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SUMMARY

Making decisions in uncertain environments often
requires combining multiple pieces of ambiguous in-
formation from external cues. In such conditions, hu-
man choices resemble optimal Bayesian inference,
but typically show a large suboptimal variability
whose origin remains poorly understood. In partic-
ular, this choice suboptimality might arise from
imperfections in mental inference rather than in
peripheral stages, such as sensory processing and
response selection. Here, we dissociate these three
sources of suboptimality in human choices based
on combining multiple ambiguous cues. Using a
novel quantitative approach for identifying the origin
and structure of choice variability, we show that im-
perfections in inference alone cause a dominant frac-
tion of suboptimal choices. Furthermore, two-thirds
of this suboptimality appear to derive from the limited
precision of neural computations implementing infer-
ence rather than from systematic deviations from
Bayes-optimal inference. These findings set an up-
per bound on the accuracy and ultimate predictabil-
ity of human choices in uncertain environments.

INTRODUCTION

Humans show a remarkable ability to make efficient decisions in

a wide range of situations, from perceptual decisions based on

sensory cues to social and economic decisions based on pre-

ferences and reward. Identifying the computations underlying

decisions is essential for understanding human cognition and

its neural substrates. In many situations, making decisions re-

quires combining multiple pieces of ambiguous or even conflict-

ing information from external cues (Gold and Shadlen, 2007;

Shadlen and Kiani, 2013), a task that is optimally performed by

Bayesian probabilistic inference (Knill and Pouget, 2004; Ma
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et al., 2006; Yang and Shadlen, 2007). This inference process

is at the heart of many forms of decisions, ranging from the cate-

gorization of an ambiguous sensory stimulus (e.g., Roitman and

Shadlen, 2002; Weiss et al., 2002; Ernst and Banks, 2002) to the

reinforcement of a reward-yielding action (e.g., Behrens et al.,

2007; Daw et al., 2005, 2011), i.e., any task that requires inferring

a ‘‘latent state’’ from noisy or ambiguous cues. Although human

perceptual and reward-guided choices have been shown to

resemble Bayes optimality in such conditions (Navalpakkam

et al., 2010; Ma et al., 2011), they typically exhibit a large vari-

ability beyond what can be explained by the provided evidence

and are thus inherently suboptimal (Beck et al., 2012).

Most empirical studies have attributed such choice subopti-

mality to imperfections in peripheral stages of decision making

at the input and output of the inference process. In perceptual

categorization tasks, errors are typically attributed to task-

independent noise in sensory processing preceding the task-

dependent inference process (Osborne et al., 2005; Brunton

et al., 2013; Kaufman and Churchland, 2013). In reward-guided

learning and abstract reasoning tasks, by contrast, suboptimal

choices are often ascribed to stochasticity in the response selec-

tion following the decision process (Sutton and Barto, 1998; Daw

et al., 2006; Griffiths and Tenenbaum, 2006; Vul and Pashler,

2008; Vul et al., 2009). In these tasks, however, it is theoretically

impossible to distinguish between these peripheral imper-

fections and errors arising from the inference process itself

(Tsotsos, 2001; Whiteley and Sahani, 2012; Beck et al., 2012;

Renart and Machens, 2014; Dayan, 2014), such as systematic

deviations or biases from Bayes-optimal inference (Beck et al.,

2012) or unstructured variability or noise in underlying neural

computations (Renart and Machens, 2014). Indeed, perceptual

categorization tasks make no distinction between the relevant

feature(s) of sensory cues and the information they provide for

the decision. For example, in the click-count discrimination

task introduced by Brunton et al. (2013), the noisy perception

of clicks (i.e., imperfect sensory processing) is behaviorally indis-

tinguishable from the noisy accumulation of noiseless click

percepts (i.e., imperfect inference). Similarly, in reward-guided

learning and abstract reasoning tasks, the number of presented

cues remains constant across decisions, making it impossible to
.
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distinguish between variability in inference and response selec-

tion. Consequently, the origin and structure of human choice

suboptimality remain largely unclear.

To address this issue, we devised a computational modeling

approach and an experimental protocol derived from a canonical

evidence accumulation task, such that imperfections in sensory

processing, inference, and response selection have separable

statistical signatures in observed choices.We then decomposed

the statistical signature of inferential imperfections in terms of a

‘‘bias-variance’’ tradeoff between (1) systematic deviations from

Bayes-optimal inference and (2) unstructured variability stem-

ming from the limited computational precision of mental infer-

ence. This experimental framework revealed that in contrast to

current views, the suboptimality of human choices made under

ambiguity arises dominantly from imperfections in inference, of

which two-thirds could not be accounted for by any systematic

deviation from Bayes optimality and thus resulted from the

limited precision of neural computations implementing infer-

ence. In absolute terms, this limited precision ofmental inference

caused a substantial loss of 30% of the theoretical information

provided by each evidence sample, which is not accounted for

by existing theoretical models of decision making.

RESULTS

Probabilistic Inference Task and Human Choice
Behavior
To identify the origin of human choice suboptimality, we created

a probabilistic cue combination task derived from the well-

known ‘‘weather prediction’’ task (Knowlton et al., 1996; Pol-

drack et al., 2001; Gluck et al., 2002; Yang and Shadlen, 2007),

in which key properties of the underlying inference process

(i.e., extracting and accumulating the evidence provided by suc-

cessive cues) could be manipulated independently of sensory

processing and response selection: (1) the length of inference

(i.e., the number of cues that need to be combined) and (2) the

dimensionality of inference (i.e., the number of alternatives to

choose from). This experimental protocol afforded the compari-

son of human choice behavior to Bayes-optimal choices and the

quantification of the extent to which inferential imperfections

alone are responsible for the observed choice suboptimality.

In every trial, participants observed a sequence of 2–16 ori-

ented patterns or cards and were then asked to indicate which

category or deck among two or three possible ones they judged

the sequence to have been drawn from (Figure 1A; see Experi-

mental Procedures). As expected, participants’ choices reflected

the combination of the pieces of information conveyed by

successive cards presented within each trial; indeed, choice

accuracy (Figure 2A) increased gradually with the number of

presented cards in both two- and three-category conditions

(repeated-measures ANOVA, both F7,147 > 45.2, p < 0.001).

Although categories were randomly selected across successive

trials, human choices in both conditions were slightly biased

toward the category drawn on the previous trial and shown as

feedback (Figure 2B; t test against zero, both t21 > 3.5, p <

0.002), but not toward the previous choice (both t21 < 0.5, p >

0.2) or categories drawn on earlier trials (all t21 < 1.8, p > 0.05).

Furthermore, choice accuracy remained stable over the course
of the experiment (Figures S1A and S1B; first versus second

half: both t21 < 0.5, p > 0.5).

Estimating the Separate Contributions to Choice
Suboptimality
In this task, the optimal decision-making model integrates

ambiguous information across successive cards through

Bayesian inference by accumulating evidence in favor of each

deck and then chooses the deck associated with the largest total

evidence (Figure 1B). As for participants, the model predicts

choice accuracy to increase with the number of drawn cards.

However, the model choice accuracy systematically and sub-

stantially exceeds human performance in both conditions

(Figure 2A). This suboptimality of human choices may stem

from imperfections in sensory processing, inference, or

response selection, each of which affects the decision-making

process in different ways (Figure 1B). Furthermore, in our exper-

imental protocol, these three sources of choice suboptimality

have distinct statistical signatures on the variability of human

choices compared to Bayes-optimal ones (Figure 1C; see Exper-

imental Procedures).

We first observed that the variability of human choices

increased quasi-linearly with the number of presented cards in

both the two- and three-category conditions (Figure 3A, dots;

both F7,147 >15.2, p < 0.001). Assuming that this variability

derived from a unique source of imperfections (sensory, inferen-

tial, or selection based), we then parameterized this source in an

otherwise optimal decision-making model and fitted the pre-

dicted variance structure to the observed choice variability (Fig-

ure 3A, lines; see Experimental Procedures). In both conditions,

fitting the sensory source model led to postulated orientation

discrimination thresholds of an order of magnitude larger than

those tabulated in the literature for comparable stimuli (Burbeck

and Regan, 1983; Webster et al., 1990; Burr and Wijesundra,

1991) (two-category condition: 19.0 ± 0.8 degrees [deg.];

three-category condition: 23.4 ± 0.9 deg., mean ± SEM). Even

more problematic, the fitted thresholds differed significantly be-

tween the two- and three-category conditions, despite involving

the exact same stimuli (Figure 3A, left; paired t test, t21 = 4.8, p <

0.001). Besides, the linear increase of human choice variability

with the number of presented cards rules out imperfections in

response selection as a possible source (Figure 3A, right).

