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SUMMARY

Numerous studies have shown that neuronal re-
sponses are modulated by stimulus properties and
also by the state of the local network. However, little
is known about how activity fluctuations of neuronal
populations modulate the sensory tuning of cells and
affect their encoded information. We found that fluc-
tuations in ongoing and stimulus-evoked population
activity in primate visual cortex modulate the tuning
of neurons in a multiplicative and additive manner.
While distributed on a continuum, neurons with
stronger multiplicative effects tended to have less
additive modulation and vice versa. The information
encoded by multiplicatively modulated neurons
increased with greater population activity, while
that of additively modulated neurons decreased.
These effects offset each other so that population ac-
tivity had little effect on total information. Our results
thus suggest that intrinsic activity fluctuations may
act as a ‘‘traffic light’’ that determines which subset
of neurons is most informative.

INTRODUCTION

Neuronal activity fluctuates at both the single-neuron and the

population levels. These activity fluctuations can limit the reli-

ability of neuronal codes because a given response can arise

from several distinct sensory stimuli (Shadlen and Newsome,

1998; Tolhurst et al., 1983). Fluctuations in stimulus-evoked re-

sponses have been generally viewed as harmful noise that needs

to be averaged out to extract the desired signal (Cohen and

Maunsell, 2009; Mitchell et al., 2009; Shadlen and Newsome,

1998; Averbeck et al., 2006). Recent work has shown, however,

that population activity fluctuations modulate single-cell stim-

ulus-evoked responses in additive and multiplicative manners

(Ecker et al., 2014; Goris et al., 2014; Lin et al., 2015; Schölvinck
et al., 2015), suggesting that they are highly structured and hence

might have a computational role. Nevertheless, the role, if any, of

fluctuations of total activity in neuronal populations on sensory

neuronal tuning and encoding has not been demonstrated.

We studied the influence of population activity fluctuations on

the responses of single neurons and small neuronal ensembles

in primary visual cortex (V1) of both anesthetized and awake

monkeys. We found that the tuning for stimulus orientation of

orientation-selective neurons changes multiplicatively or addi-

tively with the total, stimulus-evoked activity of the neuronal pop-

ulation that embeds these individual neurons, while leaving their

tuning width and orientation preferencemostly unaffected.While

distributed on a continuum, neurons with strong multiplicative

effects tended to have weak additive effects and vice versa,

suggesting some specificity of the modulation across neurons.

Consistent with a multi-gain model of neuronal responses, we

found that neurons and small neuronal ensembles with strong

multiplicative effects became more informative with stronger

population activity, whereas those with strong additive effects

became less informative. Population activity before stimulus

onset was also predictive of both tuning modulation and

changes in encoded information, but to a lesser degree than

stimulus-evoked population activity. Importantly, we found that

population activity does not substantially alter total sensory in-

formation in the recorded population. Rather, it routes how this

information is represented, in an antagonist way, into multiplica-

tively and additively modulated neurons and neuronal ensem-

bles. These results suggest that intrinsic fluctuations in the

activity of neuronal populations may act as a ‘‘traffic light’’ that

modulates the tuning of individual neurons and can differentially

redistribute sensory information in the neuronal population.
RESULTS

We recorded neuronal populations in the superficial layers of V1

in four anesthetized (datasets 1–4, D1–D4) and one awake (D5)

macaque monkeys. We measured responses to gratings drifting

in 8 (12 for D5) equally spaced directions. Gratings were pre-

sented for 1,280 ms (350 ms) each, interleaved with a 1,500-ms
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Figure 1. Hypothetical Modulation of Sensory Tuning with Population Activity

(A) The ‘‘classical’’ tuning of a neuron, computed without conditioning on population activity.

(B) The firing rate of the neuron can depend on population activity. When population activity is low, tuning could have a lower gain (gray line, left); when population

activity is high, tuning might have a higher gain (right). If the activity of the neuron is independent of population activity, the tuning for the two cases would be

identical to the ‘‘classical’’ tuning (dashed lines).

(C) Tuning can be modulated in several ways with fluctuations in population activity, including multiplicative and additive effects, or both, and broadening and

displacement.
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(50 ms) blank screen and repeated 300 or 400 (50) times in

random order. We analyzed the activity of 567 single neurons

and multiunits, which we refer to together as ‘‘units.’’ We stud-

ied 122, 106, 73, 161, and 18 simultaneously recorded units in

datasets D1 to D5, respectively. We also analyzed separately a

subset of 83 well-isolated single neurons (27, 14, 7, 31, and 4

from D1–D5, of which 12, 12, 4, 15, 2, were orientation selective;

see Experimental Procedures).

The firing rate of many V1 neurons is tuned to the orientation of

a drifting grating (illustrated in Figure 1A). Since neurons are

embedded in a local network and are correlated (median of pair-

wise spike count correlations: r = 0.21 across all anesthetized

datasets), the summed total activity of that local population

(called population activity)mightmodulate this tuning (Figure 1B).

This modulation could involve multiplicative or additive effects,

or both, as well as broadening and displacement (Figure 1C).

Similarly, positive correlations among neurons can arise in mul-

tiple ways, such as additive modulation, multiplicative modula-

tion, broadening of tuning, or a combination of these effects or

others (Figure S1A). Therefore, the existence of correlations

does not specify how tuning is modulated. We thus developed

an analysis that could distinguish how tuning is modulated with

population activity fluctuations.

In our data, population activity showed substantial fluctuations

across trials for a fixed stimulus condition (several representative

trials shown in Figure 2A, left), consistent with previous reports

(Arieli et al., 1996; Ecker et al., 2014; Schölvinck et al., 2015).

The distribution of spike counts during the stimulation period

across trials for one stimulus was roughly unimodal and broad

(Figure 2A, right; similar unimodal distributions were obtained

in all datasets, Figure S2A). We characterized the timescale of

the fluctuations using the spontaneous activity periods. Fluctua-

tions in population activity were correlated with a timescale of a

few hundreds of milliseconds (Figure S2B), in consonance with

other studies on single neuron activity in V1 (Ecker et al., 2014;
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Kohn and Smith, 2005). Population activity was negatively corre-

lated with local field point (LFP) signals (Figure S2C), as previ-

ously reported (Okun et al., 2015).

