fig. 6) examined 
changes across all of these time periods, as well as the early trace period, 
2–1 s before reward delivery. Neural and behavioural data were averaged 
within these 1-s periods before analysis, with the exception of plots 
of classification or regression time courses, in which averages within 
non-overlapping 250-ms bins were used for increased granularity.

Visualization of neural time courses. For smoothed plots of neural 
time courses (Figs. 1f,g, 2a and 5d,g and Extended Data Figs. 2b and 
10a,b), we smoothed neural activity (spike trains or deconvolved  

https://github.com/int-brain-lab/iblapps/tree/master/atlaselectrophysiology
https://github.com/int-brain-lab/iblapps/tree/master/atlaselectrophysiology


activity traces) with a Gaussian kernel (s.d. of 100 ms) before plot-
ting or reducing dimensionality. Z-scored firing rates were computed  
using the mean and standard deviation of this smoothed trace. PCA time 
courses (Fig. 1g) were extracted by computing the average normalized, 
smoothed firing rate for each trial type and concatenating these into 
a 2D matrix of shape N × (T × 6), where N is the number of neurons, T 
is the number of time points per trial, and 6 corresponds to the six 
possible odours. PCA was then performed and the time courses were 
reconstructed separately for each of the six odours. All other analyses 
used unsmoothed data to remain uncontaminated by later time points.

PCA and RDA. For two-dimensional principal component plots, nor-
malized activity during the late trace period was averaged across trials 
within a given type to produce a matrix of shape N × 6. We then applied 
PCA to reduce this matrix to shape 2 × 6, having retained only the top 2 
principal components. Results were qualitatively identical when using 
all neurons or only putative MSNs for the main dataset (Fig. 2). We report 
Euclidean distances between projected trial types, measured separately 
along each principal component. RDA was similar, except that we com-
puted cosine distances in the native (pseudo-) population normalized 
firing rate space, rather than a lower-dimensional projection.

For the Bernoulli, Diverse Distributions and Fourth Moments tasks, 
we computed Euclidean distance matrices between trial types sepa-
rately for PC1 and PC2. We then computed the Pearson correlation 
between the (flattened) empirical distance matrix and the distance 
matrix for each model to get a single estimate of model fit (Extended 
Data Fig. 8d,e).

We note that PCA and RDA (as well as parallelism score, below) all rely 
on trial averaging. Therefore, the small amount of trial-by-trial updat-
ing that we observed in our GLM cannot account for these signatures 
of distributional coding.

Parallelism score. Following ref. 53, we computed the normalized 
mean firing rate in response to each of the Fixed and Variable odours. 
There are two possible ways to meaningfully pair up these four odours: 
(1) Fixed 1 versus Variable 1 and Fixed 2 versus Variable 2, or (2) Fixed 1  
versus Variable 2 and Fixed 2 versus Variable 1. In both cases, we can 
compute difference vectors pointing from Variable to Fixed (Fig. 2b) 
and then take the cosine similarity between them. The parallelism score 
that we report is simply this cosine similarity, averaged over the two 
possible divisions. Because this statistic will be affected by the dimen-
sionality of the vectors in question, we subsampled all populations to 
100 neurons, averaging over 100 random subsamples for each split 
and session. Note that in the case of isotropic noise, the vectors that 
we define are equivalent to those defined by a maximum-margin linear 
classifier between the two conditions. However, the high parallelism 
score does not necessarily imply high CCGP, for example, if the test 
conditions are much closer together than the training conditions, or 
the noise is high and/or anisotropic.

Classification. For both behavioural and neural binary classification, 
we used a support vector classifier with a linear kernel, hinge loss func-
tion, L2 penalty, balanced accuracy scoring across classes and regu-
larization parameter 5 × 10−3, implemented in scikit-learn. The linear 
kernel allows for easy interpretation of the learned weights. Input data 
(unnormalized spike counts, lick counts or mean Facemap predictors) 
were transformed using StandardScaler (computed on training data) 
before being fed to the classifier.

We ran six different classification analyses: CCGP53, pairwise 
decoding, congruency, mean, odour and variable reward amount, as 
described in the main text and figure legends. Across-distribution and  
within-distribution results were just the average over the relevant 
dichotomies (for example, the four possible ways to set up CCGP). 
For all simultaneous decoding analyses except for CCGP, fivefold 
cross-validation was used, and reported classification accuracy was the 

average over these five folds. For CCGP, cross-validation was unneces-
sary because training and test sets were fully disjoint already. Similarly, 
for pseudo-population-based decoding (Figs. 3 and 4), five training 
sets and one disjoint test set were used in all cases. For six-way odour 
classification, we used multinomial logistic regression rather than 
a support vector classifier, again with a regularization parameter of 
5 × 10−3 and balanced accuracy scoring across classes.

Cross-temporal decoding (Extended Data Figs. 2k and 3h–j) settings 
were identical to the above. For the odour, pairwise and congruency 
analyses, we ensured that the same trial never appeared in both the 
training and the testing sets, despite the different time windows used, 
to avoid leakage due to temporal autocorrelation. For CCGP, train and 
test trials were always different, so this was not a concern.

Cosine similarity to classification boundary. Both linear classifica-
tion and regression find a high-dimensional weight vector in neural 
state space; computing the cosine similarity between these vectors 
can identify whether two analyses are homing in on the same or dif-
ferent features. For each session, in addition to performing classifica-
tion as described above, we regressed input data (unnormalized spike 
counts, lick counts or mean Facemap predictors) during the same time 
period against per-trial mean or variance (using StandardScaler fol-
lowed by RidgeCV with default scikit-learn parameters). Note that the  
regression uses all six trial types, whereas the classification is limited to 
looking at only two (pairwise or CCGP) or four (congruency or mean) 
odours at a time. We then took the weights learned by each regression 
and computed the cosine similarity with the classification weights 
(separately for each of the five classification cross-validation folds 
for non-CCGP decoders; each session was summarized as the average 
of these five measurements). We report the results of an LME testing 
either the difference from a chance value of 0, indicating orthogonality 
(CCGP) or the difference between the absolute cosine similarities for 
across-distribution and within-distribution decoders (pairwise and 
congruency; Extended Data Fig. 3f,g).

Distribution-coding subpopulation. To identify neurons that con-
tributed significantly to distribution decoding, we extracted the coef-
ficients from the CCGP, pairwise and congruency decoders of each ses-
sion and averaged them across dichotomies (and across cross-validation 
folds if necessary). For the pairwise and congruency analyses, we 
additionally took the difference between across-distribution and 
within-distribution coefficients. For each quantile level (computed 
on each set of coefficients individually for each mouse and each  
decoder), we then calculated the fraction of neurons above this quan-
tile level for all three decoders compared with null decoders in which 
trial types had been shuffled before being run through the decoder.  
We chose a cut-off such that only 2.5% of these cells from the null decod-
ers survived; for the actual data, this corresponded to 1,600 significant 
distribution-coding neurons, or 11.43% of the total. We refer to these 
neurons as the ‘distribution-coding subpopulation’ (Extended Data 
Fig. 4e–l).

Percentage of significant cells. To compute correlations with differ-
ent variables of interest, we calculated the trial-wise Pearson correlation 
between unsmoothed activity in each bin and the value of the variable 
of interest on that trial. We then repeated this procedure, except that 
for each neuron independently, we shuffled the mappings between 
odour and distribution. For example, when considering correlations 
with mean value, a Fixed 1 trial would correspond to a mean of 4 (μl). 
If upon shuffling, Fixed 1 odours were mapped to Nothing 2, then the 
corresponding mean in the shuffled dataset would be 0. Percentages 
of cells significantly correlating with variables of interest (positively, 
negatively or without restriction) were averaged over the four 250-ms 
bins corresponding to the late trace period. We then subtracted the 
shuffled from the unshuffled fraction to account for odour coding. 
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When plotted (for example, Extended Data Figs. 2o,r and 7o), each 
point denotes the per-mouse difference in fraction of significant cells 
(that is, cells with uncorrected P < 0.05) for the unshuffled and shuf-
fled data, separately for cells that correlated positively or negatively 
with mean reward.

For conjunctive coding (Extended Data Fig. 2h), we compared the 
actual number of cells with significant correlations for both mean and 
RPE to the null hypothesis of independent coding, for which individual 
probabilities would be expected to multiply. In the electrophysiology 
datasets, for which there were sufficient neurons per session, we com-
puted these fractions separately for each session and fit an LME using 
fractions in each session as the observations (Extended Data Fig. 2).

Changes in neural activity relative to baseline. To assess changes in 
neural activity relative to the baseline period (Extended Data Fig. 10d), 
we first grouped all unrewarded (Nothing) and rewarded (Fixed and 
Variable) trials for each neuron. We then ran a rank-sum test between 
late trace activity and baseline activity, separately on each neuron and 
trial-type grouping. Finally, we computed the fraction of cells per mouse 
that increased or decreased significantly (α = 0.05), and then ran paired 
samples Student’s t-tests on the respective fractions for rewarded  
versus unrewarded trial types for each group of mice.

Comparisons across subregions, hemispheres and genotypes. 
Whenever subregions, hemispheres or genotypes were directly com-
pared, we randomly subsampled the number of neurons so that pop-
ulation sizes were identical across this comparison. For subregion 
and hemisphere (lesioned versus control), this matching was done 
within-animal; therefore, changes in valuation or continual learn-
ing cannot explain these differences. When comparing subregions, 
we excluded a subregion from an animal if it did not contain at least 
40 neurons, hence the differing number of dots (animals) per sub-
region (Extended Data Figs. 2e,l, 4a–d,f and 8g–j). For genotype (D1 
versus D2 MSNs), matching was done across-animals for the entire 
population of D1 or D2 neurons. To allow for higher neuron counts, 
all of these imaging-based decoding analyses were performed on 
pseudo-populations.