Bayesian model comparison across the different models

consistently revealed that the inferential source model (Fig-

ure 3A, middle) explained human choices decisively better

than alternative accounts in both conditions (Figure 3B; both

Bayes factors >1012, both exceedance p > 0.99). Here, the

inferential source model postulates imperfections in the inter-

pretation of the evidence provided by each card in favor of

each category and/or in the accumulation of evidence across

cards (see Figure 1B and Experimental Procedures), such that

we refer to both under the umbrella term of ‘‘inferential’’ imper-

fections. We confirmed the validity of our model comparison

among the three hypothesized sources of choice variability

through a validation procedure using synthetic choice data

from each model (Figures 3C and S2; see Supplemental Exper-

imental Procedures). Additional analyses revealed that the

magnitude of the inferential imperfections measured separately
Neuron 92, 1398–1411, December 21, 2016 1399
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Figure 1. Experimental Protocol and Theoretical Model of Choice

(A) Trial description, generative distributions, and experimental conditions. Each trial consisted of a sequence of 2–16 cues (cards) presented at approximately

3 Hz, drawn from a generative probability distribution (deck) centered on one among two or three cardinal orientations. At sequence offset, participants were

prompted to indicate the deck from which they believed the cards were drawn from by pressing a button. The drawn category was indicated following each

choice by a transient color change of the fixation point. In the two-category condition (bottom left), sequences of cards were drawn from one of two color-coded

circular Gaussian distributions of low concentration k = 0.5 centered on +45� (pink) and �45� (cyan), whereas the three-category condition (bottom right)

consisted of three distributions of low concentration k = 0.7 centered on +60� (red), 0� (green), and �60� (blue).
(B) Optimal decision making in this task is achieved by accumulating evidence for each category conveyed by each orientation sample qj (log likelihoods, lj;A=B ),

then accumulating evidence Lj;A=B for each category by summing log likelihoods and finally contrasting the accumulated evidence across categories (log

posterior) to choose the most likely category given the observed orientation samples. In the three-category condition, such evidence accumulation is inde-

pendent across categories. In the two-category condition depicted here, it is sufficient to accumulate log-likelihood ratios and decide based on the sign

of the resulting log posterior. Sensory variability is task independent and modeled by adding Gaussian noise ðssenÞ to the orientation percepts. Inferential

variability is task dependent and modeled by adding independent Gaussian noise to the log likelihoods, with respect to each category ðsllhÞ, and/or to each step

of the evidence accumulation ðsaccÞ. Variability in response selection corresponds to stochastic action selection by adding Gaussian noise to the final log

posterior ðsselÞ.
(C) Distinct signatures of sensory, inference, and selection variability on the suboptimality of resulting choices. Sensory variability (top panel) alters the perceived

orientation of each sample, which causes orientation-dependent (e.g., q1 versus q2) and correlated variability in the resulting log likelihoods lA, lB and lC, which,

due to the non-linear mapping between orientation and log likelihood, becomes non-Gaussian. Because each sample is affected independently, the resulting

choice variability scales with the number of presented samples. Inference variability (middle panel) alters the interpretation and accumulation of the evidence in

favor of each category. Similar to sensory variability, the resulting choice variability scales with the number of presented samples. However, it affects individual

log likelihoods and their accumulation independently (lA, lB, and lC uncorrelated and independent of qj ), leading to different trial-by-trial choice predictions that can

be distinguished through model comparison. Selection variability (bottom panel) alters the ‘‘readout’’ of the accumulated evidence during response selection,

leading to uncorrelated variability in the accumulated evidence across categories (LA, LB, and LC uncorrelated). In contrast to the two other sources of variability,

the resulting ‘‘probability-matching’’-like choice variability is independent of the number of presented samples.
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Figure 2. Human Choice Behavior

(A) Fraction correct with respect to sequence

length in the two-category (left) and three-category

(right) conditions in the three experiments (dots,

mean ± SEM,measured across participants unless

noted otherwise). Lines show the predicted frac-

tion correct for the best-fitting model, assuming

variability in probabilistic inference. The fraction

correct for the normative Bayesian decision

maker, corresponding to the maximally attainable

(optimal) performance, is shown as dashed lines.

(B) Sequential choice dependencies in the two-

category (left) and three-category (right) conditions

of the first experiment, (error bars, mean ± SEM)

measured in terms of choice bias estimates from a

logistic regression of choice in trial n against the

correct and chosen category in trial n�1 (left

panel). Participants are slightly biased toward the

previously correct category but indifferent to their

previous choice. For comparison, gray lines show

the average ideal (noise-free) choice information

provided by one, two, and four cards. The fraction

correct measured (dots) and predicted (colored

lines) for trials in which the drawn category is

identical or different from the one drawn on the

previous trial shows a subtle effect of the choice

bias in the direction of the previously correct

category (right panel).
for the first and second halves of each experiment was similar

(t21 = 1.0, p > 0.2) and correlated significantly across partici-

pants (r = 0.67, df = 20, p < 0.001), thereby reflecting a stable

and robust feature of the participants’ decision performance

(Figure S1).

Quantifying Sensory Noise Independently of
Probabilistic Inference
We have so far distinguished sensory and inferential imperfec-

tions on the basis of their statistical signatures on choice vari-

ability. In a second experiment, performed by a new set of

participants (Figure 4A), we segregated between these two

sources of choice suboptimality more directly by explicitly

measuring an upper bound on participants’ orientation discrim-

ination thresholds in our protocol. The experiment interleaved

two-category probabilistic inference task trials used in the first

experiment (‘‘accumulation’’ trials) with orientation categoriza-

tion task trials performed only on the last card of the sequence

(‘‘last-card’’ trials; see Experimental Procedures). As expected,

participants’ choices in last-card trials were based solely on

the orientation of the last pattern (logistic regression of

choice against last card tilt from between-category boundary,

t16 = 6.4, right-tailed p < 0.001) and not on the evidence pro-

vided by preceding cards (logistic regression of choice

against Bayes-optimal accumulated evidence: t16 < 0, right-

tailed p > 0.5).

To reliably estimate an upper bound of the orientation discrim-

ination threshold in last-card trials, we deliberatively chose last

card orientations close to the category boundaries in these trials
(1–8 deg. from the horizontal and vertical axes; Figure 4B). Fitting

the optimal decision-making model with only sensory imperfec-

tions to participants’ choices in last-card trials, we obtained a

mean discrimination threshold of 2.4 ± 0.2 deg. (± SEM), match-

ing values measured for similar stimuli (Burbeck and Regan,

1983; Webster et al., 1990; Burr and Wijesundra, 1991). Howev-

er, these estimated thresholds predicted choice accuracies in

accumulation trials that dramatically exceeded those of partici-

pants (Figure 4D). If we reversed the procedure and estimated

orientation discrimination thresholds using sensory imperfec-

tions now fitted to participants’ choices in accumulation trials,

we recovered (as in the first experiment) implausible thresholds

of a higher order of magnitude (21.0 ± 0.9 deg., paired t test,

t16 = 21.1, p < 0.001), which were uncorrelated to threshold es-

timates from last-card trials (Figure 4C; linear correlation across

participants, r2 = 0.02, df = 15, p > 0.5).

Bayesian model comparison further showed that a model

featuring only sensory imperfections of identical magnitudes

in accumulation and last-card trials explained participants’

behavior decisively worse than a model including additional

inferential imperfections in accumulation trials (Bayes factor >

1048, exceedance p > 0.99). Thus, sensory imperfections alone

could not successfully explain the suboptimality of human

choices observed in accumulation trials. Finally, comparing

models with imperfections in sensory processing, inference,

and response selection in those trials led to the same qualitative

and quantitative conclusion as in the first experiment; inferential

imperfections emerged as the prominent source of human

choice suboptimality in our task (Figures 4E and 4F).
Neuron 92, 1398–1411, December 21, 2016 1401
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Figure 3. Inference-Driven Source of Human Choice Suboptimality

(A) Estimated choice suboptimality (dots, mean ± SEM) grows with sequence length in the two-category (top row) and three-category (bottom row) conditions.