We tested how neuronal tuning varies with fluctuations in pop-

ulation activity using a model-free approach by comparing re-

sponses of a single neuron when the activity of the rest of the

recorded neurons was either high (defined as the half of trials

in which the summed population activity was greatest) or low (re-

maining trials). We used all recorded units to define periods of

high and low population activity, excluding the neuron whose

tuning was being characterized to avoid artifacts. Therefore,

any observed modulation of tuning must arise from network ef-

fects and would not be observed for uncorrelated neural popula-

tions. Both tuning and population activity were measured during

the entire duration of the evoked activity period (shorter periods

are considered below).

The tuning of an example single neuron depended clearly on

population activity (Figure 2B): responses were stronger when

population activity was high (dark red box, Figure 2B) compared

with when it was low (light red). To characterize how tuning was

altered, we first determined whether there was substantial

broadening (where tuning width was defined as the distance be-

tween peak to half-peak) or displacement of tuning with popula-

tion activity. To quantify these effects, we fit the tuning of each

neuronwith a vonMises function (see Experimental Procedures).

Across single neurons, we found a small (2% relative change)

widening of tuning when population activity was high compared

with low, but this effect was not significant (Figure S3A; Mann-

Whitney U = 855, p = 0.2). Tuning preference was also only

weakly modulated with population activity (Figure S3B; median

absolute displacement = 1.0 degrees; permutation test p <

0.002), a small shift when comparedwith the typical tuningwidth.

Therefore, we conclude that changes in tuning width and prefer-

ence are small and that the influence of population activity can

only involve multiplicative and additive modulation of tuning.
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Figure 2. Sensory Tuning Depends on Pop-

ulation Activity in an Example Single Neuron

(A) Stimulus-evoked population activity fluctuates

across trials for the same stimulus (left). Four trials

are shown. Distribution of population activity (sum

of spikes across all neurons in the recorded pop-

ulation) across trials for a given stimulus (right) is

shown.

(B) The tuning of a single neuron (neuron 113 in D4)

is strongly modulated with population activity

(population activity is defined here as the sum of

spikes across all neurons, excluding the activity

from the neuron for which tuning is being charac-

terized). Population activity was ranked from high

(top left) to low (bottom left) for each stimulus

orientation q0. The activity of the selected neuron

(green spike trains) was averaged across either

the top (red box) or bottom (light red box) 50th

percentile of trials, and the averages were plotted

as a function of stimulus orientation (right most).

The tuning was modulated with population activity

(red versus pink lines), with stronger responses

during periods of high population activity. Points

and error bars are mean responses and SEM,

respectively; lines are von Mises fits.
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Multiplicative and Additive Modulation of Tuning with
Population Activity
We sought to determine the extent to which tuning was multipli-

catively and additively modulated with population activity. In the

following analysis (Figures 3A–3C), both tuning and evoked pop-

ulation activity were measured from 160 to 260 ms after stimulus

onset. This brief time period was chosen such that we could, on

one hand, analyze the data from awake and anesthetized ani-

mals in the same way and, on the other hand, study the temporal

dynamics of the modulatory effects of population activity. The

results for other time periods are discussed further below.

Tuning varied strongly with population activity (Figure 3A, four

examples shown). For each single neuron, we characterized its

multiplicative and additive modulation with population activity

by performing linear regression on the average response to

each orientation, when population activity was high compared

withwhen itwas low (Figure3B).Theslopeof the linearfit indicates

how tuning scalesmultiplicatively with population activity (termed

hereafter themultiplicative factor [MF]). The intercept of the fit, on

the other hand, describes the additive shift to tuning with popula-

tion activity. To obtain a relative measure of the additive shift, like

the MF, we defined the additive factor (AF) as the ratio between

this intercept and the mean firing rate of the neuron averaged

across orientations. Thus, neurons with purely MFs will feature a
Neuron 89, 1
fit with slope larger than one that passes

through the origin, whereas neurons with

purely AFs will have fits with slope one

andapositive intercept. Ina separateanal-

ysis, we confirmed that estimates of the

MFsandAFs fromvonMisesfits to the tun-

ing gave similar results (data not shown).

For the example single neuron of Fig-

ure 2B, tuning was modulated multiplica-
tively (MF = 1.4, permutation test p < 0.002) with little additive

modulation (AF = 0.009, p = 0.01). The four example neurons

of Figure 3A displayed different levels of multiplicative and addi-

tive modulation. For instance, the neuron in the second panel

was modulated in a mostly multiplicative manner (MF = 1.5, per-

mutation test p < 0.002; AF = 0.046, p = 0.04), and the remaining

neurons displayed a combination of multiplicative and additive

effects. When we calculated tuning in more finely binned sets

of trials, we observed that the modulation varied smoothly with

the population activity level (Figure S3C).

Statistically significant MFs and AFs were found in a substan-

tial fraction (25/44 for multiplication and 19/44 for addition) of

orientation-selective single neurons. The median MF across all

single neurons was 1.27, significantly larger than one (Figure 3C,

left, black; Mann-Whitney U = 264, p = 10�10). This corresponds

to a change of 27% in the firing rate, which occurs with a 35%

increase in population activity between low-activity and high-ac-

tivity trials. The median AF was also significantly larger than zero

(Figure 3C, right, black; median = 0.05, Mann-Whitney U = 484,

p = 10�5), indicating a 5% increase relative to the neuron’s mean

firing rate at low population activity. Importantly, we found that

there was a negative correlation between the MFs and AFs

across single neurons (Figure 3D, black dots; r = �0.48, non-

parametric bootstrap p < 0.002, see Experimental Procedures).
–12, March 16, 2016 ª2016 Elsevier Inc. 3
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Figure 3. Sensory Tuning Undergoes Multiplicative and Additive Modulation as a Function of Population Activity

(A) Modulation of sensory tuning with population activity in four single neurons, computed as in Figure 2B. Error bars indicate SEM.

(B) Mean response of single neurons when population activity is high (ordinate, corresponding to red lines in A) versus low (abscissa, light red lines in A). Each dot

is the mean response to a different stimulus orientation. Shaded areas around the lines correspond to 95% confidence intervals.