ANN-based distribution decoding. To determine whether neural 
populations contained sufficient information to reconstruct the 
complete reward distribution, rather than simply perform binary 
classification based on reward variance, we constructed an ANN- 
based distribution decoder. Pseudo-population activity from the 
distribution-coding subpopulation a was first mapped into 16 dimen-
sions by a trainable, unregularized decoding matrix W. The network 
takes Wa as input and outputs the predicted distribution. It has one 
input layer, two hidden layers and one output layer. Each of the two 
hidden layers had 32 neurons and used the non-linear activation func-
tion f x x( ) = ln(1 + exp( + 1)) − 1, which is close to the identity function 
for x ≫ 0 and to –1 for x ≪ 0. The output layer had size 4, with each 
dimension corresponding to a possible reward size (0, 2, 4 or 6 μl). 
After linear combination, we also applied the nonlinear function f(x) 
as specified above, followed by the softmax function to turn the out-
put into a normalized probability distribution.

We applied stochastic gradient descent (SGD) to minimize the fol-
lowing loss function based on the 1-Wasserstein distance (D):

∥ ∥

L W

D λ

( , network weights)

= ⟨ (decoded_dist, groundtruth_dist)⟩ + network weights ,2
2

where D is defined as D P Q |P r Q r( , ) = ∑ ( ) − ( )|n n n  for discrete cumula-
tive distribution functions (CDFs) P and Q, where the sum is over all 
used reward magnitudes, and where rn is the respective reward mag-
nitude. In other words, the 1-Wasserstein distance measures the 
unsigned area between two CDFs. For plotting, we normalized this 

metric by dividing by the minimum achievable Wasserstein distance 
that would result from predicting the same distribution for every trial 
type across the training and test sets (‘Wasserstein distance relative 
to reference’).

For all experiments, λ was set to 0.02 and the learning rate was 
0.002. All the trainable weights were randomly initialized with a 
mean of 0 and standard deviation of 1, and then divided by 15. For each 
disjoint pseudo-population, we trained 5 randomly and differently 
initialized candidate ANNs each for 1,200 iterations, and picked the 
best-performing ANN to further train for 10,000 iterations. The ANN 
was implemented in Julia (v1.6.7) and trained on a GPU (GeForce RTX 
2070, NVIDIA).

In the standard decoding setting, all six trial types were included in 
the training and testing sets (with different trials in each). For decoding 
restricted to trial types with the same mean, only Fixed and Variable 
trial types were used, but split according to the same logic. In both 
cases, we performed decoding independently from each mouse, and 
we compared our results to what happened when we randomly shuf-
fled the odour-distribution mappings before training. If merely odour 
identity (or, in the restricted case, mean) is encoded, then the ordered 
and shuffled networks should attain similar performance.

Finally, in the transfer analysis, in a similar spirit to CCGP, we trained 
on only four trial types and then tested on the held-out two trial types. 
‘Matched’ transfers used one Fixed and one Variable odour in the train-
ing set, assigned to the proper distribution, and evaluated performance 
on the corresponding test odour. ‘Mismatched’ transfers used either 
two Fixed or two Variable odours in the training set, assigning one to 
each distribution, and evaluated performance on the held-out odours, 
again assigning one to each distribution. Nothing trial types were always 
assigned to Nothing distributions. To gain statistical power, we pooled 
neurons across mice for these analyses.

Generalized linear model. To assess the contributions of trial his-
tory, reward, reward prediction, sensory and motor-related variables 
to neural activity, we constructed a Poisson GLM with a bin width of 
20 ms. This models the logarithm of the firing rate μt within time bin t 
(in units of bin−1, not s−1) as a linear combination of predictor variables in 
row vector Xt, weighted by fitted coefficients in the column vector β. 
The observed spike counts yt are then treated as Poisson-distributed 
random variables that are independent across time points, conditional 
on the values of Xt. In matrix notation (Extended Data Fig. 5a):



μ β
y μ μ

X= exp( )
| Poisson( )

In constructing the design matrix X (with shape B × P, where B is 
the number of time bins and P is the number of predictor variables; 
see Extended Data Fig. 5a,b), trial-length regressors (time in trial and 
trial history) were broken up into seven raised cosine basis functions, 
with 1-s spacing and 4-s width, tiling the 6 s of each (odour-cued) trial. 
Trial history consisted of reward magnitude, expected reward and RPE 
for up to two trials back. The height of each of these basis functions 
during the applicable time bins was directly proportional to the value 
of the corresponding regressor; for example, the height of the 1-back 
reward magnitude regressor following a 6 μl reward was three times 
higher than following a 2 μl reward. Reward, reward prediction and 
sensory regressors were scaled in the same manner, time-locked to 
reward or odour onset, and then convolved with a raised cosine basis 
that had been logarithmically scaled along the time axis112.

Because the REDRL model implies that individual neuronal firing 
rates encode (a linear combination of) expectile values, we used five 
different expectile levels to scale the reward prediction regressors, 
corresponding to τ = 0.1, 0.3, 0.5, 0.7 and 0.9. A unique family of sen-
sory regressors was also included for each conditioned stimulus to 
capture potentially idiosyncratic odour responses. Licking, whisking 



and running regressors were convolved with the same basis but in a 
manner that allowed neural activity to be predictive as well as reac-
tive; that is, they were also time-reversed around zero lag. Pupil area 
and face motion singular value decompositions from Facemap were 
input directly to the model without convolution. Finally, we included 
20 nuisance regressors, which were evenly spaced raised cosine bases 
spanning the entire session, with a width equal to four times the spacing. 
These were included to flexibly capture the effects of electrode drift 
and avoid misattributing it to other variables that may have happened 
to be correlated. The contribution of these nuisance regressors to 
fractional deviance explained was eliminated by zeroing their coef-
ficients before computing deviance. Unexpected reward trials (up to 
20 per session) were only 3 s long; we simply removed the last 3 s of 
the trial-length regressors in these cases. The entire regressor matrix 
was z-scored before fitting.

We split the data trial-wise into a training set (85%) and testing set 
(15%). Within the training set, we performed fivefold cross-validation 
to select the regularization strength (λ), with splitting again performed 
trial-wise. We used group lasso regularization113, which encourages 
sparsity between groups of variables but uses non-sparse L2 regulariza-
tion on the within-variable bases, with groups given in Extended Data 
Fig. 5a. Thus, the loss L consisted of the negative log Poisson likelihood 
of the observed spike counts l, plus this regularization term:

ℓ

ℓ ∥ ∥
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∑
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( ; , ) = ( − exp( ) − log( ! ))

( ; , ) = − ( ; , ) + ,
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t t t t

i
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β y y β β y

β y β y βL

where gi and βi are the length and weight vector for variable group i, 
and ||·||2 is the L2 norm.

Models were fit with GPU acceleration on the FAS Research Comput-
ing cluster using the GLM_Tensorflow_2 toolbox114, which allowed us to 
fit all neurons from a given session in parallel. We minimized the loss 
with Adam optimization using a learning rate of 0.005. We fit models 
for eight logarithmically spaced values of λ between 10−4.5 and 10−1 and 
used an se_fraction of 0.75 for model selection. This corresponds to 
choosing the largest λ with model deviance within 0.75 standard errors 
(across cross-validation folds) of the deviance for the minimizing λ. All 
hyperparameters were chosen by examining speed and accuracy of fits 
on a small handful of pilot sessions. After selecting λ, we refit the model 
on the entire training set and then evaluated it on the test set. We fol-
lowed the same procedure when fitting models in which trial history, 
expectile and motor regressors were held out before refitting. Because 
sensory regressors could in principle recapitulate all the information 
in the expectile regressors, we held these out alongside the expectiles.

GLM analysis. Once GLMs had been fit to each session and for each set 
of included variables, we computed deviance and fraction deviance 
explained on the held-out test set (Extended Data Fig. 5c,d) as:


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To conservatively estimate feature-specific contributions to encod-
ing, we computed the difference between the full and reduced models 
for each family of regressors (Extended Data Fig. 5e,g). To comple-
ment this approach with a less conservative estimate, and to isolate the 
contribution of expectiles specifically (as opposed to odour-related 
responses), we also computed a ‘kernel strength’ by multiplying the 
history, expectile or motor coefficients from the full model by their 
respective basis functions, summing over the basis functions to get 

the complete kernel, and then integrating over time. To combine 
over groups of regressors within a family (for example, 0.1 through 
0.9 expectiles), we summed these individual kernel strengths (or their 
absolute values in the case of history and motor) across family members 
(Extended Data Fig. 5f,h). When assessing correlations between differ-
ences in fraction deviance explained for the various reduced models, 
we excluded neurons whose fraction deviance explained was 0.01 or 
less for the full model to ensure that we were only considering neurons 
that were reasonably well-fit.

Fano factor analysis. Across-trial variability was quantified using the 
Fano factor, using published MATLAB code115. In brief, spike counts 
were computed in 100-ms bins for each trial, with a sliding step size 
of 50 ms. We then calculated the across-trial variance and mean of 
the spike count. For each combination of trial type and time bin, we 
computed the regression slope of the variance (y) as a function of the 
mean (x), weighted by the estimated sampling error for the variance.

To estimate the mean-matched Fano factor, we found the greatest 
common distribution of spike counts across all time points, binned 
at a resolution of 0.5 spikes. Then for each time point, we matched 
the analysed distribution of mean rates to this common distribution 
and repeated this procedure 10 times using different random seeds 
(Extended Data Fig. 6).

