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In this issue of Neuron, Sanders et al. (2016) demonstrate that human confidence judgments seem to arise
from computations compatible with statistical decision theory, shining a new light on the old questions of
how such judgments are formed.
There is little doubt that confidence is an

essential component of decision making.

I would not cross the road if I were not suf-

ficiently confident in making it safely to

the other side. I would aim my return in

tennis just far enough inside the court to

be confident that it actually lands inside

while making it hard for the opponent to

reach.

An essential ingredient in such deci-

sions is that they involve some degree of

uncertainty (Doya et al., 2007). My return

in tennis, for example, won’t always

exactly go in the planned direction. In

the presence of uncertainty, however,

decisions become a matter of statistics:

which of the available options is more

likely to yield the desired effect? The

associated decision confidence then

ought to follow the same statistical princi-

ples: how probable is it that the chosen

option was the correct one? In statistical

decision theory (Berger, 1993), this would

be a very natural definition of confidence

(Pouget et al., 2016).

The psychological study of the human

sense of confidence, however, follows

another tradition. There, confidence is in-

terpreted as arising from a homunculus-

like monitoring of the decision process,

such that confidence judgments become

a form of metacognition (e.g., Lau and

Rosenthal, 2011). This is also reflected in

heuristic models of decision confidence,

where the process generating confidence

judgments is frequently added onto the

decision-making process (e.g., Pleskac

and Busemeyer, 2010), rather than being

an integral component of it. While for

some parameter regimes these models

might be able to qualitatively mimic the

predictions of statistical decision theory,

little work has attempted to test if human
confidence judgments can be directly

predicted by statistical decision theory.

In this issue of Neuron, Sanders, Ha-

gya, and Kepecs (Sanders et al., 2016)

do exactly that: they ask if human reports

of confidence can be quantitatively ex-

plained by confidence computed accord-

ing to statistical principles. In order to test

this hypothesis, they first derive four pre-

dictions that need to hold if confidence

indeed arises from statistical computa-

tions, and then compare these predic-

tions against confidence judgments of

humans performing two types of deci-

sion-making tasks. What they find is

that, indeed, human confidence judg-

ments in both tasks seem to arise from

such statistical computations. This is

good news, as it not only puts the study

of confidence on a firm statistical basis,

but also means that our sense of confi-

dence is statistically consistent: it is the

optimal quantity to use for many of the

computational roles of confidence, such

as learning, postdecision wagering, etc.

(Meyniel et al., 2015; Pouget et al., 2016).

Let us consider the four predictions for

confidence judgments that arise from sta-

tistical decision theory. The first is that

the level of confidence ought to predict

the accuracy of the associated choices

(Figure 1A). That is, the higher the confi-

dence, the more accurate the choices. If

confidence is expressed directly as a pos-

terior probability from Bayesian statistics,

then the prediction becomes even stron-

ger. In that case, the level of confidence

should perfectly match the probability of

making correct choices.

While the first prediction is fairly intui-

tive, the second and third are less so.

The second states that the level of confi-

dence should be larger for easy than for
hard choices if these choices are correct,

while the opposite should be the case for

incorrect choices (Figure 1B). To under-

stand this prediction, we need to consider

that we are operating with uncertain evi-

dence. This implies that what Sanders

and colleagues call the ‘‘percept’’ of the

evidence (that is, the brain’s estimate of

the evidence) does not perfectly match

the actual evidence (associated with the

correct choice), but instead is a noisy

sample thereof. For hard choices, in

which the evidence is weak, the percept

might in some cases due to stochastic

fluctuations strongly support one choice

even if the actual evidence is in fact for

the other choice (Figure 1D). For easy

choices, in contrast, when the evidence

is strong, such mistakes are less likely to

happen. If they do, however, the percept

will only weakly support the incorrect

choice. For this reason, the confidence

for incorrect choices should be higher

for hard than for easy choices.