(C) Histograms of multiplicative (left) and additive (right) factors (MFs and AFs, respectively) for all orientation-selective single neurons (black; N = 44) and

orientation-selective units (white; N = 293) for D1-D4. Median MF across single neurons is 1.27, and across units is 1.21, shown in bold and non-bold formats,

respectively. Median AF across single neurons is 0.05 and across units is 0.13.

(D) AFs and MFs for both single neurons (black circles) and units (open circles; all) are negatively correlated.

(E) For individual datasets, MFs (left) are typically significantly larger than one. For individual datasets, AFs (right) are significantly larger than zero for all except for

one dataset.

(F) Median MFs and AFs as a function of time (100ms time windows), relative to stimulus onset (time zero) across single neurons (black line) and units (gray).

Shaded areas indicate time window (160–260 ms) used to compute population activity and tuning curves in (A)–(E). Error bars correspond to 95% confidence

intervals (2:91 �m:a:d=
ffiffiffiffi
N

p
, where m.a.d is median absolute deviation). *p < 0.05, **p < 0.01, ***p < 0.001, n.s. p > 0.05.
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The results described thus far were based onwell-isolated sin-

gle neurons, but remained qualitatively unchanged if we included

activity frommultiunits. Across all units, themedianMFs and AFs

were significantly larger than one and zero, respectively (Fig-

ure 3C, white; median MF = 1.21, Mann-Whitney U = 2 3 104,

p = 10�48; median AF = 0.13, Mann-Whitney U = 2 3 105,

p = 10�44). The negative correlation between MFs and AFs

was also apparent across this large set of units (Figure 3D, white

dots: r =�0.46, p < 0.002). AlthoughMFs and AFs formed a con-
4 Neuron 89, 1–12, March 16, 2016 ª2016 Elsevier Inc.
tinuum rather than distinct groupings, the negative correlation

between MFs and AFs across both single neurons and all units

indicates a partial separation of multiplicative and additive mod-

ulation with population activity.

To test whether the finding of both multiplicative and additive

modulation with virtually no broadening was not due to artifacts

in our estimation method, we applied the same method to simu-

lated population activity with tuning identical to the one observed

in the data (Figure S1). We created neuronal populations with
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Figure 4. Sensory Tuning Depends on Pre-stimulus Population

Activity

(A) Histograms of multiplicative (left) and additive (right) factors across single

neurons (black) and units (white). Median MF across single neurons was 1.03

and 1.06 across units. Median AF across single neurons was 0.093 and 0.084

across units.

(B) Median MFs and AFs as a function of time (time windows of 100 ms) for

single neurons (black line) and all units (gray). Shaded areas indicate time

window (160–260 ms) used to compute statistics in (A), while population

activity was computed during the pre-stimulus period (100 ms before stimulus

onset). Error bars indicate 95% confidence intervals ð2:91 �m:a:d:=
ffiffiffiffi
N

p Þ.
**p < 0.01, ***p < 0.001.
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purely multiplicative modulations, purely additive modulations,

or purely broadening effects and tested whether our method

discovered the true modulation while rejecting other types of

modulation. The method reliably estimated the correct type of

modulation in each simulated dataset (Figure S1B). We further-

more confirmed that the negative correlation between MFs and

AFs found in our data was not an artifact of our estimation

method, as our method could reliably detect or reject the pres-

ence of correlations between these factors in simulated data

(Figure S1C).

We also evaluated the significance of modulatory factors in

each dataset separately, in part to test whether there are sub-

stantial differences between anesthetized and awake prepara-

tions. We found strong and significant MFs and AFs in most

individual datasets (Figure 3E). The median MFs were significant

in four of five datasets, including the awake dataset (Figure 3E,

right; median = 1.28, permutation test p < 0.002, D1; median =

1.10, p < 0.002, D2; median = 1.02, p = 0.4, D3; median =

1.48, p < 0.002, D4; median = 1.36, p = 0.04, D5). Significant

positive AFswere found in all datasets (Figure 3E, right; median =

0.12, permutation test p < 0.002, D1; median = 0.2, permutation

test p < 0.002, D2; median = 0.18, p < 0.002, D3; median = 0.07,

p < 0.002, D4), except the awake dataset, for which there was a

non-significant negative trend, presumably because of the lower
number of neurons and trials recorded when compared with the

anesthetized datasets (Figure 3E, right; median =�0.18, p = 0.4,

D5). We also confirmed that the negative correlation between

MFs and AFs was present in all anesthetized datasets separately

(Figure S3D), indicating that this correlation did not emerge from

aggregating data with different mean values.

Substantial multiplicative and additive effects with no broad-

ening and a negative correlation between MFs and AFs were

also observed when, instead of using direct measures of popu-

lation activity, we used the projection of the population activity

vector onto the first component of principal component analysis

(PCA) on a trial-by-trial basis (Figures S4A and S4B). Thus, our

findings are not sensitive to the specific definition of population

activity used but generalize to other sensible alternative mea-

sures of population activity strength.

Finally, we tested whether the tuningmodulation was also pre-

sent during other response epochs than the window 160–260ms

after stimulus onset, considered above. We repeated our ana-

lyses measuring both neuron tuning and population activity in

100 ms windows spanning the range from 60 to 1,260 ms. We

found that the modulation of neuronal tuning with population

activity was robust in these other epochs as well (Figure 3F).

Modulation of Tuning with Pre-stimulus Population
Activity
We have thus far considered how tuning changes with fluctua-

tions in evoked population activity. These population fluctuations

vary slowly under spontaneous conditions, over a timescale of

hundreds of milliseconds (Figure S2B), and are well-docu-

mented (Arieli et al., 1996; Ecker et al., 2014; Fiser et al., 2004;

Kenet et al., 2003; Kohn and Smith, 2005; Smith and Kohn,

2008; Tsodyks et al., 1999). Spontaneous activity fluctuations

have been shown to influence subsequent evoked responses

(Arieli et al., 1996; Tsodyks et al., 1999). Thus, we sought to

determine how tuning during stimulus presentation varies with

the strength of population activity before stimulus onset. We

measured population activity in the 100 ms preceding stimulus

onset and tuning from 60 to 160 ms after stimulus onset. We

excluded the data of the awake preparation, as the short inter-

stimulus interval (50 ms) made a reliable estimation of pre-stim-

ulus activity impossible.