This suboptimality is measured as the squared variability of human choices around choices predicted by the Bayes-optimal decision maker (dashed lines). It has

units of squared log likelihoods, where the log likelihood measures the amount of information that each sample provides about the generative deck. Model

predictions are shown as lines (shaded error bars: mean ± SEM). For the model assuming sensory variability, predictions from the best-fitting model in each

condition are shown in the other condition as dashed lines.

(B) Bayesian model comparison between candidate sources of choice suboptimality in the two-category (top row) and three-category (bottom row) conditions:

sensory variability (left bars), inference-driven variability (middle bars), and selection-driven variability (right bars). For each condition, the top panel depicts the

results of random-effect comparisons (in terms of the probability of sampling eachmodel, mean ± SD; pexc, exceedance probability), the bottom panel depicts the

results of fixed-effects comparisons (in terms of the Bayes factor).

(C) Model fits to simulated sources of choice suboptimality in the two-category (left) and three-category (right) conditions: simulating sensory variability (left

column), inference-driven variability (middle column), and selection-driven variability (right column). Same conventions as in (B). The bottom row shows the

fraction of simulations, in which each model is deemed best for each simulated source of choice suboptimality.
Considering Multiple Simultaneous Sources of Choice
Suboptimality
We next relaxed the assumption that choice suboptimality stems

from a unique source of imperfections at the sensory processing,
1402 Neuron 92, 1398–1411, December 21, 2016
inference, or response selection stage by considering a model

that features imperfections at all three stages simultaneously.

We fitted this combined model to participants’ choices in the

two-category condition of both the first and second experiment
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Figure 4. Ruling Out Sensory Noise as a Significant Source of Human Choice Suboptimality

(A) Trial description for experiment 2. As in experiment 1, each trial consists of a sequence of 2–16 cues presented at approximately 3 Hz and drawn from a wide

circular Gaussian distribution centered on +45� (pink category) or �45� (blue category). Unpredictably, in half of the trials, the last cue was presented simul-

taneously with a tone, which prompted participants to respond not to the judged category of the sequence (‘‘accumulation’’ trials, top row) but to the category of

the last card (‘‘last card’’ trials, bottom row), which, on these trials, was drawn independently from the category of the preceding cue sequence.

(B) Fraction correct in the ‘‘last card’’ trials with respect to the tilt of the last card from the closest category boundary (dots, mean ± SEM) fitted by a model

assuming sensory variability, with an orientation discrimination threshold of 2.4 ± 0.2 deg. (lime line), and by a model assuming sensory variability estimated from

‘‘accumulation’’ trials (orange line).

(C) Comparison between orientation discrimination thresholds estimated using a model assuming sensory variability in the ‘‘last card’’ trials (horizontal axis) and

‘‘accumulation’’ trials (vertical axis). Dots show estimates from individual participants (error bars: full widths at half maximum likelihood); the dashed line is the

identity line.

(D) Fraction correct in the ‘‘accumulation’’ trials, with respect to sequence length (dots, mean ± SEM). The gray line shows the predicted fraction correct choices

for the best-fitting model, assuming variability in probabilistic inference, whereas the lime line shows the predicted fraction correct choices for the model,

assuming sensory variability and fitted to ‘‘last card’’ trials.

(E) Measured and predicted choice suboptimality estimates (dots, mean ± SEM) in the ‘‘accumulation’’ trials. Same conventions and results as in Figure 3A. The

lime line shows the predicted choice suboptimality from a model assuming sensory variability and fitted to ‘‘last card’’ trials.

(F) Bayesian model comparison between candidate sources of choice suboptimality. Same conventions as in Figure 3B.
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Figure 5. Decomposition of Human Choice Suboptimality
(A) Decomposition of human choice suboptimality into sensory (left bars), inference-driven (middle bars), and selection-driven (right bars) sources of variability in

the two-category condition of experiment 1 (top row) and experiment 2 (bottom row). 89% (experiment 1) and 96% (experiment 2) of the measured choice

suboptimality were assigned uniquely to variability in probabilistic inference. Error bars show SEM.

(B) Predicted impacts of sensory (orange lines), inference-driven (blue lines), and selection-driven (purple lines) variability on fraction correct (dots, mean ± SEM)

in the two-category condition of experiment 1 (top row) and experiment 2 (bottom row).

(C) Predicted impacts of sensory, inference-driven, and selection-driven variability on the fraction of suboptimal choices (i.e., inconsistent with the normative

Bayesian decision maker) in the two-category condition of experiment 1 (top row) and experiment 2 (bottom row). Same conventions as in (B). Note that the

fraction of suboptimal choices decreases with the number of shown cards for all three sources of choice variability because the signal-to-noise ratio of the

decision variable grows with the number n of shown cards (the signal grows with n, whereas the noise SD grows with
ffiffiffi
n

p
for sensory and inference-driven

variability or remains constant for selection-driven variability).
(excluding last-card trials) to compute the relative contributions

of these three sources of imperfections to human choice subop-

timality (Figure 5A; see Experimental Procedures). In the first and

second experiment, the fitted model assigned 89% and 96%,

respectively, of the observed choice variability uniquely to

inferential imperfections (experiment 1: sensory: 5.8% ± 3.1%,

inference: 88.7% ± 3.2%, selection: 5.5% ± 1.6%; experiment

2: sensory: 1.1% ± 0.3%, inference: 96.1% ± 4.3%, selection:

3.2% ± 4.2%, mean ± SEM; see Figure S2B). Validating our

model fits, we found that the fitted magnitude of sensory imper-

fections in this combined model corresponded to orientation

discrimination thresholds (experiment 1: 2.6 ± 1.0 deg.; experi-

ment 2: 2.2 ± 0.3 deg., mean ± SEM), which were virtually iden-

tical to the ones directly computed from last-card trials in the

second experiment (2.4 ± 0.2 deg.).

To quantify the behavioral impact of each of these imperfec-

tions, we simulated the choice suboptimality due uniquely

to each of these imperfections by setting, in turn, each of

them at their best-fitting value while holding the two other

imperfections at zero (Figure 5B). In the first experiment, we

found that imperfections in sensory processing, inference,

and response selection caused 2%, 13%, and 3%, respec-

tively, of suboptimal choices (2%, 16%, and 3%, respectively,

in the second experiment) across tested sequence lengths
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(Figures 5B and 5C). These results thus confirm that inferential

imperfections are the main source of choice suboptimality in

our task.

Partitioning Choice Suboptimality in Terms
of a Bias-Variance Tradeoff
Next, we investigated the structure of observed imperfections

in mental inference. Inferential imperfections could correspond

to systematic deviations from Bayes-optimal inference, often

coined as biases in psychology. Such deterministic biases may

arise for various reasons, e.g., because the agent performs

Bayes-optimal inference based on wrong assumptions about

the generative structure of the task (Beck et al., 2012; Dayan,

2014) or because the agent uses heuristics that deviate from

Bayes-optimal inference (Tsotsos, 2001; Whiteley and Sahani,

2012). Alternatively, these inferential imperfections might corre-

spond to the limited precision of neural mechanisms implement-

ing inference (Renart and Machens, 2014), thereby generating

unstructured fluctuations in resulting choices. These two causes

have opposing choice effects in response to identical sequences

of cues: deterministic biases would make the agent consistently

repeat the same choice, whereas unstructured fluctuations

would cause inconsistent and unrelated choices in response to

identical sequences.
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Figure 6. Bias-Variance Partitioning of Infer-

ence-Driven Suboptimality

(A) Theoretical relationship between the measured

fraction of consistent choices for paired card se-

quences and the underlying variability structure.

Two-dimensional plane representing the noisy log

posteriors accumulated in two repetitions of the

exact same sequence (each dot corresponds to a

pair of trials). Across-repetition noise correlation

(or structure) grows with the measured fraction

consistent (in red, from left to right). For illustration

purposes, we have assumed the noise-free log

posterior to be uniformly distributed across trials.

The left column corresponds to a fully stochastic

observer (with no deterministic bias), whereas the

right column corresponds to an almost perfectly

deterministic observer (fraction consistent choices

z1). The middle column corresponds to the bias-

variance decomposition estimated in the human

data.