The same principle leads to the third

prediction, which states that confidence

should reach an average level once

choices become impossibly hard, that is,

once the decision maker is not provided

any evidence toward which choice would

be correct (Figure 1B). This prediction

arises again because the percept is a

noisy version of the actual evidence.

This implies that even though there might

not be any actual evidence, there might

be some perceived evidence based

upon which the decision maker commits

to a choice. This perceived evidence

causes the decision maker’s confidence

to reach an average level (Figure 1D,

bottom).

The fourth prediction relates choice dif-

ficulty, choice accuracy, and confidence,
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Figure 1. The Hallmarks of Confidence Judgments of Statistical Decision Theory
(A) If confidence judgments follow statistical decision theory, then for a fixed level of confidence, the
fraction of correct choices should equal the confidence. Confidence could bemeasured in other units than
probabilities (e.g., integer scales, as in Sanders et al., 2016), but even then, an increase in the level of
confidence should result in an increase in the fraction of correct choices.
(B) For correct choices, confidence should be higher for easier trials. The opposite should be the case for
incorrect choices. Impossible trials (no choice-related evidence) should result in an average level of
confidence.
(C) For a fixed trial difficulty, high-confidence choices should be more accurate than low-confidence
choices.
(D) To illustrate the intuition behind (B), consider that the evidence perceived by the decision maker is a
noisy version of the actual evidence, illustrated here by plotting the distributions over perceived evidences
across trials (smooth Gaussian distribution) for a fixed actual evidence (black vertical bar). Positive
(negative) perceived evidence here results in correct (incorrect) choices, such that the average perceived
evidence associated with correct (incorrect) choices is the center of mass (green/red horizontal bar) of the
green-shaded (red-shaded) part of the distribution. In this simple model, a large (small) distance of this
average perceived evidence to the origin corresponds to high (low)-confidence choices. The plots from
top to bottom show increasingly more difficult trials, corresponding to moving from right to left in (B).
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and states that for the same choice

difficulty, the choice accuracy should be

higher for decisions with higher confi-

dence (Figure 1C). In that sense, it is

similar to the first prediction, only that it

refines this prediction to additionally

include choice difficulty.

In order to test these predictions,

Sanders and colleagues test human sub-

jects on two decision-making tasks. The

first task is a purely perceptual task in

which in each trial the subjects hear se-

quences of clicks of a different click rate

(average number of clicks per second)

in each ear and need to indicate which

side is associated with the higher rate

(Brunton et al., 2013). After each choice

they were furthermore asked to indicate
426 Neuron 90, May 4, 2016
their confidence in this choice on a scale

from one (‘‘random guess’’) to five (‘‘high

confidence’’). Analyzing these confidence

judgments, Sanders and colleagues

found that they qualitatively followed all

the criteria outlined by the above pre-

dictions. Higher confidence was associ-

ated with higher choice accuracy, even

when conditioned on the difficulty of the

choices (that is, the difference in click

rates across ears). Furthermore, confi-

dence for easier trials was higher for cor-

rect choices, but lower when choices

were incorrect. Impossible trials, in which

the click rate was the same for both ears,

led to an average confidence level.

While these tests already provided a

good qualitative match to the theory,
Sanders and colleagues went a step

further and looked for a quantitative

match. First, they provided what they

called ‘‘parameter-free’’ predictions of the

statistical model. While the model actually

had parameters, these were fully con-

strained by only considering the subjects’

choices while ignoring their confidence

judgments. The resulting confidence judg-

ment predictions were close to, but did not

fully match, those made by the subjects.

In particular, the model predicted more

extreme judgments (that is, closer to one

and five). Second, Sanders and colleagues

thus introduced noise that caused the

model to make a fraction of confidence

judgments by chance rather than based

on the perceived evidence. With this

adjustment, they finally achieved a

good quantitative match between model

predictions and observed confidence

judgments.