Orientation tuning depended on the strength of pre-stimulus

population activity. We found significant positive MFs and AFs

(Figure 4A; for single neurons, median MF = 1.03, Mann-Whitney

U = 645, p = 0.01; median AF = 0.093, U = 430, p = 53 10�6; for

all units, median MF = 1.06, U = 3 3 104, p = 2 3 10�16; median

AF = 0.084, U = 23 105, p = 33 10�42). Themodulation with pre-

stimulus population activity was significantly smaller than that

based on fluctuations in stimulus-evoked population activity

(MFs: Wilcoxon sign-rank test, p < 0.01; AFs: p < 0.01). Further-

more, the modulation with pre-stimulus activity was most

evident when tuning was measured shortly after stimulus onset

(60–160 ms; Figure 4B). The factors typically declined over

time, as one would expect from the spike correlation times of a

few hundreds of milliseconds found in our data and usually

reported for V1 (Arieli et al., 1996; Ecker et al., 2014; Fiser

et al., 2004; Kenet et al., 2003; Kohn and Smith, 2005; Smith

and Kohn, 2008; Tsodyks et al., 1999).
Neuron 89, 1–12, March 16, 2016 ª2016 Elsevier Inc. 5
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A Multi-gain Model Predicts How Tuning Modulation
Affects Information Encoding
Our analysis revealed that tuning undergoes both multiplicative

and additive modulation as a function of population activity

and that across neurons there is a negative correlation between

these two types of modulation. To what extent does this tuning

modulation influence encoded sensory information? Does infor-

mation depend on whether the modulation was multiplicative or

additive? To address these questions, we considered an ideal-

ized model with both multiplicative and additive tuning modula-

tions. We assumed that the mean response of a neuron in the

population depends on a global modulatory factor g as

fiðq;gÞ= gm;iðgÞhiðqÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
multiplication

+ ga;iðgÞ
|fflfflffl{zfflfflffl}
addition

= ð1+aigÞhiðqÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

multiplication

+ big|{z}
addition

:

(Equation 1)

The first term in the sums corresponds to the multiplicative

modulation of tuning, and the second term corresponds to its

additive modulation. The normalized tuning function hiðqÞ de-

scribes the tuning of the neuron with respect to the sensory var-

iable q, which is modulated by the neuron-specific MFs and AFs,

gm;i and ga;i, respectively. These factors relate to a global modu-

latory factor, g, linearly by gm;iðgÞ= 1+aig and ga;iðgÞ= big. For

instance, a neuron with a purely MF corresponds to ai > 0 and

bi = 0. The global modulatory factor g, assumed to be shared

by all neurons in the population, generates correlations between

neurons. Firing of each neuron, conditioned on the global modu-

latory factor, is assumed to be Poisson with the rate dictated by

Equation 1. This multi-gain model, with arbitrary mixtures of MFs

and AFs across neurons, is a generalization of recently intro-

duced models with purely multiplicative modulation of neuronal

variance and pairwise covariance (Goris et al., 2014) or with

purely additive modulation to describe state transitions in

neuronal populations (Ecker et al., 2014). Our model generalizes

also the recent affine model (Lin et al., 2015), which allows arbi-

trary AFs for each neuron but features a MF identical for all neu-

rons. In our model, in contrast, each neuron can have a different

MF ai (see Equation 1), as our data suggest (Figure 3). Using this

more complex model was justified by its ability to better predict

neural activity of a holdout set than alternative models (Fig-

ure S5). Most of the models described above have not been

used to make predictions about information encoding (but see

Lin et al., 2015), and the predictions that have been made

were not tested experimentally. The multi-gain model provides

specific predictions about how sensory information in neural

data should depend on the multiplicative and additive modula-

tion of tuning, which we tested.

From our multi-gain model described in Equation 1, it is

straightforward to compute its Fisher information, which is a

measure of discriminability between two nearby stimulus orien-

tations (Ma et al., 2006; Seung andSompolinsky, 1993). Because

we are interested in how neurons’ information about orientation

depends on population activity, we conditioned information on

the global modulatory factor g, resulting in

Iiðq;gÞ=
g2
m;iðgÞh02

i ðqÞ
gm;iðgÞhiðqÞ+ga;iðgÞ; (Equation 2)
6 Neuron 89, 1–12, March 16, 2016 ª2016 Elsevier Inc.
where the prime denotes a derivative with respect to the stimulus

(i.e., h0ðqÞ is proportional to the tuning slope). This equation cap-

tures the information provided by each neuron if there is no

change in the relationship between response magnitude and

variability. Consistent with this assumption, we found little differ-

ence in Fano factors between trials with low or high population

activity (Figure S6). We also found similar correlations for the

two sets of trials (Figure S6).

Equation 2 predicts that a neuron’s information about

stimulus orientation increases with multiplicative gain (as its

effect is dominated by the numerator), but decreases with ad-

ditive modulation (as it only appears in the denominator). Intu-

itively, a multiplicative modulation increases the tuning slope,

and thus, information grows; in contrast, an additive modula-

tion increases the response variance without altering slope,

and thus, information decreases. For instance, the neuron in

the second panel of Figure 3A had a pure multiplicative gain,

and therefore, its responses to different orientations became

more distinct with increasing population activity, potentially

increasing the sensory information encoded. In contrast, the

neuron in the first panel had also a large additive modulation,

which could result in a drop in the information it encodes

(since the response variance will be higher for the stronger

responses). Thus, how information is affected by fluctuations

in population activity will depend in part on the relative

prevalence of multiplicative and additive modulation in the

neuron.

The Information Encoded by Neurons Depends on the
Strength of Population Activity
We tested the predictions of our model with our data. As an illus-

tration, we first selected an orientation-selective neuron that had

a strong MF (1.8, permutation test p < 0.002; Figure 5). The pre-

diction of themulti-gainmodel is that the information encoded by

this neuron about stimulus orientation should increase with pop-

ulation activity. As a proxy for information, we used the decoding

performance (fraction of correctly predicted stimulus orientation)

of a multivariate logistic regression decoder (Experimental Pro-

cedures), cross-validated on holdout trials that were not used

to train the decoder. Better decoding performance corresponds

to an increase in sensory information (Moreno-Bote et al., 2014).