(B) Decomposition of human choice suboptimality

into deterministic biases (left side) and unstruc-

tured ‘‘noise’’ (right side, red) for the two-category

(top row) and three-category (bottom row) condi-

tions. The contribution of deterministic biases is

split into modeled spatial (blue), modeled temporal

(green), sequential (orange), and residual (gray)

components. Dots indicate estimates of this bias-

variance median split for trial subgroups: first

versus second half and close versus distant pairs.

Error bars show SEM.

(C) Impact of unstructured variability in mental

inference on information loss (loss of mutual in-

formation between category and presented

orientation per cue; information loss 1 = no mutual

information; see Figure S3D and Supplemental

Experimental Procedures for details on how loss is

computed) in the two-category condition. Bars

show estimates of the fraction of information loss

sorted across participants (mode ± 95% credible

intervals), with the contribution of unstructured

variability highlighted in red (different shadings:

min/max contribution). Small arrows indicate the

average total (�40%) and unstructured (�25%)

fraction of information loss.

(D) Predicted impacts of deterministic biases (blue

lines) and unstructured variability (red lines) on

fraction correct in the two-category (left panel)

and three-category (right panel) conditions (dots,

mean ± SEM).
To evaluate the relative contributions of these two causes of

inferential imperfections, we conducted a third experiment with

a task seemingly identical to the first experiment, including

both two- and three-category conditions. However, and unbe-

knownst to participants, every card sequence was presented

twice in distinct trials occurring at different points in time

throughout the experiment, which allowed us to measure the

consistency of choices across repeated sequences. We then

used the bias-variance decomposition approach from the
Estimator Theory to quantify the relative contributions of deter-

ministic biases and unstructured fluctuations in inference, which

partitions choice suboptimality into (1) a ‘‘bias’’ term arising

from all possible systematic deviations from Bayes-optimal

inference at play in our task and (2) a ‘‘variance’’ term that

captures the intrinsic variability of choices unrelated to any sys-

tematic bias (Figure 6A). Importantly, this bias-variance decom-

position captures all deterministic biases without requiring their

explicit description and thus their knowledge as long as they
Neuron 92, 1398–1411, December 21, 2016 1405
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Figure 7. Contribution of Deterministic

Biases to Human Choice Suboptimality

(A) Illustration of selective sequence perturbations

in the temporal and spatial dimensions of card

sequences repeated at different times throughout

experiment 3. Left: temporal perturbations were

triggered by ‘‘shuffling’’ card positions. Right:

spatial perturbations were triggered by ‘‘mirror-

ing’’ sample tilts, with respect to their generative

deck orientations. Neither perturbation influences

the predictions of the optimal Bayesian decision

maker in terms of accuracy or fraction of consis-

tent choices.

(B) Measured fraction of consistent choices for

paired sequences with identical (gray bar) or

perturbed (colored bars) characteristics in the

spatial or temporal dimensions of stimulation in

the two-category (left) and three-category (right)

conditions. Dots show the predicted fraction of

consistent choices for the biased model, whose

spatial and temporal encoding profiles are shown

in (C) and (D). Error bars show SEM. Dashed lines

show the predicted fraction of consistent choices

for an unbiased model comprising only unstruc-

tured variability.

(C) Empirical spatial encoding profiles in the two-

category (left) and three-category (right) condi-

tions. Relative cue evidence (proportional to the

maximum cue log likelihood) for human partici-

pants (dots), biased (thick lines), and unbiased

(dashed lines) models fitted to human choices.

(D) Empirical temporal encoding profiles in the

two-category (left) and three-category (right)

conditions. Relative cue weights for human par-

ticipants (dots), biased (thick lines), and unbiased

(dashed lines) models fitted to human choices.

Error bars and shades indicate SEM.
remain stable across trials (see Experimental Procedures and

Figure S3A).

In both conditions, participants made a substantial fraction of

inconsistent choice to repeated card sequences (Figure 7B, gray

bars), confirming that choice suboptimality did not arise exclu-

sively from deterministic biases. Furthermore, the fraction of

consistent choices in response to identical card sequences ex-

ceeded that of a model featuring only unstructured fluctuations

in inference (Figure 7B, dashed lines; both t17 > 7.3, p < 0.001).
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Quantitatively, the bias-variance decom-

position attributed only 33% and 37%

of the total choice suboptimality to deter-

ministic biases in the two- and three-

category conditions, respectively (Fig-

ure 6B), even when taking into account

sequential dependencies across consec-

utive choices that contributed 7% and

1% of deterministic biases in the two

conditions (Figure 2B). This means that

about two-thirds of human choice subop-

timality was unrelated to any determin-

istic bias and was consequently uniquely

attributable to unstructured fluctuations
in inference (with minor contributions of sensory noise and sto-

chasticity in the response selection that amount together to

less than 10% of the total choice suboptimality). In the two-cate-

gory condition, these unstructured fluctuations alone amounted

to a 29% loss in every piece of incoming information (Figure 6C).

Interestingly, although the total choice suboptimality increased

in the three-category condition relative to the two-category

condition, the proportion with which unstructured fluctuations

contributed to the total choice suboptimality was statistically



indistinguishable between conditions (t17 = 0.3, p > 0.5). In other

words, the distinct contributions of deterministic biases and un-

structured fluctuations to choice suboptimality grew in the same

proportion when choosing among three categories instead of

two categories. Using the same validation procedure as before

(see Supplemental Experimental Procedures), we confirmed

that our decomposition technique correctly estimated the bias-

variance tradeoff on synthetic choice data frommodels featuring

known proportions of deterministic biases and unstructured

fluctuations (Figure S2C).

Characterizing the Nature of Deterministic Biases
Our bias-variance decomposition confirmed the presence of

deterministic biases in mental inference. Some of them certainly

affect the ‘‘temporal’’ accumulation of evidence, whereas others

concern the ‘‘spatial’’ mapping of card orientations into the cate-

gory space. To quantify the respective influences of these two

types of biases, each card sequence was not only repeated iden-

tically, but also after shuffling the card presentation order and/or

aftermirroringpattern orientations relative to themean orientation

of the deck they were drawn from (Figure 7A). Importantly, these

spatiotemporal perturbations preserved the total accumulated

evidence in terms of Bayes-optimal inference. Consequently,

the fraction of consistent choices should decrease when

comparing temporally perturbed pairs of sequences to identical

pairsonly in thepresenceof temporal biases. Theexact samepre-

diction holds for spatial biases across spatially perturbed pairs of

sequences. As expected, we found the fraction of consistent

choices to decrease significantly for both temporally and spatially

perturbed compared to identical sequences (Figure 7B, colored

bars; spatial perturbation: F1,17 > 6.7, p< 0.05; temporal perturba-

tion: F1,17 > 52.2, p < 0.001; interaction: F1,17 < 0.9, p > 0.2), indi-

cating the presence of spatiotemporal biases inmental inference.

To characterize these spatiotemporal biases, we first fitted the

contributions of cards presented at different positions in the

sequence and of different orientations to participants’ choices

(Figures 7C and 7D, dots). We found that compared to Bayes-

optimal inference, a card positioned closer to the choice and

card orientations closer to vertical and horizontal orientations

over-contributed to the inference process. These distortions cor-

responded to well-known cognitive biases overweighting more

recent pieces of information (Usher and McClelland, 2001;

Ossmy et al., 2013) and cardinal orientations (Girshick et al.,

2011; Wei and Stocker, 2015). We then considered a model

featuring Bayes-optimal inference, along with explicit accounts

of these cognitive biases (Figure S5), as well as additional un-

structured fluctuations in the inference process. Fitting this

model to participants’ choices (Figures 7C and 7D, lines) showed

that these biases account for the decrease in choice consistency

observed across temporally and spatially perturbed sequences

(Figure 7B, dots). Furthermore, a bias-variance decomposi-

tion accounting for these particular biases indicated that they

could explain 72% and 46% of all deterministic biases in the

two- and three-category conditions, respectively (Figure 6B).