Computational modelling
In this section, we briefly review the theory behind various distribu-
tional RL algorithms before specifying the details of our implementa-
tion, for the purpose of comparing the learned code to neural activity 
and generating predictions for optogenetic perturbations. All models 
were trained for 2,000 trials per distribution.

REDRL. EDRL was first put forwards as a novel machine learning  
algorithm39 and later used to explain dopamine neuron diversity in the 
mammalian midbrain3,116. EDRL approximately minimizes the expectile 
regression (ER) loss function:

� �V τ τ τ Z VER( ; , ) = [[ + (1 − ) ]( − ) ],Z Z V Z V> ≤
2



ED D

where V is the value predictor, D is the target distribution, Z is a random 
sample from D, τ is the asymmetry, and � is the indicator function, which 
is 1 when the subscript is satisfied and 0 when it is violated. It is an asym-
metrically weighted squared error loss function; in this sense, it gen-
eralizes the mean (squared error loss, equivalent to the 0.5th expectile) 
just as quantiles generalize the median54. Note that V here is a scalar, 
and capitalization is merely for consistency with the RL literature.

EDRL and REDRL minimize this expectile regression loss function 
simultaneously for many values of τ, indexed by i, generally using SGD 
with respect to the value predictors (or their parameters). This formu-
lation is sufficiently general that it can be combined with nonlinear 
function approximation and temporal difference learning methods, 
and its effectiveness has been demonstrated on the suite of Atari video 
games39. However, for simplicity, here we present the Rescorla– 
Wagner117 version of the update rule for tabular states, so the random 
sample from D reduces to simply the experienced reward, r. This is the 
learning rule depicted in Fig. 2d:

δ r V

V V α δ δ

V V α δ δ

= −

← + ⋅ , if ≤ 0

← + ⋅ , if > 0

i i

i i i i i

i i i i i

−

+

For the learning simulations (Fig.  2d), we used learning rates 
α α α= + = 0.03i i

+ −  and vectorized the updates. We initialized all value 
predictors to 2 to show their variable rates of convergence to their 
respective expectile values, but the algorithm is insensitive to this 
choice of initialization.



Article
In the biological implementation of the REDRL algorithm (Fig. 2e–g), 

we decompose this update into two piecewise linear functions.
The first function models dopamine RPEs. As RPE is defined as actual 

minus predicted reward, the reward amount that elicits no change in 
dopamine firing relative to baseline—the ‘zero-crossing point’3—is 
equivalent to the learned value prediction for that neuron. Pessimistic 
dopamine neurons have steeper slopes for rewards below their associ-
ated value prediction (α′i

−) and shallower slopes above it (α′i
+), reflect-

ing relatively low learning rates from positive RPEs. The converse is 
true of optimistic dopamine neurons.

The second function defines the effects of dopamine on plasticity 
at corticostriatal synapses, and it differs between D1 and D2 MSNs 
(indexed by m) by a reflection over the y axis. D1 MSNs increase synap-
tic weights more from positive RPEs (ρm

+), whereas D2 MSNs increase 
synaptic weights more from negative RPEs12–14 (ρm

−). In Fig. 2, ρm
−/+ are 

set to 0.75/3 for D1 and 3/0.75 for D2 MSNs, respectively. Although 
asymmetric, these synaptic weight updates are not fully dichotomous; 
D1 and D2 MSNs still learn slightly from dopamine changes in their 
non-preferred directions66,118, in line with the shallower but non-zero 
slope of D1 and D2 receptor occupancy curves at baseline dopamine 
concentrations66,119,120.

Composing these functions gives rise to the following update rules:

α ρ δ δ

α ρ δ δ

α ρ δ δ

α ρ δ δ

D1 ← D1 + ′ ⋅ ⋅ , if ≤ 0

D1 ← D1 + ′ ⋅ ⋅ , if > 0

D2 ← D2 − ′ ⋅ ⋅ , if ≤ 0

D2 ← D2 − ′ ⋅ ⋅ , if > 0

i i i i i

i i i i i

i i i i i

i i i i i

−
D1
−

+
D1
+

−
D2
−

+
D2
+

Note that D1 and D2 neurons receive unique indices i, so there is 
no overlap in the idealized case. As a consequence of the opponent 
plasticity rule, changes in synaptic weights in D1 and D2 MSNs have 
opposing effects on the encoded value predictor, modelled simply 
by the identity function (for D1 MSNs) or its negation (for D2 MSNs):

V

V

= D1

= max(rewards) − D2
i i

i i

Therefore, this update rule becomes equivalent to the algorithmic 
rule from EDRL if we let α α ρ= ′ ⋅i i m

− − − and α α ρ= ′ ⋅i i m
+ + +.

The degree of optimism or pessimism is parameterized by the dimen-
sionless quantity τ =i

α

α α+
i

i i

+

+ − , which ranges from 0 to 1. Importantly, τi 

uses the net asymmetries learned by the MSNs as opposed to the asym-
metries of the dopamine neurons. Both the expectile that is learned in 
the striatum and the zero-crossing point of the corresponding dopa-
mine neuron are dictated by τi, which can give rise to multiple dopamine 
neurons with the same apparent asymmetry but different zero-crossing 
points, depending on whether they communicate with D1 or D2 MSNs. 
This stands in contrast to the EDRL model, in which the dopamine neu-
ron asymmetries alone fully determine the zero-crossing point. None-
theless, REDRL also predicts a positive correlation between zero- 
crossing points and asymmetries, as previously observed3.

For D1 MSNs, ρ ρ>m m
+ − and so τi skews optimistic; analogously, for D2 

MSNs, ρ ρ<m m
+ − , so τi skews pessimistic. The precise distribution of τ’s 

will depend on the distribution of dopamine neuron asymmetries  
(α′i

+ and α′i
−) as well as the ratio of ρm

+ to ρm
−, neither of which has been 

measured precisely. To avoid making too many assumptions and to 
simplify interpretation, we plotted all REDRL results based on a simu-
lation of 10 predictors with uniform spacing of τi between 0.05 and 
0.95, with all τi > 0.5 assigned to D1 MSNs and all τi < 0.5 assigned to D2 
MSNs. Furthermore, we directly computed the expectiles of the rele-
vant reward distributions (rather than obtaining them incrementally 
from samples and updates) to eliminate noise. We confirmed that all 
of our main results were robust to these choices of τ and simulation  
approach.

Finally, we emphasize that differential plasticity in D1 and D2 MSNs 
in response to positive and negative dopamine transients is a known 
empirical feature of this system12–14; our novel theoretical contribution 
is to show how a piecewise linear plasticity rule fulfils the precise math-
ematical requirements for D1 and D2 MSNs to converge preferentially 
to optimistic and pessimistic expectiles, respectively.

Quantile distributional RL. Quantile distributional RL (QDRL) is  
exactly akin to EDRL, except that we minimize the quantile regression 
(QR) loss121:

D D � �EV τ τ τ Z VQR( ; , ) = [[ + (1 − ) ]| − |],Z Z V Z V> <

This is an asymmetrically weighted absolute value loss function, 
which would return the median when positive and negative errors are 
balanced (τ = 0.5). The update rule, derived by SGD, utilizes only the 
sign of the prediction error, not its magnitude54:

V V α δ

V V α δ

← − , if < 0

← + , if > 0
i i i i

i i i i

−

+

Unlike expectiles, quantiles have an intuitive interpretation: the 
τ-th quantile is the number such that τ fraction of samples from the 
distribution fall below that value and 1 – τ fall above it. It is therefore 
the inverse of the CDF. We additionally implemented a ‘reflected’ ver-
sion of QDRL by applying the same transformation to D2 MSNs, those 
predictors with τi < 0.5.

We also note that it is possible to interpolate between EDRL and QDRL 
using Huber quantiles121,122. This is simply an asymmetric squared loss 
within a certain interval (controlled by a hyperparameter κ), and a 
standard quantile loss outside this interval. The update rule is likewise 
a combination of EDRL and QDRL: piecewise linear within some range 
before saturating. This rule would obtain if, for example, plasticity 
could only change some maximum amount in either direction at any 
given time, as is likely the case in the brain. Of note, the Huber quantile 
loss is frequently used in machine learning applications121.

Categorical distributional RL. Categorical distributional RL (CDRL)33 
adopts a very different approach to learning the reward distribution. 
Rather than a quantile or expectile function, CDRL imagines a set of 
‘atoms’, which function similarly to bins of a histogram. For that reason, 
we modelled these ‘categorical codes’ using one hypothetical neuron 
per reward size (0–8 μl), in increments of 2 μl. The height of that bin was 
then assumed to be linearly (and positively) related to the firing rate of 
that neuron. Generalizing this scheme to use basis functions over bin 
values does not qualitatively alter the predictions.

Laplace and cumulative code. The Laplace code40 grew out of an effort 
to devise a fully local temporal difference learning rule for distribu-
tional RL. Its teaching signal is simply a sigmoidal function of reward: 
if reward exceeds some threshold, the neuron fires, and thresholds are 
heterogeneous across neurons. In the limit of infinitely steep sigmoids 
(Heaviside step functions), the value predictors converge to the prob-
ability that the reward exceeds the given threshold (discounted and 
summed over future time steps, in the case of temporal difference 
learning). This exceedance probability is equal to 1 – CDF of the reward 
distribution, for our simplified Rescorla–Wagner setting. Analogous 
to CDRL, we chose to model neural activity as linearly and positively 
related to this value of 1 – CDF at each of the reward bins. For complete-
ness, we also investigated a ‘cumulative’ code, which was just the CDF 
at each reward bin, or 1 – the Laplace code. The spatial derivative of this 
cumulative code is then equivalent to the categorical code, assuming 
sufficient support.