Although our decoder was trained on all orientations simulta-

neously, we split the performance into each orientation and ob-

tained a separate decoding performance per orientation, as the

non-uniformity of tuning curves caused some orientations to be

better encoded than others. In addition, for each stimulus orien-

tation, we split the data into trials with either high or low popula-

tion activity to characterize how population activity modulated

information. When performing this analysis, we measured popu-

lation activity as the summed activity of all recorded units,

excluding the unit (or ensemble of units, see below) for which in-

formation was computed, just as when we characterized tuning

modulation. For the selected unit, decoding performance

increased substantially with population activity, by 44 and 9

percentage points for the two illustrated orientations (Figure 5,

top). This example shows that the sensory information encoded

by neurons can vary substantially with the overall population

activity.



Figure 5. Information Increases with Population Activity in a Neuron

with Strong Multiplicative Modulation

This unit (from D1) had a large multiplicative factor (MF = 1.8, permutation test

p < 0.002; AF = 0.16, p < 0.002). Decoding performance per orientation (cross-

validated probability of correctly predicting the orientation on a trial-by-trial

basis) for the selected unit increases with evoked population activity for two

sample orientations (top right; performance changes are indicated for the two

orientations).
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Sensory Information in Neuronal Ensembles
The multi-gain model predicts that neurons with stronger multi-

plicative effects should provide better performance with higher

population activity than neurons with weaker multiplicative ef-

fects. Consistent with this prediction, we found a significant pos-

itive correlation across all units between themagnitude of theMF

and the performance changewhenmoving from low to high pop-

ulation activity (Figure 6A, left; r = 0.6, t test, p < 10�28; analysis

based on responses measured 160–260 ms after stimulus

onset). As also predicted by the multi-gain model, units with

stronger additive effects had a larger negative performance

change (Figure 6A, right; r = �0.32, t test, p = 3 3 10�7). In

summary, units with strong multiplicative effects provide more

information as population activity increases, whereas units with

additive modulation provide less information.

Themulti-gainmodel also predicts that the balance ofMFs and

AFs should determine how the information encoded by small

neuronal ensembles, not just by units, should vary with the pop-

ulation activity level. This is true if responses are conditionally in-

dependent given the global modulatory factor (Equation 1) such

that information in the ensemble becomes the sum of the ‘‘units’’

contributions (Equation 2). We tested this prediction by grouping

orientation-selective units, including both single neurons and

multi-units, in ensembles of size N (N = 1, 2, 3, 5, 10 and 15) as

follows. Within each dataset, we ordered orientation-selective

units by their multiplicative (or additive) factors and then split

them into non-overlapping ensembles of N units that preserved

this ordering (Experimental Procedures). For all datasets, the

correlation between performance change and average MF of
the ensemble was positive and increased rapidly for larger sizes

N of the ensemble (Figure 6B, left). Examples of these correla-

tions are shown in Figure 6C for ensembles of size N = 5 (except

D5, where individual units are shown). The datasets from

anesthetized animals featured a strong positive correlation be-

tween performance change and the average MF (Pearson’s r =

0.92, p = 7 3 10�6, D1; r = 0.80, p = 4 3 10�5, D2; r = 0.87,

p = 0.002, D3; r = 0.78, p = 4 3 10�4, D4). The dataset from an

awake animal (Figure 6C, last panel) showed the same trend

but did not reach significance (Pearson’s r = 0.66, p = 0.08),

most likely due to the small number of orientation-selective units

available (eight neurons). On average across datasets, the per-

formance change was roughly ten percentage points for the en-

sembles of N = 5 neurons with strongest multiplicative modula-

tion, from a baseline performance of 44% correct (where

chance performance is 12.5% in anesthetized data).

In contrast, the correlation between performance change and

the average AF in the ensemble showed the opposite pattern;

performance change was typically more negative for larger en-

sembles (Figure 6B, right). Examples of these negative correla-

tions are shown in Figure 6D, following the same conventions

as Figure 6C. In three of four anesthetized datasets, the correla-

tion between performance change and AFs was significantly

negative (Pearson’s r = �0.48, p = 0.09, D1; r = �0.63,

p = 0.003, D2; r = �0.97, p = 2 3 10�5, D3; r = �0.54,

p = 0.03, D4), while in the awake dataset the correlation was

negative but not significant (r = �0.58, p = 0.1, D5). On average

across datasets, the performance change was roughly �2%

percentage points for the ensembles of N = 5 neurons with stron-

gest additive modulation.

When, instead of using population activity, we repeated the

analysis described above with the projection of the population

activity vector onto the first PCA component, we again found

that information was differentially modulated in ensembles with

strong multiplicative and additive effects (Figures S4C–S4F).

We found similar but weaker results when information in the

evoked response was conditioned on the strength of population

activity measure just before stimulus onset (Figure S7), consis-

tent with the modulation of tuning with pre-stimulus activity

described in Figure 4.

Population Activity Does Not Substantially Change Total
Information, but Redirects Information into Additively
and Multiplicatively Modulated Neuronal Ensembles
Thus far, we have shown that information increases for multipli-

catively modulated ensembles and decreases for additively

modulated ensembles, when population activity is stronger.

But what is the net dependence of information on the strength

of population activity? To address this question, we randomly

selected units to form neuronal ensembles of varying sizes

(N = 1, 2, 3, 5, 10, and 15), instead of choosing subsets of

neurons based on their modulation as we did previously. We

computed the performance change between low and high

population activity, averaged across many ensembles. We

found that there was little change in performance on average

(Figure 7A, black line). However, when we selected from

these randomly generated ensembles the 10% of cases with

the strongest overall multiplicative modulation, we found that
Neuron 89, 1–12, March 16, 2016 ª2016 Elsevier Inc. 7
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Figure 6. Performance Change Increases for Units and Ensembles of Units with Strong Multiplicative Modulation and Decreases for Those

with Strong Additive Modulation when Population Activity Is Higher

(A) Performance change as a function of multiplicative (left) and additive (right) factors for all orientation-selective single neurons (black circles) and units (open

circles; all).