The same procedure was repeated for

data from subjects performing a second

task that involved general knowledge

rather than perceptual decisions. In this

task, subjects were in each trial asked to

decide which of two countries had the

larger population. As in the first task,

they were additionally queried after each

choice for their level of confidence. Per-

forming the same analysis as for the first

task, Sanders and colleagues found that

the subjects’ confidence reports again

match the predictions of the statistical

model both qualitatively and quantita-

tively. This time, they didn’t even need to

add additional noise to the model’s quan-

titative predictions, but it is hard to tell if

this was due to overall noisier confidence

judgments or due to better model predic-

tions than in the first task.

Overall, their work provides strong sup-

port for the idea that human confidence

judgments indeed originate from compu-

tations of statistical confidence. This is

consistent with the stance that the com-

putations underlying human decisions

implement ideal or approximate Bayesian

statistical inference (Beck et al., 2012;

Doya et al., 2007). However, it is at odds

with previous reports of a mismatch be-

tween choice accuracy and the reported

level of confidence (e.g., Juslin et al.,

2000). Sanders and colleagues argue

that this can be accounted for by details

of their experimental design. First, they

chose to limit the confidence reports to
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integer values between one and five

rather than asking for explicit probabili-

ties, as has been done previously. With

this, theymight have side-stepping issues

of probability calibration and risk sensi-

tivity. Second, they claim that asking for

confidence reports after the choice rather

than at the same time avoids divided

attention between confidence reporting

and choice. However, it has previously

been shown that in the presence of a

stream of evidence, as is the case in their

click-rate discrimination task, evidence

presented close to the choice might be

processed further after choices have

been made (Resulaj et al., 2009). This

could cause confidence reports to be

based on different evidence than that

used to make the choices (Zylberberg

et al., 2012). In this light, it remains to be

seen if it was indeed the asynchronous

choice and confidence report that caused

these reports to match the statistical

model. It might in fact explain why, for

this particular task, confidence judgments

appeared noisier than predicted by the

noise-free model.

An interesting observation made by

Sanders and colleagues is that the human

confidence judgments in the click-rate

discrimination task are a function of both

the decision time (that is, the duration
between stimulus onset and choice) and

the difficulty of the trial, as measured by

the difference in click rates across ears.

This is compatible with previous empirical

findings (Kiani et al., 2014), but at odds

with simple ideal-observer models that

predict that confidence should only

depend on decision time, irrespective of

trial difficulty (Drugowitsch et al., 2012;

Kiani and Shadlen, 2009). These models

are based on the same statistical frame-

work as that of Sanders and colleagues,

such that it needs to be clarified how

these seemingly contradictory findings

can be brought in line.

This should not distract, however, from

their important main findings that human

confidence reports indeed feature the

same hallmarks as confidence computed

according to the principles of statistical

decision theory. Hence, these reports

might arise from the same computations

that underlie our decisions under un-

certainty, thus suggesting confidence to

be a central and integral component of

everyday decisions, rather than just an

afterthought.
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For five years, since the landmark discovery of the C9ORF72 hexanucleotide repeat expansion in ALS/FTD,
a transgenic mouse model has remained elusive. Now, two laboratories (Liu et al., 2016; Jiang et al., 2016)
report the development of BAC transgenic mice that recapitulate features of the human disease.
Discovered in 2011, the GGGGCC hexa-

nucleotide repeat expansion (HRE) in

C9ORF72 is now regarded as the most

common genetic cause of amyotrophic

lateral sclerosis (ALS) and frontotemporal
dementia (FTD) (DeJesus-Hernandez

et al., 2011; Renton et al., 2011). The

HRE, located in the first intron, consists

of 2–30 repeats in the general population

and can range from hundreds to thou-
sands of repeats in affected patients.

Difficult to clone and prone to germline

and somatic instability, these large ex-

pansions have presented a technical hur-

dle for the development of transgenic
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