Actor uncertainty model. The actor uncertainty model66 manages to 
learn about reward uncertainty using biologically plausible learning 



rules in D1 and D2 MSNs. We therefore wanted to test its predictions 
against these other models. The actor uncertainty model makes use of 
two value predictors: one D1 and one D2 MSN, which learn as follows:

V
α r V η
α r V η

= D1 − D2
D1 ← D1 + | − | − ⋅ D1

D2 ← D2 + | − | − ⋅ D2
+

−

Here, x x| | = max( , 0)+  and x x| | = max(− , 0)− , and 0 < η < 1 scales the 
decay term to ensure stability. Using this model, it can be shown66 that  
D1 – D2 encodes an estimate of mean reward, and D1 + D2 encodes an 
estimate of reward spread. For our implementation, we set α = 0.1 
and η = 0.01.

Distributed actor uncertainty model. The distributed actor uncer-
tainty model123 works similarly, except that we allowed there to be 
different learning rates αi

+ and αi
– for D1 and D2 MSNs, respectively, 

just as in the distributional RL setting. The difference Vi = D1i – D2i  
approximates the τi-th expectile, biased by η. For our simulations, we 
chose α = αi

+ + αi
– = 0.2 and η = 0.01.

Comparing models with recording data. For each hypothetical unit 
(representing, for example, a single expectile level or reward bin) and 
trial type, we simulated 50 trials and 100 cells by adding independent 
Gaussian noise (s.d. = five times the standard deviation across all pre-
dictors for that code) to the converged value predictors, to generate 
some jitter for odours associated with the same exact distribution. 
Just as in the neural data, we computed trial-wise correlations with 
expected value and compared this with a baseline in which trial-type 
labels were randomly shuffled independently for each neuron. We 
averaged across (simulated) trials before applying dimensionality 
reduction or computing cosine distances. To generate predictions for 
optimistic or pessimistic neurons alone, we took appropriate subsets 
of the simulated data (for example, only neurons with τ < 0.5 for pes-
simistic expectiles) before applying these analyses.

Modelling perturbations. Simulating optogenetic inhibition and  
excitation in these models (Extended Data Fig. 11) required slightly  
different choices, depending on the type of code. For expectile, quan-
tile and actor uncertainty-based models, we clamped the relevant 
simulated neuron (or neurons) to either 0 or 8, the maximum reward 
value across all distributions, to simulate model inhibition and excita-
tion, respectively. Note that it was the neural activity (D1i or D2i) that 
we were directly clamping when applicable, not the value prediction 
that it encoded (Vi). For the expectile and quantile models, optimistic 
and pessimistic perturbations meant clamping the value of predic-
tors with τi > 0.5 and τi < 0.5, respectively. For the actor uncertainty 
model, they were identified with the D1 and D2 MSN, respectively. 
Finally, for the distributed actor uncertainty model, we implemented 
two versions of the perturbation: one in which all D1 (optimistic) or 
all D2 (pessimistic) neurons were manipulated, and one in which only 
those with τi > 0.5 or τi < 0.5, respectively, were manipulated. We call 
the latter the ‘partial distributed actor uncertainty’ model, for the 
purposes of model comparison. For the actor uncertainty models, 
it is only the difference D1i – D2i that is bounded within the range of 
reward sizes, not the activities individually. We therefore added or 
subtracted a fixed amount (the maximum reward size across all trial 
types, 8 μl, bounded below by zero) across reward predictors to simu-
late excitation or inhibition, respectively, in these models, rather than 
clamping their value to a constant.

For categorical, cumulative and Laplace codes, the semantics of each 
simulated neuron are different: their activations range from 0 to 1 and 
encode a (cumulative) probability, rather than a value. Thus, inhibit-
ing or exciting them meant changing the relevant probability to 0 or 
1, respectively. Pessimistic neurons were those that corresponded to 

the 0-µl or 2-μl bins, and optimistic neurons corresponded to 6 µl and 
8 μl. To reconstitute a properly normalized probability distribution 
after the perturbation, in the case of the categorical code, we divided 
by the sum of the predictors (or made it a uniform distribution if the 
sum was zero). For the categorical and Laplace codes, we took the spa-
tial derivative of the implied CDF, subtracted off the minimum if any 
value was negative, and then divided by the sum (or made it uniform 
if the sum was zero).

In all cases, we found the mean of the (imputed) perturbed prob-
ability distribution and then compared it with the mean without any 
perturbation, separately for inhibition and excitation, to model the 
effect of optogenetic manipulation on lick rate.

Comparing models with optogenetic perturbation data. We used 
the predicted manipulation to no manipulation differences from each 
model as a regressor with which to predict the difference in licking 
during the last half second of the trace period across trial types, aver-
aged across mice, using linear regression (with no intercept term). 
Separate regressions were fit for inhibition and excitation to allow 
for potentially different scaling in each case, and their coefficients of 
determination were averaged to produce a single summary measure 
of goodness of fit.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Preprocessed data are documented and available for download on 
Dryad124.

Code availability
The code used for analysis and generation of all figures in this paper is 
available on GitHub125 (https://github.com/alowet/distributionalRL).
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Extended Data Fig. 1 | Additional behavioral analysis. a, Schematic for 
behavioral classification analysis in panels b–e. Odours corresponding to  
the same distribution were treated as the same class. This is illustrated for the 
case of Fixed vs. Variable odour classification, with the background shading 
(yellow vs. grey) indicating the target for the classifier. b, Schematic of 
behavioural classification. On each validation fold, whisking, running, pupil 
area, licking, and the top 50 face motion energy PCs in the training set were 
z-scored and then passed to a support vector classifier (SVC) with a linear kernel, 
which predicts the associated distribution. c, Schematic of orthogonality 
analysis. The weights learned by the SVC define a vector orthogonal to the 
hyperplane that best separates distributions. A separate vector can be defined 
by regressing the mean reward (“Value direction”) of each trial against their 
corresponding behavioural regressors. While the SVC hyperplane considers 
only four odours at a time, the regression direction takes into account  

all six odours. d, Cosine similarity between the classifier weight vector and the 
Value direction. Any differences in behavior between Fixed and Variable trials 
are orthogonal to Value (relative to chance level of 0: p < 0.001 for Nothing vs. 
Fixed, p < 0.001 for Nothing vs. Variable, p = 0.154 for Fixed vs. Variable).  
e, Spatial masks corresponding to face motion energy PCs in an example session, 
sorted by variance explained. Successive PCs emphasize finer and finer aspects 
of mouse whisking, sniffing, and licking behavior. f, The difference in lick rate 
between the late trace and baseline (1–0 s before odour onset) periods is 
significant for all trial types, including a decrease below baseline for both 
Nothing odours (all p’s < 0.001). g, Anticipatory lick rate does not differ for 
Variable odours based on whether the previous trial with that odour led to 2 or 
6 μL of reward (p = 0.179). h, A linear classifier trained to predict the amount  
of reward delivered on the previous Variable trial of a given odour performs at 
chance accuracy of 50% (p = 0.326).
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Value, RPE, odour and risk coding across the striatum. 
a, Serial coronal sections showing recording sites of probe insertions (white 
dotted lines), registered to the Allen Common Coordinate Framework. b, Top, 
heatmaps showing average z-scored firing rate in response to each odour for 
each neuron. Neurons were sorted according to the time of peak activity when 
averaged on half of Variable 2 odour trials, and then plotted in this same order 
for the remainder of trials, grouped by trial type. The seventh and final trial 
type corresponds to Unexpected rewards, which were not preceded by an odour. 
Bottom, grand average z-scored firing rate across all neurons. c, Fraction of 
neurons that significantly correlate with mean reward, computed separately  
in non-overlapping 250 ms time bins. Each mouse is shown in a different colour, 
with the mean ± 95% c.i. across mice shown in solid black. Dashed line is  
the average across mice after shuffling the mapping between odours and 
distributions, thereby accounting for pure odour coding. d, Average percentage 
of significant cells during the late trace period (p < 0.001). e, Left, cross-
validated R2 predicting the mean reward on each trial as a function of striatal 
subregion, computed separately in non-overlapping 250 ms time bins. To ensure 
fair comparison across subregions, we for each animal generated multiple 
pseudo-populations of 40 neurons each by repeatedly sampling without 
replacement neural subpopulation across session boundaries until there  
were fewer than 40 neurons remaining. Animals with fewer than 40 neurons  
in the given region were excluded. Lines show averages across mice for each 
subregion. Right, average R2 over the late trace period. Smaller dots show 
averages across pseudo-populations for each mouse with at least 40 neurons in 
that region. f, Same as c, except showing the fraction of neurons that significantly 
correlate with reward prediction error (RPE), defined as the difference between 
actual and expected reward. g, Same as d, except showing the average percentage 
of significant cells during the outcome period, 0–1 s after reward delivery 
(p < 0.001). h, The actual fraction of cells in each mouse that significantly 
correlated with both mean value and RPE was compared to the product of the 
individual fractions for mean and RPE-coding cells (the predicted fraction 