(B) Correlation between performance change andMFs (left) or AFs (right), as a function of the number of units N in the ensemble for each dataset (same color code

as in Figure 3E). Decoding is based on the entire ensemble, and the MFs and AFs refer to the average factors in the ensemble. Population activity was measured

after excluding the ensemble used to decode stimulus orientation. The correlation between performance change and averageMF in the ensemble increases with

ensemble size and then asymptotes. In contrast, the correlation between performance change and average AF drops with ensemble size, as predicted by the

multi-gain model.

(C) Performance change increases with the strength of multiplicative modulation for each dataset individually (ensembles of N = 5, except N = 1 for D5).

(D) Performance change decreases with the average AF of the ensemble (same sizes as C) and can even become negative. Significance of Pearson’s correlation:

*p < 0.05, **p < 0.01, ***p < 0.001, n.s. p > 0.05.
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performance change was large and saturated as a function of

ensemble size (green line), consistent with our previous analysis.

Similarly, when we selected the 10% of ensembles with the

strongest additive modulation, we found that performance

change was consistently negative (blue line).

These results suggest that in randomly sampled neuronal en-

sembles, the effect of population activity on information is negli-

gible. In fact, whenwe computed decoding performance in these

populations at low and high population activity we did not find a

visible modulation (Figure 7B; the two lines overlay). Therefore,

population activity does not substantially modulate the informa-

tion present in these populations, but rather it modulates which

ensembles have more information about the stimulus at different

times. When population activity is high, the information encoded

by multiplicatively modulated ensembles is enhanced; when
8 Neuron 89, 1–12, March 16, 2016 ª2016 Elsevier Inc.
population activity is low, the information provided by additively

modulated ensembles is more important.

DISCUSSION

We found that intrinsic fluctuations of stimulus-evoked and

ongoing population activity are associated with multiplicative

and additive modulation of the tuning of orientation-selective

neurons in monkey V1. Neurons that showed strong multiplica-

tive modulation tended to display weak additive modulation

and vice versa. These forms of modulation affected the sensory

information encoded by neurons and small neuronal ensembles.

As predicted by a multi-gain model, we found that sensory

information increased with population activity for neuronal

ensembles with strong multiplicative gains. However, sensory



A B

Figure 7. Population Activity Does Not Substantially Change Total

Information, but Rather It Differentially Redirects Information into

Multiplicatively and Additively Modulated Neuronal Ensembles

(A) Change in decoding performance averaged across randomly chosen

ensembles of varying size (solid line) and for the top 10% ensembles with

strongest average multiplicative (green) and additive (blue) factors.

(B) Lack of modulation of performance with population activity as a function of

ensemble size for randomly chosen ensembles. Error bars indicate SEM.
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information decreased with greater population activity for en-

sembles with strong additive modulation. Importantly, we found

that these effects largely offset each other so that intrinsic fluc-

tuations of population activity do not strongly affect total sensory

information. Rather, the strength of population activity seems to

act as a ‘‘traffic light’’ that differentially redirects information into

different subsets of neurons.

Previous work (Arieli et al., 1996; Tsodyks et al., 1999) found

that pre-stimulus ongoing population activity has an additive

effect on evoked responses, and others have reported either ad-

ditive (Ecker et al., 2014) or multiplicative (Goris et al., 2014)

modulations of evoked responses with population activity fluctu-

ations. Recent work has shown that both multiplicative and

additive modulations are present in mice and cat neuronal pop-

ulations (Lin et al., 2015) and reported that a model with a single

MF across all neurons and different AFs is favored. Instead, by

observing how population activity affects tuning curves, we

found that separate MFs and AFs per neuron are required to

describe our monkey data, a result further supported by a model

comparison analysis (Figure S5). Importantly, we found that mul-

tiplicative and additive effects are not randomly intermixed

across neurons. Instead, neurons with strong modulation of

one type tend to show weak modulation of the other. In addition,

we found that the strength of spontaneous activity preceding

stimulus onset induces not only an additive modulation of stim-

ulus-evoked responses as described in previous work (Arieli

et al., 1996), but also a multiplicative effect. However, the influ-

ence of pre-stimulus population activity on tuning was weaker

than that of stimulus-evoked population activity fluctuations,

presumably because activity fluctuations have a timescale of a

few hundreds of milliseconds.

Several recent studies have addressed how network state af-

fects sensory responses and encoding, generally defining states

based on the degree to which activity is synchronized across

neurons or based on LFP measurements (Luczak et al., 2013;

Mochol et al., 2015; Pachitariu et al., 2015; Schölvinck et al.,

2015). In these works, it is often reported that correlations are

coupled with population activity measurements (Mochol et al.,
2015; Pachitariu et al., 2015; Schölvinck et al., 2015). Much

less attention has been paid, however, to the question of how

within-state, across-trials fluctuations in the strength of popula-

tion activity affect neuronal tuning and encoded information,

although these fluctuations have been well documented (Arieli

et al., 1996; Kenet et al., 2003; Tsodyks et al., 1999). In our

data, fluctuations of population activity strength do not corre-

spond to changes in the degree of network synchronization

because neither variability nor correlations change substantially

when going from low to high population activity (Figure S6). This

may be because fluctuations of population activity in our data

correspond to within-state fluctuations, rather than to across-

state fluctuations. In fact, our analysis shows that the distribu-

tions of population activity are unimodal, suggesting a single

state (Figures 2A and S2A). Overall, by performing an analysis

in which population activity was the central quantity to condition

on, we were able to reveal that across-trials fluctuations in the

strength of population activity affect sensory tuning and the in-

formation encoded in distinct subsets of neurons.

Interestingly, our results show that themultiplicative effects on

orientation tuning are as large in the awake animal as in the anes-

thetized preparation. This similarity in modulation occurred

despite differences in the magnitude of pairwise correlations be-

tween our datasets from awake and anesthetized animals (me-

dian pairwise spike count correlations in 160- to 260-ms window

for anesthetized data: r = 0.073, D1; r = 0.091, D2; r = 0.043, D3;

r = 0.061, D4; and for awake: r = 0.013, D5). However, the

smaller pairwise correlations observed in the awake preparation

nevertheless involved substantial shared fluctuation in the full

population, which were clearly evident when we conditioned

on the population activity of �20 units. Therefore, although the

magnitude of pairwise correlations might vary across experi-

mental preparations (e.g., brain state, cortical areas, layers) (Co-

hen and Kohn, 2011; Ecker et al., 2010, 2014; Kohn and Smith,

2005), their net effect on the population can be similar. Indeed,

recent work has emphasized that the magnitude of pairwise cor-

relations is not informative about their functional impact; even

tiny correlations of a particular form called differential correla-

tions can have massive effects on population information,

whereas large correlations with a different structure can have

little effect (Moreno-Bote et al., 2014).