Importantly, we verified that modeling these biases explicitly

during bias-variance decomposition did not modify our main

conclusion: unstructured fluctuations in inference remained the

dominant source of choice suboptimality (Figure S6).
DISCUSSION

Making decisions often requires combining multiple pieces of

ambiguous information from external cues (Gold and Shadlen,

2007; Shadlen and Kiani, 2013). In such conditions, human

choices derive from covert mental processes that resemble

probabilistic inference (Roitman and Shadlen, 2002; Weiss

et al., 2002; Ernst and Banks, 2002; Behrens et al., 2007; Yang

and Shadlen, 2007), but are typically highly variable and conse-

quently often suboptimal (Beck et al., 2012). Previous decision-

making studies, ranging from perceptual categorization to

reward-guided learning, have classically attributed this choice

suboptimality to either noisy sensory processing in perceptual

tasks featuring weak, ambiguous, or noisy sensory evidence

(Osborne et al., 2005; Brunton et al., 2013; Kaufman

and Churchland, 2013) or stochastic response selection in tasks

featuring open questions (Griffiths and Tenenbaum, 2006; Vul

and Pashler, 2008; Vul et al., 2009), sequential learning (Acerbi

et al., 2014), or volatile contingencies (Daw et al., 2006; Behrens

et al., 2007). However, the tasks used in these studies make it

theoretically impossible to distinguish these peripheral sources

of choice suboptimality from imperfections in probabilistic infer-

ence. By contrast, in the present study, imperfections in sensory

processing, inference, and response selection were distinguish-

able by altering human choices with distinct statistical signa-

tures. This allowed us to show that imperfections in inference

alone accounted for about 90% of human suboptimal choices

in our task, whereas imperfections in sensory processing

and response selection together form a negligible fraction.

Thus, inferential imperfections constitute an important source

of human choice suboptimality, which may have been underes-

timated by previous studies and confounded with imperfections

in sensory processing or response selection.

The analysis of choice consistency across repeated pseudo-

random sequences of cues further reveals that only one-third

of inferential imperfections stemmed from deterministic distor-

tions of Bayes-optimal inference (Beck et al., 2012). Importantly,

our bias-variance decomposition approach further allowed us

to establish the fraction of suboptimal choices that derives

from all possible deterministic deviations from Bayes-optimal

inference, only part of which could be identified explicitly. Un-

identified biases possibly include adaptive gain coding, range

normalization, and anchoring effects across successive cues

or choice alternatives (Usher and McClelland, 2001; Albantakis

and Deco, 2009; Louie et al., 2013; Cheadle et al., 2014).

Consequently, our bias-variance decomposition indicates that

two-thirds of inferential imperfections are neither related to the

structure of our task (and any deterministic distortion associated

with our task) nor to any misspecification of our computational

model. We thus propose that this dominant fraction of human

suboptimal choices reflects random fluctuations (i.e., noise) in

inference, arising primarily from intrinsic variability in the compu-

tational and coding precision of elicited variables represented in

populations of neurons (Renart and Machens, 2014). In informa-

tion terms, this intrinsic variability yielded a surprisingly large

loss of about 30% in every piece of information in the canonical

two-category condition, which raises the issue ofwhether it arises

from a lack of attention or motivation, insufficient training, or
Neuron 92, 1398–1411, December 21, 2016 1407



increasing fatigue over the course of the experiment. None of

these factors, however, appears to be a plausible explanation.

First, a ‘‘lapse’’ probability parameter in our models captured

random choices unrelated to stimuli (Figures S2A and S7), thus

factoring out lapses in attention from our estimation of inferential

variability. Second, the orientation discrimination thresholds

measured in our task are consistent with values tabulated in the

literature (Burbeck and Regan, 1983; Webster et al., 1990; Burr

and Wijesundra, 1991), indicating that participants were focused

on the task. Third, accuracy did not rise over the course of the

experiment, contrary to what insufficient training would predict.

Fourth, the stable accuracy observed within each experimental

session did not argue in favor of increasing fatigue. Consequently,

this intrinsic variability appears to reflect the near-maximal preci-

sion of neural codes and computations implementing inference.

At the neural level, inference has been hypothesized (Knill and

Pouget, 2004; Ma et al., 2006) and shown to engage parietal and

prefrontal regions that encode and accumulate evidence along

category-defining stimulus features (Freedman and Assad,

2006; Fitzgerald et al., 2011; Mante et al., 2013). The inferential

variability we measured here may arise at three stages of neural

processing implementing inference: (1) in the neural mapping

from sensory regions encoding relevant stimulus features (orien-

tation in our case) to parietal and prefrontal regions encoding

abstract categories (Soltani and Wang, 2010), (2) in the neural

coding of abstract categories in these associative regions (e.g.,

Mante et al., 2013), and (3) in the neural updating of category-se-

lective representations following a new piece of information

(Yang and Shadlen, 2007; Cain et al., 2013). Importantly,

the inferential variability we estimated from behavior measures

the effective precision of neural processing at the level of large

ensembles of neurons implementing inference rather than the

neural variability of individual neurons or synapses (Renart and

Machens, 2014), which presumably average out over large pop-

ulations of neurons (Beck et al., 2012). One possibility is that this

limited precision is the result of computational constraints on

neural circuits implementing inference. In particular, the mainte-

nance of information over time in neural circuits (up to several

seconds in our paradigm) might suffer from ‘‘temporally diffu-

sive’’ noise, which grows with elapsed time in the decision pro-

cess (Burak and Fiete, 2012). Alternatively, the processing of

successive cuesmight depend on a slow ‘‘cognitive bottleneck,’’

which limits the processing resources that can be allocated to

cues presented in rapid succession (Wyart et al., 2012, 2015).

These two accounts differ in terms of their dependency on pre-

sentation rate: a faster presentation rate should decrease choice

variability for ‘‘temporally diffusive’’ noise, but increase choice

variability in case of a ‘‘cognitive bottleneck.’’ Another possibility

is that this limited precision reflects the neural implementation of

sampling processes for realizing probabilistic inference (Haefner

et al., 2016). Such processes are effective algorithms for approx-

imating Bayes-optimal inference, which rapidly become intrac-

table in real-world situations (Fiser et al., 2010; Brooks et al.,

2011). They produce sequences of samples fromposterior distri-

butions over task-relevant variables like categories in the present

study. Drawing few samples results in noisy posterior distribu-

tions (Lengyel et al., 2015), corresponding to the intrinsic vari-

ability we identified here. Disentangling these different neural ac-
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counts of intrinsic variability in inference is beyond the scope of

the present study and remains an open question for future work.

An important question concerns the potential function of infer-

ential imprecisions: why do humans feature such a large degree

of random fluctuations in inference if these fluctuations cause

such a sizable fraction of additional, avoidable behavioral errors?

The hypothesis of computational constraints on neural circuits

implementing inference raises the issue of whether extensive

practice of our task featuring few and ambiguous cues over

days or weeks would induce the recruitment of additional neural

resources and improve the effective precision of mental infer-

ence. Another possibility is that in volatile (changing) environ-

ments, a low computational precision comes at little cost

because in such circumstances, a ‘‘diffusion’’ of belief distribu-

tions over task-relevant variables becomes the normative strat-

egy (Behrens et al., 2007), something that can be achieved by

random fluctuations in inference. In this context, the limited pre-

cision of inference might even explain the presence of determin-

istic biases in decision making. For instance, if the precision

of inference is low, it becomes advantageous to overweight

the pieces of information that have been the least neurally pro-

cessed, typically the most recent ones. Although ‘‘recency’’

biases are typically suboptimal in the context of noise-free com-

putations, they may have evolved as optimizing inference in

neural circuits implementing approximate computations.

In summary, identifying the origin of human choice subopti-

mality under uncertainty and elucidating the structure of the un-

derlying variability is critical for understanding decision making

and its neural substrates. Beyond noise in sensory processing

and stochasticity in response selection, we found that imper-

fections in probabilistic inference are a significant contributor

to human choice suboptimality. Critically, two-thirds of this

choice suboptimality derive from random fluctuations in infer-

ence rather than from biased computations. This intrinsic

variability reflects the effective precision of neural computations

underlying inference. This computational precision sets a pre-

viously unsuspected low upper bound on the accuracy and ulti-

mate predictability of human choices in uncertain environments,

which needs to be accounted for in theoretical models of deci-

sion making.