assuming independence; p < 0.001). i, Left, decoding accuracy across time  
of a multinomial logistic regression classifier decoding odour identity  
(dashed = chance level of 1/6). Right, quantification of odour classification 
accuracy during the odour period (p < 0.001 relative to chance level).  
j, Confusion matrix for odour decoding during the odour period shows high 
decoding accuracy for all odours, with relatively higher confusability for 
odours with the same mean. k, Cross-temporal decoding reveals that odour 
decoding is stable across time, allowing a classifier trained e.g. on late trace 
period activity to generalize well above chance to the odour period, and vice 
versa (all p’s < 0.001 relative to chance level of 1/6). l, Pseudo-population odour 
decoding across subregions (see Methods section titled “Comparisons across 
subregions, hemispheres, and genotypes”). OT, olfactory tubercle; VP, ventral 
pallidum; mAcbSh, medial nucleus accumbens shell; lAcbSh, lateral nucleus 
accumbens shell; core, nucleus accumbens core; VMS, ventromedial striatum; 
VLS, ventrolateral striatum; DMS, dorsomedial striatum; DLS, dorsolateral 
striatum (N = 1 mouse for mAcbSh, p = 0.006 for VMS, all other p’s < 0.001).  
m, Same as c, except showing the fraction of neurons that significantly correlate 
with variance, after regressing out the contribution of mean reward coding 
separately for each time bin. n, Average percentage of significant Residual 
Variance cells during the late trace period is less than would be predicted from 
odour coding alone (p < 0.001). o, Significantly fewer neurons encode residual 
variance positively and negatively than expected by chance (positive and 
negative p’s < 0.001). p-r, Same as m-o, but for conditional value at risk (CVaR),  
a common risk measure used in finance and reinforcement learning126–128, 
defined as the expected value within the lower α-quantile of a probability 
distribution. For our distributions, this will be equivalent to the mean for 
α > 0.5 and equivalent to the minimum value for α < 0.5, which differs only for 
the Variable distribution, where it is 2. The latter is what we plot here, after 
regressing out mean coding. Again, there are fewer residual CVaR cells than 
would be expected from odour coding alone (p < 0.001) and this is true for  
both positive- and negative-coding cells (both p’s < 0.001).
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Extended Data Fig. 3 | Distributional coding is robust, orthogonal to  
value, and consistent across time. a, Schematic of pairwise decoding analysis. 
Linear SVCs were trained on individual Fixed and Variable odours, two at a time. 
This resulted in six possible dichotomies, four of which encompassed one 
Fixed and one Variable odour (green arrows; “Across distribution”) and two of 
which compared odours cuing the same exact distribution (orange arrows; 
“Within distribution”). b, Pairwise decoding during the late trace period was 
significantly better for across- than within-distribution pairs, consistent with 
distributional but not traditional RL (p = 0.001). c, Schematic of congruency 
analysis, which considered all four Fixed and Variable odours simultaneously. 
In the Congruent grouping, both Fixed odours were assigned to one class 
(yellow background) and both Variable odours were assigned to the other class 
(grey background), just as was done for behavioral decoding. By contrast, in 
the Incongruent groupings, class assignments cut across Fixed and Variable 
distributions. d, Classifier accuracy in the late trace period was higher  

for Congruent than Incongruent pairs, again consistent with distributional  
but not traditional RL (Congruent: p = 0.028 vs. Incongruent 1, p < 0.001 vs. 
Incongruent 2). e, Schematic illustrating the classifier weight vector (normal to 
the separating hyperplane for across- or within-distribution classifications) 
and the regression weight vector (for Value or Variance). f, Quantification of 
cosine similarity between the classifier weight vector and the Value direction 
shows that the vectors are not significantly different from orthogonal (CCGP: 
p = 0.071 cosine similarity relative to chance value of 0; Pairwise: p = 0.797 
Across- vs. Within-distribution absolute cosine similarity; Congruency: p = 0.493 
Across- vs. Within-distribution absolute cosine similarity). g, Same as f,  
but for Variance rather than Value direction (p < 0.001 for all comparisons).  
h-j, Cross-temporal decoding for the pairwise, congruency, and CCGP analyses. 
Distributional RL is favored during every time period between odour onset  
and reward delivery, and decoders trained during one period almost always 
generalize to other time periods.



Extended Data Fig. 4 | A distribution-coding subpopulation is over- 
represented in the lAcbSh and permits ANN-based distribution decoding. 
a, Pseudo-population CCGP across subregions (relative to chance level of 0.5: 
p = 0.059, 0.473, 0.044, 0.017, 0.088, 0.346, 0.257, 0.407, and 0.133 for OT, VP, 
mAcbSh, lAcbSh, core, VMS, VLS, DMS, and DLS, respectively. Same order 
applies to all statistics in this figure). Pseudo-populations were constructed  
as in Extended Data Fig. 2l. b, Pseudo-population pairwise decoding across 
subregions (Across- vs. Within-distribution: p = 0.861, 0.344, 0.883, 0.010, 
0.409, 0.040, 0.882, 0.482, 0.106). c, Pseudo-population congruency analysis 
across subregions (Congruent vs. Incongruent 1: p = 0.097, 0.817, 0.744, 0.007, 
0.832, 0.047, 0.523, 0.138, 0.523; Congruent vs. Incongruent 2: p = 0.306, 0.760, 
0.815, 0.010, 0.473, 0.177, 0.316, 0.486, 0.985). d, Parallelism score across 
subregions (relative to chance level of 0: p = 0.300, 0.878, 1.00, 0.001, 0.229, 
0.243, 0.273, 0.615, 0.764). e, Left, fraction of neurons with classifier coefficients 
above the percentile cutoff for all three (CCGP, pairwise, and congruency) 
analyses. Horizontal dotted line indicates level at which 2.5% of null coefficients 
fell above the cutoff; this was the 73rd percentile (vertical dotted line), and 
retained 11.43% of neurons. Right, ratio of data to null coefficients falling above 
the cutoff (log scale). f, Fraction of distribution-coding cells in each subregion. 
This fraction is significantly higher in the lAcbSh than in more dorsal subregions 
(relative to lAcbSh: p = 0.339, 0.285, 0.473, 0.274, 0.071, 0.038, 0.001 for  
OT, VP, mAcbSh, core, VMS, VLS, and DLS, respectively; p < 0.001 for DMS).  
g, ANN schematic. Single-trial spike counts from the distribution-coding 
subpopulation a were linearly mapped into 16 dimensions by the trainable 
matrix W and then fed through the network (see Methods). After a final layer,  
a softmax function transformed activations into a properly-normalized 
probability distribution, whose 1-Wasserstein distance to ground truth was 
minimized with stochastic gradient descent. h, Example decoded distributions 

from the test set, shown as line plots to distinguish individual pseudo-trials.  
i, Wasserstein distance relative to reference for the ANN trained on all six trial 
types, with and without shuffling odour-distribution mappings (p < 0.001 
ordered vs. shuffled; p < 0.001 ordered relative to chance value of 1; p = 0.350 
shuffled relative to chance value of 1). j, Same as i, but for ANN trained on only 
the rewarded odours, which shared the same mean (p < 0.001 ordered vs. 
shuffled, ordered relative to chance value of 1, and shuffled relative to chance 
value of 1). k, Schematic depicting setup for transfer analysis. Four trial types, 
including both Nothing odours, were used for training (green background), and 
the other two were used for testing (orange background). Matched pairings 
veridically assigned odours to distributions, while mismatched pairings used 
either only Fixed or only Variable odours for training while assigning one 
member per training pair and one member per testing pair to the opposite 
distribution (indicated by the exclamation mark). There were four possible 
ways to draw the matched dichotomies, all of which are shown (rows). For the 
mismatched dichotomies, the distributions (Fixed or Variable) could be 
arbitrarily assigned to both pairs of red and blue odors, and then either red or 
blue could be assigned to the training versus test set, so only four of the eight 
total possibilities are shown. l, Wasserstein distance relative to reference  
for standard (mean ± s.e.m. = 0.128 ± 0.019), matched (0.217 ± 0.032), and 
mismatched (1.028 ± 0.123) settings. Standard is identical to analysis shown in 
c, except that for this decoder, neurons from all mice were pooled. Matched 
transfer yields distributions that are nearly as accurate as training with  
all six trial types (p < 0.001 for matched vs. mismatched and standard vs. 
mismatched, Student’s t-test for independent samples; p = 0.043 for standard 
vs. matched, Student’s t-test for independent samples; p < 0.001 for standard 
and matched relative to chance value of 1, one-sample Student’s t-test; p = 0.836 
for mismatched relative to chance value of 1, one-sample Student’s t-test).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | A generalized linear model (GLM) to examine trial 
history, reward, reward prediction, and motor encoding in the striatum.  
a, Schematic illustrating the design of the GLM (see Methods). Briefly, trial- 
length regressors (time in trial and trial history) were broken up into 7 raised 
cosine basis functions tiling the 6 seconds of each (odour-cued) trial. Reward, 
reward prediction, and sensory regressors were time-locked to reward or odour 
onset and then convolved with a logarithmically-scaled raised cosine basis112. 
Licking, whisking, and running regressors were convolved with the same basis 
in both the forward and reverse directions. Pupil area and face motion SVDs 
from Facemap were input directly to the model without convolving. The 
Poisson GLM computes the sum of the regressors weighted by their fitted 
coefficients, passes this through an exponential nonlinearity, and uses this rate 
to predict spike counts in 20 ms bins. b, Top, example regressor matrix for  
10 test trials. Each row corresponds to a different predictor, binned on the left by 
regressor type (rectangles) and group (colour). Rectangles on top demarcate 
different trials, coloured by trial type. Middle, empirical spike counts in each 
bin for an example neuron. Bottom, smoothed empirical firing rate (black) and 
model prediction (pink) for the trials shown. Deviance statistics in every panel 
of this figure rely on a held-out test set (never used during cross-validation), 
after zeroing out the contribution of electrode drift. c, Histogram of fraction 
deviance explained for all neurons. d, Fraction deviance explained as a function 
of striatal subregion (relative to DLS: p < 0.001 for OT, VP, lAcbSh, and core; 
p = 0.490, 0.608, 0.054 for VMS, VLS, and DMS, respectively). For these analyses, 
mAcbSh was omitted due to lack of neurons/animals. e, Difference in fraction 
deviance explained between the full model and reduced models in which  
trial history (top row), reward (second row), sensory and reward-prediction 