A modulation of sensory tuning similar to the one that we

report has been observed with optogenetic stimulation of spe-

cific V1 neuronal subpopulations. Optogenetic stimulation of

layer 6 in mouse primary visual cortex induces divisive (i.e., mul-

tiplicative) gain modulation of orientation-selective neurons in

the upper layers (Olsen et al., 2012). Similarly, optogenetic stim-

ulation of inhibitory neurons in rat primary visual cortex has been

shown to cause divisive or subtractive changes in the tuning of

target neurons, depending on the inhibitory subpopulation that

is stimulated (Wilson et al., 2012). More recently, antidromic

spikes generated by optogenetic stimulation of distal V1 loca-

tions have been shown to additively and divisivelymodulate layer

2/3 neuronal responses in the mouse (Sato et al., 2014). These

effects are similar to those we report, although future work will

need to determine whether they provide a mechanistic explana-

tion for the effects we observe under stimulus-driven conditions.

An alternative explanation is that additive and multiplicative
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modulation can arise from balanced excitatory and inhibitory in-

puts (Chance et al., 2002). Specifically, multiplicative modulation

arises from excitatory and inhibitory currents that are tightly

balanced, whereas additive modulation might involve a slight

imbalance in these currents. In this context, our results suggest

that the balance of excitation and inhibition varies across

neurons.

One might be tempted to equate the modulation of single

neuron activity that we observe to that induced by the allocation

of attention. Indeed, attention has been shown to modulate tun-

ing in multiplicative and additive manners, similar to the modula-

tion of tuning that what we have observed with population

activity (Baruni et al., 2015; McAdams and Maunsell, 1999;

Thiele et al., 2009; Treue and Martı́nez Trujillo, 1999). However,

attention has been also shown to reduce response variability

and pairwise correlations (Cohen and Maunsell, 2009; Mitchell

et al., 2009) (but see Ruff and Cohen, 2014), whereas we found

little change in these measures with fluctuations in population

activity (Figure S6). Multiplicative modulation of tuning is also

evident with manipulations of stimulus contrast (Carandini and

Heeger, 1994; Finn et al., 2007; Priebe and Ferster, 2012). It is

possible that the multiplicative modulation of tuning we report

here shares similar mechanisms to those that occur with manip-

ulations of stimulus contrast. In this regard, it is worth noting that

the similarity of the multiplicative modulation we report to varia-

tions caused by altering contrast suggests that fluctuations in

population activity limit information about stimulus contrast in

V1, perhaps explaining limitations on perceptual contrast dis-

criminability. This is because fluctuations that are identical to

those generated by stimulus variations are the ones that limit in-

formation about the stimulus (Moreno-Bote et al., 2014).

The neuron-specific modulation of tuning with population ac-

tivity fluctuations that we have characterized might govern

important aspects of sensory processing, as these fluctuations

affect the amount of sensory information that can be read out

from small neuronal ensembles. For instance, the modulation

might contribute to the trafficking of information in primary visual

cortex because an increase in overall activity tends to boost in-

formation in multiplicatively modulated neurons while impover-

ishing it in additively modulated neurons. Although we have

shown that population activity does not substantially change to-

tal information in the recorded population, population activity

through its neuron-specific multiplicative and additive modula-

tions may act as a global context or traffic light, which influences

which neuronal ensembles convey more information about the

stimulus. In a speculative vein, efficient synaptic plasticity in

small neuronal assemblies requires that their responses carry in-

formation about relevant internal and external variables (Fusi

et al., 2007; Urbanczik and Senn, 2009), so modulating their in-

formation about those variables can also gate plasticity. There-

fore, population activity might also control important aspects

of learning.
EXPERIMENTAL PROCEDURES

Animal Preparation

We recorded data from five adult male macaque monkeys (Macaca fascicula-

ris), four anesthetized and one performing a fixation task. The techniques used
10 Neuron 89, 1–12, March 16, 2016 ª2016 Elsevier Inc.
in anesthetized animals have been previously described (Smith and Kohn,

2008). Briefly, anesthesia was induced with ketamine (10 mg/kg) and main-

tained during preparatory surgery with isoflurane (1.5%–2.5% in 95%O2). Su-

fentanil citrate (6–24 mg/kg/hr, adjusted as needed for each animal) was used

to maintain anesthesia during recordings (see Supplemental Experimental

Procedures).

For experiments involving the awake monkey, the animal was implanted

with a head post and then trained to fixate in a 1-degree window. Eye position

was monitored with a high-speed infrared camera (Eyelink, 1,000 Hz). At

500 ms after the establishment of fixation, a drifting grating appeared over

the aggregate receptive field of the recorded units. If the animal broke fixation,

the trial was aborted and the data discarded. The animal was rewarded with a

drop of water for successfully completed trials, typically �500–800 per

session.

All procedures were approved by the Institutional Animal Care and Use

Committee of the Albert Einstein College of Medicine at Yeshiva University

andwere in compliance with the guidelines set forth in the United States Public

Health Service Guide for the Care and Use of Laboratory Animals.

Visual Stimuli

For anesthetized animals, we presented full contrast drifting sinusoidal grating

for 1,280 ms, with an interstimulus period of 1,500 ms. Gratings of eight

different orientation were each shown 300–400 times. For the awake animal,

we used 12 different orientations, and each was presented for 350 ms, with

an interstimulus period of 50 ms. After every four stimuli, the monkey was re-

warded. We recorded 50 trials for each stimulus orientation (see Supplemental

Experimental Procedures).