EXPERIMENTAL PROCEDURES

Participants

63 healthy participants took part in the three experiments, with no overlap

among the participants tested in each experiment. All had normal or cor-

rected-to-normal vision and no history of neurological or psychiatric disorders

(35 females, mean age: 24). All human participants provided informed written

consent prior to the experiment, and both experiments were approved by the

local ethics committee (Comité de Protection des Personnes, Ile-de-France VI,

Inserm approval #C07-28, DGS approval #2007-0569, IDRCB approval

#2007-A01125-48). Our sample sizes are similar to those generally employed

for comparable studies.

Stimuli and Task Design

The task was a variant of the ‘‘weather prediction’’ task, in which participants

were asked to infer the generative category (deck) of a sequence of stimuli

(cards) among two (or three, see below) alternatives that differed in terms of

their generative distributions (Figure 1A). Stimuli depicted high-contrast,

noise-free Gabor patterns of varying orientation, presented at fixation at an



average rate of 3 Hz (see Supplemental Experimental Procedures). In each

trial, the orientation of successive cards varied according to a circular

Gaussian distribution (von Mises distribution; concentration k = 0.5 and 0.7

for the two- and three-category conditions, respectively) centered on a

mean orientation characterizing each deck. The mapping rule between orien-

tation and categories (represented as colors) was provided throughout the

whole experiment by a static colored annulus surrounding the stimuli.

Sequence lengths (i.e., the number of stimuli per sequence) varied unpredict-

ably from 2 to 16 stimuli across trials. At sequence offset, participants provided

their response by pressing one out of two (or three) keys with their right hand.

Following each response, feedback about the true generative category of the

sequence was provided via a transient color change in the fixation point.

Experiment 1 (25 participants) consisted of two conditions (choice among

two or three categories, Figure 1A), corresponding to two 50-min sessions tak-

ing place on different days. Both conditions were divided into short blocks of

approximately 50 trials (each lasting about 5 min), such that participants could

take short rest periods between them. Three participants were excluded from

analyses because they misunderstood the task instructions; their decisions

were based only on the last card of each sequence (as revealed by a standard

logistic regression of choices).

Experiment 2 (20 participants) was identical to the two-category condition of

experiment 1, except that the ‘‘accumulation’’ trials used in experiment 1 were

randomly and unpredictably mixed with ‘‘last card’’ trials in equal proportions.

Last-card trials were identical to ‘‘accumulation’’ trials, except that the last

card was paired with a single auditory tone that instructed participants to

report the category of this last card, irrespective of preceding ones. The last

sample was drawn independently of preceding samples at 1, 2, 4, or 8 deg.

from either of the two category boundaries corresponding to the horizontal

and vertical axes. The experiment was divided into short blocks of 72 trials

(each lasting about 7 min), corresponding to two 60-min sessions taking place

on different days. Trials included sequences of 2, 4, 8, or 16 samples. Three

participants were excluded from analyses because of chance-level perfor-

mance in either accumulation or last-card trials.

Experiment 3 (20 participants) was similar to experiment 1 and again

included the two- and three-category conditions. Experiment 3 consisted of

two 50-min sessions taking place on different days. As in experiment 1, both

conditions were divided into short blocks of approximately 50 trials. In

each condition and unbeknownst to participants, each pseudo-random

sequence containing 4, 8, or 12 samples was repeatedly presented at five

occasions consisting of (1) an exact repetition of the original sequence, (2)

the original sequence, in which the presentation order was shuffled, (3) the

original sequence, in which sample orientations were mirrored with respect

to the mean orientation of the generative category, and (4) the original

sequence with both the abovementioned perturbations (Figure 7A). The tem-

poral distance (in number of intervening trials) among these different presenta-

tions of the same sequence was controlled for within and across participants.

No participant reported any repetition effects at the end of the experiment.

Two participants were excluded from the analyses because they did not

perform one of the two sessions.

Modeling and Fitting Sources of Choice Suboptimality

Here, we provide a summary of the used models. More details and discussion

can be found in the Supplemental Experimental Procedures.

In trial n, after Tn observed sample orientations qn1;.; qnTn
; the ideal deci-

sion maker accumulates log likelihoods [ntk to form the log posterior

znTnk =
PTn

t =1[ntk , with respect to each category k, and chooses the category

xn associated with the largest of these log posteriors, xn = argmaxkðznTnkÞ (Fig-
ure 1B). Each sample is generated by draws from a von-Mises distribution on a

half-circle, with mean mk for category k, such that the log likelihood of the sam-

ple at position t, with respect to category k, is given by [ntk = k cosð2ðqnt � mkÞÞ.
In each trial, the Bayes-optimal choice is deterministically related to the

sequence of samples, such that all choice variability across trials stems from

variability in presented samples.

To introduce additional choice variability, we considered various hypo-

theses (Figures 1B and 1C). First, we introduced noisy orientation per-

cepts (sensory noise) in log likelihoods b[ntk = k cosð2ðqnt + εnt � mkÞÞ, where

εnt � Nð0; s2senÞ are zero-mean Gaussian variables, independent across sam-
ples, with sensory noise variance s2sen. Second, we introduced variability at

the inference stage by noisy log-likelihood estimates b[ntk = [ntk + εntk , where

εntk � Nð0; s2inf Þ are independent zero-meanGaussian variables, with inference

noise variance s2inf . In contrast to sensory noise, this noise causes uncorrelated

Gaussian noise in the log posteriors, leading to different predictions of individ-

ual choices (see Supplemental Experimental Procedures). We modeled two

variants of variability at the inference stage: the first assumes additive noise

to each log likelihood (‘‘likelihood’’ variability), resulting in Tn noise terms,

and the second assumes additive noise to the combination of log likelihoods

(‘‘accumulation’’ variability), resulting in Tn � 1 noise terms. The accumulation

variability model provided better fits to the observed behavior (two-category:

Bayes factor >102, exceedance p z 0.81; three-category: Bayes factor

>1012, exceedance p > 0.99; Figures S6B and S6C), and is thus the ‘‘inference’’

model discussed in the main text. Third, we introduced stochasticity in

response selection by drawing samples from the posterior belief taken to

some power, pðxn = k j qn1:TnÞfexpðbznTnkÞ, where b is a free parameter

that is fit to the observed behavior (b= 0, random choices; b= 1, posterior

sampling; b/N, deterministic choices). This response strategy is indistin-

guishable from adding single constant-variance Gaussians added to the log

posterior of each category (see Supplemental Experimental Procedures).

Thus, in contrast to sensory noise and inference variability, stochasticity in

response selection postulates that the magnitude of the additional variability

is independent of the number of samples, Tn, in the sequence. Finally, we

considered a model in which all variability is introduced by a variable initial

state of the log-posterior accumulator (Figure S6).

To distinguish between these different sources of choice variability, we fitted

for each subject separately for eachmodel the choices of all trials combined by

a maximum-likelihood procedure that, on one hand, avoids local maxima and,

on the other hand, estimates parameter uncertainty by the width of the poste-

rior. We avoided confounders due to occasional random responses and

response biases by adding a ‘‘lapse’’ probability parameter and K � 1

response bias parameters (Figure S7). Model comparison (both fixed effects

and random effects) was based on approximating the model evidence by

the Bayesian information criterion. More details on model fitting can be found

in the Supplemental Experimental Procedures. In all model fits, the concentra-

tion parameter kwas used as a scaling parameter by setting it to its true value.

Participants could have misestimated this concentration, but such a misesti-

mation would not qualitatively change our conclusions (see Supplemental

Experimental Procedures).

Figure 3A shows the scaling of choice variability in two ways. The solid

lines indicate the maximum-likelihood model predictions averaged across

fitted participants. The dots show noise parameters re-fitted separately for

each sequence length and each participant. In both cases, we did not

include lapses and response biases in these fits to avoid model-dependent

parameter biases across different sequence lengths. The model comparison

in Figure 3B was based on model fits that included a lapse probability and

response biases.

The fraction correct measured in ‘‘last card’’ trials presented in experiment 2

was fitted using a model featuring only sensory noise, precisely because no

probabilistic inference was required to solve these trials (in the sense of

combining the information provided by successive samples). We inferred the

orientation discrimination threshold Dq (Figure 4C) per participant and condi-

tion from 0:75=FðDq=
ffiffiffiffiffiffiffiffiffiffiffi
2s2sen

p Þ, where F is the standard cumulative Gaussian,

corresponding to the difference in orientations that results in 75% correct

choices in a two-alternative forced-choice task, given a Gaussian orientation

percept with variance s2sen.