(third row), or motor (bottom row) regressors were excluded before re-fitting.  
f, Kernel strength (see Methods) of trial history (top), reward (second) expectile 
(third), and motor (bottom) regressors. g, As in e, but showing the difference  
in fraction deviance explained as a function of striatal subregion. (History, 
relative to DLS: p = 0.124 for DMS; p < 0.001 for all other subregions; Reward, 
relative to DLS: p = 0.009, 0.141, and 0.441 for OT, VP, and DMS, respectively; 
p < 0.001 for all other subregions; Expectiles, relative to DLS: p = 0.234 for  
DMS; p < 0.001 for all other subregions; Motor, relative to DLS: p < 0.001 for all 
subregions). h, As in f, but showing the kernel strength computed on the full 
model as a function of striatal subregion. (History, relative to DLS: p < 0.001 for 
OT, VP, and VLS; p = 0.042, 0.288, 0.023, and 0.926 for lAcbSh, core, VMS, and 
DMS, respectively; Reward, relative to DLS: 0.148, 0.004, 0.172 for VP, core,  
and DMS; p < 0.001 for all other subregions; Expectiles, relative to DLS: 
p < 0.001 for OT, VP, lAcbSh, VMS, and VLS; p = 0.285 and 0.014 for core and 
DMS, respectively; Motor, relative to DLS: p = 0.004 for DMS; p < 0.001 for all 
other subregions). i, Pearson correlation (across-neurons, within-sessions) of 
difference in deviance explained between reduced models. Holding out trial 
history, reward, or expectiles tends to similarly affect deviance for a given neuron, 
while being uncorrelated with motor behavior. Small dots, individual sessions; 
medium dots, mean across sessions within animals; large dots, mean ± 95% c.i. 
across mice. (Drop History vs. Drop Reward, Drop History vs. Drop Expectiles, 
and Drop Reward vs. Drop Expectiles, p < 0.001 for all subregions; Drop Motor 
vs. Drop History, p = 0.644, 0.479, 0.993, 0.428, 0.133, 0.148, 0.674, 0.986 for 
OT, VP, lAcbSh, core, VMS, VLS, DMS, and DLS respectively; Drop Motor vs. Drop 
Reward, p = 0.626, 0.981, 0.134, 0.596, 0.473, 0.028, 0.745, 0.498; Drop Motor 
vs. Drop Expectiles, p = 0.331, 0.816, 0.796, 0.681, 0.193, 0.603, 0.148, 0.554).
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Extended Data Fig. 6 | Striatal activity patterns are inconsistent with 
sampling-based codes. a, Illustration of how the mean-matched Fano factor 
was computed115. The mean and variance (across trials) of the spike count for a 
single neuron contributed one data point to the scatter plot. Grey dots depict 
all neurons from an example session, time bin (here, centered 200 ms after 
odour onset), and odour (here, Variable 2). The grey line is the regression fit  
to all data, constrained to pass through zero and weighted according to the 
estimated s.e.m. of each variance measurement. Black dots are the data points 
preserved by mean matching at each time point, to eliminate the possibility 
that differences across time are driven by differences in firing rates, which could 
in principle violate the Poisson assumption. This transforms the distribution  
of mean counts from the grey to the black distribution. The regression slope  
for the mean matched data is plotted as the black line. Finally, the Poisson 
expectation of equal mean and variance is plotted in orange, with a slope of 
one. This procedure was performed independently on each session, time bin, 
and trial type. b, Time course of the computed mean-matched Fano factor 

(±95% c.i.) for the example session shown in a. That is, the slope of black line  
in a is the height of the light blue, Variable 2 line in b 200 ms after CS onset.  
c, Quantification of mean matched Fano factor across second-long time 
periods. Consistent with cortical observations115, we see a quenching of 
variability upon CS onset (baseline: p = 0.002, 0.001, <0.001, <0.001 relative to 
odour, early trace, late trace, and outcome periods), and another one upon 
reward delivery (reward: p < 0.001, = 0.002, 0.006, 0.053 for baseline, odour, 
early, and late trace periods). d, Quantification of mean matched Fano factor 
across trial types, shown separately for each time period. In general, there  
is no tendency for Variable odours to elicit strong and sustained increases in 
variability, as would be predicted by sampling-based codes129 (baseline, odour, 
early and late trace: all p’s > 0.05, except Nothing 1 vs. Variable 1 for odour: 
p = 0.032 uncorrected). However, reward delivery specifically drives yet another 
decrease in variability during the outcome period (Nothing 1: p = 0.570 for 
Nothing 2; p < 0.001 for Fixed odours; p = 0.002 for Variable odours).



Extended Data Fig. 7 | Additional detail for distributional model 
comparisons. a, Schematic showing converged expectile code for each 
distribution (Nothing, Fixed, and Variable) learned by EDRL, as in Fig. 2d.  
The activation of each value predictor is shown as a function of τ, the level of 
pessimism or optimism. Together, they encompass the complete reward 
distribution. b, Same as a, but for quantiles rather than expectiles. c, Same as b, 
but for a reflected quantile code in which pessimistic (D2, green) neurons 
correlate negatively with Vi (grey). Optimistic (D1, yellow) neurons are identical 
to Vi, as in REDRL. d, Same as a, but showing the converged value predictors  
for the Distributed Actor Uncertainty model123. In it, D1 and D2 MSNs learn 
exclusively from positive and negative RPEs, respectively, such that their 
difference at each level of τ (grey dots) approximates each expectile, and their 
sum relates to the spread of the distribution. This drives maximal activity in 
response to Variable odours, which is why they separate out most clearly along 
PC 1. e, Same as d, but for a reduced version in which only a single pair of value 
predictors are learned with balanced positive and negative learning rates66 
(τ = 0.5). f, Same as a, but for a categorical code in which distributions are 
encoded as a histogram33. Each neuron is imagined to correspond to a single 
reward bin, with its firing rate proportional to the height of that bin. g, Same  
as f, but for a Laplace code40. In the limit of infinitely steep reward sensitivities 
for the teaching signal, these value predictors converge to the probability that 
the reward delivered exceeds some threshold reward amount, the “exceedance 
probability”. This is simply 1 minus the CDF of the probability distribution in 
question. Neural activities are taken to be proportional to this 1 – CDF value.  
h, Same as g, but for a population of neurons that flips the encoding, and so is 

directly proportional to the CDF. i-k, Qualitative features of each code in a–h 
plus random noise. REDRL predictions are included in the box on the last line, 
for comparison. i, PCA projection for each code. Only quantile-like codes give 
rise to the pattern observed in the data. j, Hypothetical activity in response to 
each distribution, averaged separately over optimistic (blue) and pessimistic 
(purple) predictors for each code type. Only the reflected codes and AU model 
predict a noticeable uptick in Variable relative to Fixed odours. k, Percentage  
of simulated predictors that significantly correlate with mean reward either 
positively (blue) or negatively (purple) for each code type. Only the reflected 
and categorical codes have a substantial fraction of both types of cells. In 
practice the positive-coding predictors are optimistic and the negative-coding 
predictors are pessimistic. l, A hypothetical “distributional” code in which  
each neuron’s firing rate linearly correlates with either reward mean (left) or 
variance (right). m, Each trial type, replotted in mean–variance space. From 
this picture, it is clear that for this particular set of reward distributions,  
Fixed odours will be located at the midpoint between Nothing and Variable 
odours along PC 1, though altering the ratio of mean- to variance-coding 
neurons will move Fixed odours left or right along PC 1. Different sets of reward 
distributions could lead to different geometries. n, Mean z-scored firing rates 
for each neuron, in addition to being higher for rewarded than unrewarded 
odours (p < 0.001), were also higher for Variable than for Fixed odours (p = 0.006), 
as assessed by an LME with neuron level observations, averaged over trials, and 
session-level random effects nested within mouse. o, Same as Extended Data 
Fig. 2o, but for mean. Fraction is higher than chance for both positive- and 
negative-coding cells (both p’s < 0.001).
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | REDRL consistently predicts population responses 
across three additional classical conditioning tasks. a, Reward distributions 
for the Bernoulli (top), Diverse Distributions (middle), and Fourth Moments 
(bottom) tasks. b, Anticipatory lick rate during the late trace period for each 
task and trial type. (Bernoulli task: 0%, p < 0.001 versus 50, 80, and 100%; 20%, 
p < 0.001 versus 80 and 100%; 50%, p < 0.001 versus 100%; 80%, p = 0.008 
versus 100%. Diverse Distributions task: CS 1, p = 0.008 versus CS 2, p < 0.001 
versus CS 3–6; CS 2, p < 0.001 versus CS 3–6; CS 3, p = 0.560, 0.243, <0.001 
versus CS 4–6, respectively; CS 4, p = 0.560, 0.001 versus CS 5–6, respectively; 
CS 5, p = 0.009 versus CS 6. Fourth Moments task: Nothing 1 or Nothing 2, 
p < 0.001 versus Uniform 1, Uniform 2, Bimodal 1, and Bimodal 2; Uniform 1, 
p = 0.570, 0.336, <0.001 versus Uniform 2, Bimodal 1, and Bimodal 2, 
respectively; Uniform 2, p = 0.126, <0.001 versus Bimodal 1 and Bimodal 2, 
respectively; Bimodal 1, p = 0.016 versus Bimodal 2). Dashed line indicates 
mean reward for that trial, given on the secondary y-axis. c, 2D PC projections 
for example sessions in each task. d, 2D PC projections for each model on each 
of the three tasks. e, Quantification of Pearson correlation between the 
Euclidean distance matrices measured between each trial type along either PC 
1 (left) or PC 2 (right). (Bernoulli task: PC 1 relative to REDRL, p = 0.994, 0.459, 
0.284, <0.001, <0.001, <0.001, 0.861, 0.888, 0.772, <0.001 for Expectile, 
Quantile, Reflected Quantile, Distributed AU, Partial Distributed AU, AU, 
Categorical, Laplace, Cumulative, and Moments codes, respectively; PC 2 
relative to REDRL, p = 0.666, 0.964, 0.653, <0.001, <0.001, <0.001, <0.001, 
0.078, 0.002, <0.001. Diverse Distributions task: PC 1 relative to REDRL, 
p = 0.999, 0.963, 0.985, <0.001, <0.001, <0.001, <0.001, 0.993, 0.994, 0.011;  
PC 2 relative to REDRL, p = 0.863, 0.077, 0.050, 0.096, 0.054, 0.147, 0.428, 