Recording Methods and Data Preprocessing

We recorded in the superficial layers of primary visual cortex (V1), using a Utah

array (96 microelectrodes, 1-mm length, 400-mm spacing; 48 electrodes in

the awake animal). Events crossing a user-defined threshold were digitized

(30 kHz), saved, and sorted offline.We quantified spike waveform quality using

a simple signal-to-noise ratio metric (SNR; Kelly et al., 2007). We defined

multiunits (MUA) to be units with SNR > 2, which corresponds to clusters

with a small number of single units. Well-isolated units were defined to have

SNR > 3.5, a conservative threshold. A small number of MUA sites with

SNR < 2 were also used only to compute the population activity.

We only analyzed blocks of trials in which responses did not change mark-

edly over time. While the data from anesthetized animals were quite stable,

those from the awake preparation showed strong evidence of adaptation.

We therefore removed from this dataset the first 200 trials, leaving 400 trials

during which responseswere stable. To avoid biases due to a different number

of trials per orientation in the decoding performance analysis, we (randomly)

selected 30 trials for each orientation. Because of the low number of trials

compared with the ‘‘anesthetized’’ datasets, we merged trials with adjacent

orientations in pairs to obtain six orientations with 60 trials per orientation to

offer more comparable results. For all datasets, we measured responses

beginning 60 ms after stimulus onset to account for V1 response latencies,

as in Graf et al. (2011).

Dependence of Tuning Curves on Population Activity

Tuning conditioned to population activity was computed for every orientation-

selective unit using the following model-free approach. Orientation-selective

neurons were defined as those with tuning well fitted by a von Mises function

ðr2R0:75Þ (Graf et al., 2011); remaining neurons were termed non-selective.

For each trial, we computed the population activity as the average number

of spikes per second across all other neurons in that time window. Population

activity was based on all neurons except the one for which tuning modulation

was computed. Trials corresponding to a given stimulus orientation were

sorted as a function of mean population activity and then split at their median

into subgroups of ‘‘low’’ and ‘‘high’’ activity. We computed the high and low

population activity tuning, denoted fhighðqÞ and f lowðqÞ, as the firing rate of

the chosen neuron as a function of stimulus orientation in trial subgroups

with high and low population activity, respectively. For comparison, we also

computed population activity after Z scoring the responses of each neuron

across trials. This approach yielded similar results because trial ranking was
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nearly identical with the two methods, with only a few close-to-median trials

changing category.

Multiplicative and Additive Modulation of Tuning

To estimate the multiplicative and additive gains, we performed a type II

weighted linear regression between the low and high tuning, using the model

fhighðqÞ=g flowðqÞ+ s, where g is the MF and s is an additive offset. The MF is

unit-less by definition. To obtain a comparable unit-less AF, we normalized s

by the mean activity across orientations. Neurons with fit values outside the

range (0.3, 3) for MFs and (�1, 1) for AFs were excluded from analysis. Results

do not qualitatively depend on the exclusion of these few outliers (5% of

cases).

For each dataset, we estimated the gains’ significance by a permutation test

that sampled the null hypothesis.We randomly assigned trials to build high and

low tuning, instead of ranking trials by population activity. Then we obtained

the MFs and AFs for each neuron by linear regression, as described before,

and computed the median factors across all neurons. We repeated this proce-

dure 1,000 times. We defined the probability that these medians were larger or

smaller than the real median across neurons by the fraction of samples below

or above the real population median. The reported two-tailed p values were

twice that fraction.

The statistical analysis for the correlation between MFs and AFs (Figure 3D)

is described in the Supplemental Experimental Procedures.

Broadening and Displacement of Tuning Curves

We determined the change in width and preferred orientation with popula-

tion activity using Von Mises function fits to each neuron: fðqÞ= a+b�
exp½k � ½cosð2 � ðq� qpref ÞÞ � 1��, for trials with low and high population activ-

ity. We fit the function by minimizing the weighted squared error with

bounded parameters to ensure physiologically plausible parameters (minimize

function from lmfit python package with the following constraints:

q˛½0;p�; k > 0:001;maxðfqÞ< 1:3 �maxðrqÞ, minðfqÞ> 0:7 �minðrqÞ, where rq is

themean response across trials for each orientation) . To evaluate broadening,

we used the squared width of the von Mises distribution, defined as

s2 =1� I1ðkÞ=I0ðkÞ, where InðkÞ is the modified Bessel function of the first

kind of order n evaluated at k. The broadening factor was computed as the ra-

tio between the widths of the high and low tuning ðshigh=slowÞ. The displace-

ment of the tuning was defined as the absolute difference between the

preferred orientation of the high and low tuning ðDqpref =
�
�
�q

high
pref � qlowpref

�
�
� Þ. We

tested for significant broadening and displacement with a permutation test

by sampling, as described above, using two-tailed and one-tailed p values,

respectively. In an additional analysis, we used the von Mises fits to compute

the multiplicative and additive modulation of tuning, which yielded similar re-

sults to those reported in the main text.

Extracting Visual Information from Population Recordings

We defined decoding performance (Figures 5, 6, and 7) as the fraction of trials

where stimulus orientation was correctly predicted by a trained decoder. Re-

sults shown are for multinomial logistic regression (MLR) (Bishop, 2006) (see

Supplemental Experimental Procedures), which outperformed a linear SVM

decoder (an obvious alternative). We used 10-fold cross-validation (CV) to

avoid over fitting the data; reported performance is the average performance

across the ten sets of left-out data.

Decoding Performance as a Function of Population Activity

We computed the decoding performance in the time window 160–260ms after

stimulus onset using simultaneously recorded small ensembles of N = 1, 2, 3,

5, 10, or 15 neurons. Decoding performance was independently analyzed for

each orientation and each ensemble (Figure 7) using MLR with the population

vector formed by the firing rates of the neurons of the ensemble. Trials for each

orientation were divided into low and high population activity trials, and their

averages across trials were computed (Figure 5). As for the tuning analysis,

population activity was computed using all neurons but excluding the N neu-

rons of the ensemble. Performance change per orientation was defined as

the difference in decoding performance between high and low population ac-

tivity trials for the MLR decoder trained in the two conditions and across orien-

tations. We report the Pearson correlation coefficient and its two-tailed
p value, and we also plot a linear regression to highlight the relationship be-

tween performance change and mean factors in the ensemble.
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