The fraction choice variability in Figure 5Awas inferred per participant for the

two-category condition by fitting a model that combined variability in sensory

processing, inference, and response selection, resulting in a separate log-pos-

terior difference variance estimate for each type of variability that contributes

additively to the behavioral variability and could thus be decomposed. We

could not apply the same rationale to the three-category condition because

choices are based on two log-posterior differences rather than one.

The performance predictions in Figures 5B and 5C resulted from averaging

over generated choices for 106 virtual trials for each participant and sequence

length, with the same sequence statistics as those presented to the partici-

pants. This allowed us to provide predictions for all sequence lengths,
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including ones not used in the experiment. Choices were generated either ac-

cording to the Bayes-optimal model or by models including single sources of

variability whose magnitudes matched those shown in Figure 5A. The full

model combined all three sources of variability and provides predictions for

the actual sequences presented to the participants to make them directly

comparable to participants’ choice behavior.

Unless noted otherwise, statistical analyses of differences of scalar model-

freemeasures (fraction correct, fraction suboptimal, and fraction consistent) or

model-based quantities (e.g., estimates of choice variability) between condi-

tions of interest (e.g., sequence length, two versus three categories) relied

on standard, two-tailed parametric tests (e.g., paired t test, repeated-mea-

sures ANOVA) across tested participants (z20 in each experiment), i.e.,

outside the small-sample regime, thereby matching the core assumptions of

the applied statistical parametric tests.

Modeling and Fitting the Structure of Choice Suboptimality

Wemodeled the bias-variance structure by assuming that inference variability

results from a noisy likelihood b[ntk = [ntk + fkðqntÞ+ εntk that can be decom-

posed into (1) the correct likelihood [ntk , (2) a sequence-dependent determin-

istic bias fkðqntÞ, and (3) additive random fluctuations εntk . This model pro-

vided joint likelihoods for trial pairs, in which identical card sequences

where shown with separate contributions of deterministic biases and random

fluctuations. Thus, we could estimate these contributions by fitting partici-

pants’ choice in pairs using the same maximum likelihood procedure as

before. We quantified the contribution of explicit spatial and temporal pertur-

bations and sequential choice dependencies to deterministic biases in Fig-

ure 6B by measuring how much of these biases could be ‘‘explained away’’

by modeling these perturbations and dependencies explicitly. Furthermore,

we performed multiple control analyses to determine whether participants’

choices featured slowly drifting biases, which the bias-variance decomposi-

tion could have mistaken for random fluctuations (Figure S4). None of the

control analyses suggested this to be the case. Details of the model, fitting

procedures, and control analyses can be found in the Supplemental Experi-

mental Procedures.

The performance predictions in Figure 6D were generated similarly to those

in Figure 5B. The predictions for Bayes-optimal inference, those for a model

with deterministic biases only, and those for one with unstructured fluctuations

only were simulated for 106 virtual trials with the same sequences statistics

as those seen by the participants. Those for the full model were based on

the actual sequences presented to the participants to make them directly

comparable to participants’ choice behavior. The variability magnitudes

used for simulation were those estimated from fits of the full model to the

choice behavior of individual participants.

Assumed Deviations of Bayes-Optimal Inference

‘‘Spatial’’ distortions introduce deterministic perturbations into the mapping

between the orientation of the presented sample and the associated log likeli-

hoods, with respect to each category. We assumed three such perturbations

that could occur in isolation or in combination. The ‘‘orientation’’ bias assumes

that the perceived orientation was tilted by a constant angle (Figure S5A). The

‘‘confirmation’’ bias assumes a likelihood that is increased if positive and

decreased if negative by the same value, and as such introduced an imbalance

in how each sample contributed to the log posterior, with respect to different

categories (Figure S5B). The ‘‘oblique’’ effect assumes a perturbation of the

perceived orientation either toward or away from oblique orientations, de-

pending on its parameter (Figure S5C).

When modeling ‘‘temporal’’ distortions from Bayes-optimal inference, we

assumed that samples within an observed sequence contributed with different

weights to the final choice. We considered two variants. The first assume that

with each new sample, the log posterior up to, but excluding, this sample is

multiplied (i.e., either discounted or amplified) by a constant multiplicative fac-

tor. Overall, depending on the factor (lower or higher than one), this leads to

‘‘recency’’ or ‘‘primacy’’ effects (Figure S5D). The second variant assumes

this factor to change linearly with the position of the current sample within

the sequence and is thus more general than the first variant (Figure S5E).

The mathematical description of each of these distortions can be found

in the Supplemental Experimental Procedures.
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Figure S1. Relates to Figure 2. Psychometric functions and variability for different trial subgroups. (A) Left panel: psychometric
function for the two-category condition of exp. 1 (orange) and 3 (green) in the first half of trials. Right panel: psychometric function
for the two-category condition of exp. 1 and 3 in the second half of trials. (B) Left panel: psychometric function for the two-category
condition of exp. 1 and 3 in trials following correct choices. Right panel: psychometric function for the two-category condition of
exp. 1 and 3 in trials following errors. In both (A) and (B) error bars indicate s.e.m., and the black curve indicates the theoretical
psychometric function of the normative, Bayes-optimal observer. Due to the lower number of available trials, we did not include the
data and fits from experiment 2. (C) The two panels show for each subject the inferred variability magnitude (mode ± 95% credible
intervals) when fitting the inference variability model to either only the first half or the second half of all trials of the first experiment.
In no case was there a significant difference across subjects between the variability magnitude for the two trial subgroups (2 categories,
t21 = 1.1, p = 0.3; 3 categories, t21 = 0.5, p = 0.6). In both cases, the inferred magnitude was significantly correlated across trial
subgroups (ρ and p in plots denote Pearson product-moment correlation coefficient statistics).
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Figure S2. Relates to Figures 3, 5, and 6. Recovering model parameter fits and estimates from simulated behavior. (A) To test
how well we could distinguish between inference variability and random lapses, we simulated subject behavior assuming inference
variability on the exact same trials that the humans subjects saw in the first experiment. To see how well we recover either of the two
parameter, we varied one parameter while keeping the other constant. Per parameter combination we simulated behavior separately
for each of the 22 subjects, and computed mean parameter estimates across subjects for 1000 repetitions of this procedure (showing
mean, error bars = 2.5th to 97th percentile across repetitions). The dashed lines (mostly below the estimated values) show the true
parameter values used for the simulations. For both conditions, there is a ”spill-over” between the estimated variability and lapse
rate, but this bias is negligible for parameter ranges that we recover from fitting the human subject data (grey lines). (B) To validate
the variability decomposition, we applied the same procedure as in (A), but this time performed for each of the 22 subjects three
simulations, each introducing variability at a different point in the decision-making process (sensory/inference/selection; indicated
by top labels). The magnitude of this variability was set to match the human subjects’ observed performance. The results show means
and SDs across 1000 repretitions of this procedure, using the exact same procedure as for Fig. 5A in the main text to compute the
variability decomposition, but this time on the simulated behavior. (C) To test how well we could distinguish deterministic biases
from unstructured variability, we simulated behavior with variability due to inference and deterministic biases according to the model
described in Sec. 2.8. The behavior was simulated for the exact same trial sequences observed by the 18 human subjects performing
the third experiment. The plots show the estimated average fraction of deterministic biases across subjects (mean, error bars from
2.5th to 97.5th percentile across 1000 repetitions) when fitting our model to simulated behavior. The plots illustrate that, in particular
for the range of fractions observed for human subjects (around 0.3), the model correctly recovers the correct fraction. (D) To test how
sensitive our model fits are to assuming Gaussian inference variability, we here repeated the analysis of Fig. 3A (main text) described
in Sec. 2.9.1, while using heavy-tailed Student’s T distributed inference variability with 2.5 degrees of freedom (df ) to simulate the
behavior, while still assuming Gaussian variability when fitting the different models. df > 2 was chosen to have a well-defined mean
and variance. 4
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Figure S3. Relates to Figure 6. Illustrating and validating model assumptions and approximations. (A) Here we show by simulation
that temporal and spatial biases from Sec. 2.5 cause the bias term differences fj(θnt)− fk(θnt) to roughly follow a zero-mean Gaus-
sian distribution, as assumed in in Sec. 2.4. The above shows their empirical distribution, found by simulating 105 trials with different
sample sequences, as observed by subjects in the three-category condition of the first experiment. For each trial, we computed the con-
tribution of each sample to the log-posteriors while adding the temporal and/or spatial biases discussed in Sec. 2.5, with parameters
γθ = 5◦, γκ = 1, γc = 0.1 (spatial biases), and αa = e−0.1, αb = 0.01 (temporal biases). Denoting these biased contributions by ˆ̀

ntk

(including their temporal weighting and spatial perturbation) and their unbiased counterparts by `ntk , we found for each sample θnt
in each trial n the bias difference by fk(θnt)−fj(θnt) =