0.038, 0.065, 0.047. Fourth Moments task: PC 1 relative to REDRL, p = 0.891, 
0.990, 0.997, 0.951, 0.928, 0.978, 0.828, 0.984, 0.927, 0.921; PC 2 relative to 
REDRL, p < 0.001, 0.127, 0.325, 0.167, 0.305, 0.891, 0.839, 0.075, 0.060, 0.021). 
f, Difference between observed and trial-type shuffled data in the percentage 
of cells significantly correlating positively or negatively during the late trace 
period with either mean (left) or residual variance (right). In the Bernoulli task, 
mean and variance are orthogonal by design, so residual variance is equivalent 
to variance. In the Fourth Moments task, mean and variance are fully colinear, 
so residual variance is always equal to zero. (Bernoulli task: p < 0.001, = 0.013, 
0.112, 0.225 for Positive and Negative mean and residual variance differences 
relative to zero, respectively. Diverse Distributions task: p < 0.001, = 0.009, 
0.312, 0.026. Fourth Moments task: both mean p’s < 0.001). g, Pseudo-
population parallelism score across subregions in the Fourth Moments task, 
comparing neural representations of Uniform and Bimodal distributions 
(relative to chance level of 0: p = 0.291, 0.150, 0.851, 0.002, 0.465, 0.832, 0.775, 
0.175, 0.548 for OT, VP, lAcbSh, core, VMS, VLS, DMS, DLS, and All Subregions, 
respectively. Same order applies to remaining panels in this figure). Pseudo-
populations were constructed as in Extended Data Fig. 2l, and mAcbSh was 
excluded because of too few neurons in all animals. h, Same as g, but for CCGP 
(relative to chance level of 0.5: p = 0.975, 0.997, 0.948, 0.150, 0.852, 0.945, 
0.474, 0.693, 0.337). i, Same as g, but for pairwise decoding (Across- vs. Within-
distribution: p = 0.893, 0.411, 0.012, 0.184, 0.590, 0.762, 0.256, 0.327, 0.311).  
j, Same as g, but for congruency analysis (Congruent vs. Incongruent 1: 
p = 0.457, 0.411, 0.333, 0.606, 0.833, 0.966, 0.956, 0.106, 0.225; Congruent vs. 
Incongruent 2: p = 0.993, 0.014, 0.265, 0.228, 0.602, 0.978, 0.073, 0.760, 0.007).
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Extended Data Fig. 9 | Additional data for 6-OHDA experiments.  
a, Consensus heat map74 of all five animals’ lesion locations. 6-OHDA was 
injected in the lAcbSh but diffused into the VLS, so we considered both regions 
to be lesioned. We excluded OT, despite the fact that it was often lesioned, 
because it is not physically contiguous and showed weaker evidence of 
distributional coding in control animals. The illustration was adapted from  
ref. 74, Elsevier. b, Behavioral decoding analysis comparing fully intact animals 
(N = 3) and unilaterally lesioned (N = 9) animals across time. For this analysis, 
animals were considered lesioned if they had received any 6-OHDA injection, 
even if that hemisphere was never recorded or was mistargeted relative to 
Neuropixels recording location. c, Quantification of behavioral classifier 
accuracy during the late trace period. While across-mean behavioral  
decoding was stronger in the control than the lesioned animals (effect of lesion: 
p = 0.006, 0.001, 0.173 for Nothing vs. Fixed, Nothing vs. Variable, and Fixed vs. 

Variable, respectively), both groups of animals clearly learned the task and  
had above-chance across-mean decoding (p < 0.001 compared to chance level 
of 50% for both Nothing vs. Fixed and Nothing vs. Variable in control as well  
as lesioned animals). Interestingly, Fixed vs. Variable classification was also 
weakly significant (p = 0.032 relative to chance level of 50%) for fully intact 
control animals, providing behavioral evidence that they did in fact learn this 
distinction. d, Median fraction deviance explained by the GLM (Extended Data 
Fig. 5) for neurons in control vs. lesioned hemispheres (p = 0.831). e, Difference 
in fraction deviance explained between full model and models in which history 
(left; p = 0.474), reward (second; p = 0.623) sensory/reward prediction (third; 
p = 0.861) or motor (right; p = 0.618) regressors had been dropped out.  
f, Absolute kernel strength of history (left; p = 0.634), reward (second; 
p = 0.089), expectiles (third; p = 0.448) or motor (right; p = 0.145) regressors.



Extended Data Fig. 10 | Additional data for two-photon calcium imaging 
experiments. a, D1 MSN activity. Top, heatmaps showing average z-scored 
deconvolved calcium activity in response to each odour for each neuron, as in 
Extended Data Fig. 2b. Bottom, grand average z-scored deconvolved calcium 
activity across all neurons. b, Same as a, but for D2 MSN activity. c, Anticipatory 
lick rates for each trial type, computed during the late trace period separately 
for Drd1-cre and Adora2a-cre animals (in which we imaged D1 or D2 MSNs, 
respectively). (Drd1-cre, Nothing 1 or Nothing 2: p < 0.001 versus Fixed 1,  
Fixed 2, Variable 1, and Variable 2; Drd1-cre, Fixed 1: p = 0.960, 0.458, 0.642 
versus Fixed 2, Variable 1, and Variable 2, respectively; N = 4 mice, 29 sessions. 
Adora2a-cre, Nothing 1 or Nothing 2: p < 0.001 versus Fixed 1, Fixed 2, Variable 1, 
and Variable 2; Adora2a-cre, Fixed 1: p = 0.790, 0.608, 0.686 versus Fixed 2, 
Variable 1, and Variable 2, respectively; N = 4 mice, 41 sessions. Main effect of 
genotype, relative to Nothing 1: p = 0.785; interaction of genotype and trial 
type: p = 0.888, 0.387, 0.525, 0.350, 0.331 for Nothing 2, Fixed 1, Fixed 2, 
Variable 1, and Variable 2, respectively; N = 8 mice, 70 sessions). As in Fig. 1c, 
dashed lines indicate mean reward for that trial type. d, Fraction of neurons 
whose late trace activity increased (top) or decreased (bottom) relative to 

baseline, shown separately for D1 (left) and D2 (right) MSNs and unrewarded 
(Nothing) versus rewarded (Fixed and Variable) odours (x-axis); these trial 
types were pooled before analysis. As expected, a larger fraction of D1 MSNs 
increases to rewarded rather than unrewarded odours (p = 0.006; mean ± 
s.e.m. = 0.524 ± 0.074), while there is no difference in the fractions that 
decrease (p = 0.423; mean ± s.e.m. = –0.098 ± 0.106). Meanwhile, for D2 MSNs,  
a significantly greater fraction of neurons change their activity on rewarded 
compared to unrewarded trials, by either increasing (p = 0.022; mean ± s.e.m. = 
0.189 ± 0.043) or decreasing (p = 0.016; mean ± s.e.m. = 0.133 ± 0.027) their 
activity relative to baseline. Asterisks and p-values report the results of paired 
samples Student’s t-tests on rewarded vs. unrewarded fractions across mice.  
e, REDRL predicts higher variance across trial types for optimistic than for 
pessimistic reward predictors on average (left), which is also true in the 
two-photon data for D1 and D2 MSNs, respectively (right). Small dots are 
averages within sessions, medium dots are averages within mice, and large  
dots with error bars show averages ± 95% c.i. across mice (p = 0.017 for effect  
of genotype).
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Additional detail for distributional model 
manipulations. a, Schematic showing how optogenetic perturbations were 
simulated for an expectile code (from EDRL). Optimistic (blue) or pessimistic 
(purple) predictors were shifted from their original values (semi-transparent 
grey circles) and clamped to low or high values to mimic inhibition (left, “x”s)  
or excitation (right, triangles), respectively. Panels on the right depict the 
ground-truth reward distribution, its mean (black line), and the means of the 
manipulated sets of value predictors (blue or purple dashed lines). b, Same as a, 
but for a quantile rather than expectile code. c, Same as b, but for a reflected 
quantile code. The additional, leftmost panel for each distribution depicts the 
activity of D1 (yellow) and D2 (green) MSNs at baseline (semi-transparent circles) 
and after manipulations (opaque “x”s and triangles). These are what are directly 
clamped by the simulated optogenetic inhibition or excitation. As a result, the 
effect on the implied value predictors (middle panel) corresponding to D2 MSNs 
are of opposite sign, as is the change in predicted mean (right panel). d, Same as 
c, but for the Distributed Actor Uncertainty (AU) model. Since D1 and D2 MSN 
activities in this model can exceed the maximum reward value, the left panel 
shows that perturbations were simulated by adding or subtracting a fixed 
amount from each activity level (opaque “x”s and triangles) relative to baseline 
(semi-transparent circles). The middle panel plots the resulting value predictors, 
computed as the pointwise differences between D1 and D2 MSN activities, for 
pessimistic (purple) and optimistic (blue) manipulations in comparison to 
baseline (grey semi-transparent circles). e, Same as d, except that only the 

optimistic or pessimistic half of MSNs were manipulated to simulate perturbations 
of D1 or D2 MSNs, respectively. f, Same as d, except for the original Actor 
Uncertainty (AU) model in which there is only one pair of value predictors  
with balanced learning rates (τ = 0.5). g, Schematic showing how optogenetic 
perturbations were simulated for a categorical code (from CDRL), which 
effectively represents the reward distribution using a histogram. Pessimistic  
(0, 2 μL; purple) or optimistic (6, 8 μL; blue) bins were clamped to 0 or 1 to 
simulate inhibition or excitation, respectively, relative to baseline (grey). The 
resulting distributions were normalized to sum to one (see Methods). Dashed 
vertical lines show the means of the ground-truth (black) and manipulated 
distributions. h, Same as g, except for a Laplace code40 in which each neuron 
corresponds to the height of 1 – CDF at a particular point. While the baseline  
case is always monotonically decreasing, simulated excitation or inhibition can 
change this. Means were computed by differentiating and then normalizing 
(see Methods). i, Same as h, except for a cumulative code where each neuron 
corresponds to the height of the CDF at a particular point. j, Actual differences 
in lick rate during the last half second of the trace period in response to 
inhibition of D1 or D2 MSNs, copied from Fig. 5f. k, Same as j, but for excitation. 
l, Predicted difference in mean reward due to inhibition for REDRL and each  
of the alternative models in a–i. m, Same as l, but for excitation. n, Average  
lick rates in each group of animals, with (blue and purple) or without (black) 
manipulations, rarely exceeded 5 Hz.
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Supplementary Discussion 1 

We would like to offer three extensions and points of clarification to complement our discussion 2 
in the Main Text of the paper. 3 

Expectiles versus quantiles 4 

Given the high degree of similarity between REDRL and a reflected quantile code (RQDRL), it 5 
is natural to wonder whether some Pavlovian conditioning experiment might be able to 6 
disentangle these two code types. We believe the answer is yes, although this is most easily done 7 
at the level of dopamine neurons, rather than behavior or striatal neurons. 8 

Beginning with behavior, the fundamental problem is that the method used to learn and represent 9 
a probability distribution in distributional RL is distinct from the mechanism of action selection. 10 
In other words, the underlying distributional RL algorithm does not put any hard constraints on 11 
the policy the agent uses for action selection. Most often, agents are assumed to simply take the 12 
action with the highest expected value (thereby ignoring distributional information at decision 13 
time). This is true regardless of whether the expected value is represented explicitly (as it would 14 
be in an expectile code with t  = 0.5) or must be computed from the underlying probability 15 
distribution (as in a quantile code). However, other options are possible; for example, one can 16 
include an exploration bonus proportional to the left truncated variance of the return distribution 17 
and have this bonus decay with training time, a choice that actually improves performance at test 18 
time130. While the details of any particular proposal are not especially important here, the 19 
overarching principle is that the format of the distribution (and the algorithm used to learn it, like 20 
REDRL or RQDRL) leave the question of behavioral choice unresolved. 21 

Furthermore, provided that the behavioral policy is computed on the basis of the encoded 22 
probability distribution, a particular policy will lead to the same choices, irrespective of whether 23 
REDRL or RQDRL is used to learn and represent this distribution. (By contrast, a policy that is 24 
computed directly on the basis of the encoded statistics — not the full distribution — could in 25 
principle differ for expectiles and quantiles.) This is because, with enough neurons (and so 26 
expectiles or quantiles), one can represent any distribution with high fidelity. From this 27 
perspective, even if the policy is known, behavior would only allow one to distinguish between 28 
different shapes of the encoded distribution, not between different formats with which this 29 
distribution is encoded in neural activity. 30 

At the level of the striatum, the predictions for expectile-like and quantile-like codes are 31 
extremely similar and highly sensitive to the amount of noise used in our simulations. Intuitively, 32 
this is because the difference in “smoothness” between the code types (Fig. 3c; Extended Data 33 
Fig. 7c) is obscured by the different gains and scaling between different neurons. Nonetheless, 34 
we were able to identify some sets of highly skewed distributions for which REDRL and 35 
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RQDRL might be expected to produce different population geometries, depending on the amount 36 
of noise in the neural data and the range of τ values used. In particular, the Euclidean distance 37 
along PC 1 between Nothing odors and (mean-matched) Fixed or left-Skewed odors is predicted 38 
to differ, being greater for Fixed odors in the case of REDRL and Skewed odors in the case of 39 
RQDRL. It remains to be seen whether this could be observed in striatal data at physiological 40 
levels of noise. 41 

Fortunately, previously-reported data from our laboratory3 provide independent empirical reason 42 
for preferring REDRL over RQDRL. These algorithms aim to minimize an asymmetrically-43 
weighted squared error and absolute error loss function, respectively54. Mathematically, 44 
stochastic gradient descent to minimize these loss functions requires that the expectile updates 45 
have a piecewise linear form, while quantile updates have a stepwise form54. Because dopamine 46 
responses are empirically quite smooth as a function of reward magnitude121, we followed 47 
Dabney et al., 2020 in favoring the expectile formulation3. Even considering synaptic effects, the 48 
influence of dopamine on synaptic strength does not appear to be binary13, as would be required 49 
by RQDRL. 50 

However, we again note that a saturating version of these update rules, which converge to 51 
estimators known as Huber quantiles126, would also be consistent with our data. Huber quantiles 52 
have an additional hyperparameter, κ, which controls the magnitude of prediction error at which 53 
the loss function switches from the expectile to the quantile version. In this way, they provide a 54 
seamless way to interpolate between REDRL and RQDRL. Estimating κ on the basis of neural 55 
data is outside the scope of the current work, but we see no reason why it should be impossible in 56 
principle, particularly by making use of the skewness manipulations described above. Thus, 57 
while we focus on REDRL in this paper for simplicity and consistency3, this should not be 58 
construed as a rejection of a Huber quantile-based implementation of reflected distributional RL. 59 

Alternatives to RPE accounts of dopamine 60 

Second, the RPE theory of dopamine, of which distributional RL makes significant use, has 61 
recently come under pressure from several directions26,27. Most notably, Jeong et al., 2022 put 62 
forward the ANCCR model26, which proposes that dopamine instead signals an “adjusted net 63 
contingency for causal relations.” A full treatment of this paper is beyond the scope of this brief 64 
Discussion131,132 and would be benefited by an examination of MSN (and dopamine) activity 65 
over the course of learning, which we did not undertake in the present paper. (We do, however, 66 
note that REDRL predicts that D1 MSNs will acquire positive associations faster than D2 MSNs, 67 
while D2 MSNs may be preferentially involved in later discrimination or extinction, as has been 68 
previously observed13,14). Instead, we would like to highlight one aspect of the ANCCR model 69 
that has received relatively little attention in the published literature, and which we perceive as a 70 
core shortcoming with respect to the results presented here. 71 

The principal insight of ANCCR is that an agent might be interested in “retrospective 72 
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associations” (roughly, the probability of cue conditional on reward) in addition to “prospective 73 
associations” (roughly, the probability of reward conditional on cue). However, the firing of 74 
dopamine neurons is well-known to depend not only on reward probability but also on reward 75 
magnitude. To account for this magnitude dependence within their ANCCR framework, Jeong et 76 
al. “adjust” their net contingencies using a “causal weight.” Critically, this adjustment fully 77 
combines information about reward probability and magnitude such that they cannot be later 78 
disentangled (in this respect, it is quite similar to traditional RL). Thus, the published ANCCR 79 
model cannot straightforwardly account for our current data or previously-published results from 80 
dopamine neurons3 in which probability and magnitude information is partially separable (in the 81 
form of expectiles), allowing one to distinguish between probability distributions with the same 82 
mean but different higher-order moments. 83 

Probabilistic coding in the brain 84 

Third, REDRL lends a new perspective to the coding of uncertainty in the brain. Typical 85 
treatments of this topic focus on perceptual uncertainty, where the observer’s role is to infer the 86 
distribution of world states consistent with a pattern of neural activity32. While the problem is 87 
usually formulated as one of Bayesian inference31, the associated uncertainty is frequently 88 
attributed to noisy inputs rather than ones that are genuinely ambiguous (as in the case of the 89 
Necker cube133). Moreover, the “causes” that the brain needs to infer are in general high-90 
dimensional, leading many researchers to prefer sampling-based codes in these settings51,80. 91 

In RL, by contrast, uncertainty generally arises from a combination of state ambiguity, 92 
insufficient exploration, and intrinsic stochasticity134, all of which complicate the problem of 93 
learning from limited experience. Fortunately, these various sources of uncertainty ultimately 94 
collapse onto a single dimension, that of reward (or more generally, the discounted future 95 
return), simplifying the representation of the probability distribution and suggesting the use of 96 
other kinds of probabilistic codes. Distributional RL excels in partitioning out intrinsic 97 
environmental uncertainty (sometimes called “aleatoric uncertainty”) from other sources 98 
(“epistemic uncertainty”)135, potentially allowing for improvements in state representation60,136, 99 
exploration130,137–139, value estimation140, model-based learning141, off-policy learning75, and risk 100 
sensitivity142–145. It remains to be determined whether animals make a distinction between 101 
aleatoric and epistemic uncertainty, facilitated by distributional RL, to improve exploration or 102 
offline learning in a manner similar to artificial agents. 103 
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