(
ˆ̀
ntk − ˆ̀

ntj

)
− (`ntk − `ntj) for each k 6= j. The distribution of differences

is shown from left to right for temporal biases and spatial biases only, and for both biases in combination. The top panels of (A) show
the histogram of differences and the best-fit zero-mean Gaussian (arbitrarily scaled). The bottom panel show the cumulative data
distribution in grey, scaled vertically such that the cumulative of a Gaussian becomes a line. The black line connects the 1st and 3rd
quantile. The figure shows that, except for the tails, fk(θnt)− fj(θnt) is well approximated by a Gaussian. (B) To test if the Gaussian
approximation for the sensory variability model did not strongly perturb the derived choice probabilities, we compared the choice
probabilities computed with the approximate expressions to those found by simulation. Assuming σsen = 30◦ (= π/6 radians),
we tested the match on 500 typical trials, by, for each trial, simulating 50.000 instantiations of the sensory noise to get an empirical
estimate of these choice probabilities. In each trial we computed one choice probability per category, each corresponding to a different
color in the above plots. We deliberately chose a very high noise magnitude, as in this noise regime the Gaussian approximation is
more likely to break down. (C) To illustrate the similarity between the logistic sigmoid and the cumulative Gaussian, we here plot the
cumulative function of a zero-mean Gaussian with unit variance, and the matching logistic sigmoid with β determined by Eq. (S44).
The variance of the Gaussian results from the difference of two Gaussian variables with individual variances σ2 = 1

2
. The latter is

the variance used to compute β. (D) The left panel shows the mutual information between the sample log-likelihood ratio and the
generative category for the noisy and noise-free log-likelihood ratio for a single stimulus orientation (see Sec. 2.10 for the derivation).
In the noise-free case, this mutual information is approximately 0.085 bits per oriented stimulus (1 bit = revealing correct category).
In the noisy case, the mutual information drops monotonically with the standard deviation of the noise, matching the noise-free case
only for σinf = 0. The right panel shows the fraction information loss of the noisy case when compared to the noise-free case. This
information loss is computed as one minus the ratio between noisy and noise-free mutual information, as shown in (A). At σinf = 2,
this loss reaches above 0.9, indicating that at this level of variability, less than 10% of the original information remains.
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Figure S4. Relates to Figure 7. Deterministic biases and fraction match for different trial subgroups. (A) Left panel: feature (top row)
and temporal (bottom row) encoding curves for the two-category condition of exp. 1 in the first half of trials. Right panel: feature (top)
and temporal (bottom) encoding curves for the two-category condition of exp. 1 in the second half of trials. (B) Left panel: feature (top
row) and temporal (bottom row) encoding curves for the two-category condition of exp. 1 in trials following correct choices. Right
panel: feature (top) and temporal (bottom) encoding curves for the two-category condition of exp. 1 in trials following errors. In (A)
and (B), dots and error bars indicate human data and s.e.m., and curves and shaded error bars indicate best-fitting model predictions
including feature (top) and temporal (bottom) deterministic biases. (C) Fraction matched choices for trial subgroups, experiment 3.
The fraction of matched choices (± SEM across subjects) are compared for paired trials when computed across all trials (thick bars)
to the fraction computed for trial subgroups (thin bars) for different trial pairings (none = exact same sample sequence, temporal =
one trial is shuffled version of other, spatial = one trial is mirrored version of other, both = temporal + spatial). On one hand (left
panels), we computed this fraction match for the first and second half of trials separately, while excluding trial pairs that spun both
trial subgroups. On the other hand (right panels), we split trial pairs into those that appeared closer together within the trial sequence,
and those that were more distant. In no case did we find a significant effect of trial sub-grouping on the measured fraction of matched
choices (2-way repeated-measures ANOVAs, 1st/2nd half, 2 categories: trial subgroup F1,17 = 1.2, p = 0.3, perturbation F3,51 =
14.7, p < 0.001, trial subgroup × perturbation F3,51 = 1.0, p = 0.4; 3 categories: trial subgroup F1,17 = 0.1, p = 0.74, perturbation
F3,51 = 18.6, p < 0.001, trial subgroup × perturbation F3,51 = 0.8, p = 0.5; close/distant pairs, 2 categories: trial subgroups
F1,17 = 0.3, p = 0.6, perturbation F3,51 = 27.8, p < 0.001, trial subgroups × perturbation F3,51 = 1.4, p = 0.3; 3 categories: trial
subgroups F1,17 = 0.4, p = 0.5, perturbation F3,51 = 30.6, p < 0.001, trial subgroups × perturbation F3,51 = 0.4, p = 0.8).
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Figure S5. Relates to Figures 6 and 7. Spatial and temporal biases. (A) illustrates the orientation bias for different values of γθ , causing a
shift in the log-likelihoods. (B) shows the change in log-likelihoods due to the confirmation bias for different values of γc. (C) illustrates
both the change in log-likelihoods (right panel) and the biased stimulus orientation (left panel) due to the oblique effect for different
values of γκ. In these panels, the different colors correspond to different categories in the 3-categories condition, and the saturation
of these colors to different parameter values. Panels (D) and (E) show the weight λnt applied to the log-likelihood of samples at
different points within the samples sequence, aligned to the last sample in this sequence. (D) shows the temporal bias introduced by
time-invariant exponential weighting for different values of the parameter α. As can be seen, α < 1 introduces a recency effect, and
α > 1 a primacy effect. (E) shows the bias for the linearly changing exponential weighting scheme with parameters αa = 0.85 and
αb = 0.01. The different shadings correspond to weightings of sequences of different lengths, and illustrate that introducing a linear
dependency in the trial-by-trial weighting causes the overall weighting to depend on the sequence length.
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Figure S6. Relates to Figures 3 and 4. Model comparison for different variability models, taking into account temporal and spatial
biases. This figure differs from Fig. 3A/B in the main text in that it is based on models with temporal and spatial biases. Panels (A)-(C)
shows the comparison based on the data of experiment one, and (D)-(F) based on that of experiment three. Taking into account these
biases does not change our main conclusions. We considered all possible bias combinations, resulting in 24 models per variability type.
The use of temporal biases allows us to distinguish between prior and selection variability (see Sec. 2.3.4) (A)/(D) Model prediction
(grey line and shaded area, mean± SEM across subjects) vs. per-sequence length fit (dots with error bars, mean± SEM across subjects)
of how the noise variance changes with sequence length for five variability models and both task conditions. These predictions are
shown for each variability type for the combination of biases that best fitted the subjects’ behavior. The larger number of parameters
of models with biases resulted in a better per-subject fit, but in a larger across-subject variability in the fitted parameters, as reflected
by the larger error bars than in Fig. 3A in the main text. (B)/(E) FFX and RFX model comparison for different models and conditions.
The RFX comparison (top) compares model families, where each family features all models of a specific variability type with all
possible combinations of spatial and temporal bias (sen = sensory, pri = prior, llh = likelihood, ac = accumulation, sel = selection;
mean probability ± SD). The exceedance probability p is the probability with which the likelihood variability model family is more
likely than any other model family. The FFX comparison (bottom) shows for each variability model family the Bayes factor for each
family compared to the accumulation variability family. This factor is based on the model within each family with the highest model
evidence. The grey line at 210 = 100 is the threshold at which the evidence in favor of the accumulation model is considered decisive.
(C)/(F) Same as (B)/(E), but without the likelihood variability model family. This comparison was included to avoid the sharing of
probability mass between too-similar models (Stephan et al., 2009).
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Figure S7. Relates to Figure 3. Lapse and response bias parameters for model assuming inference variability. All panels show para-
meter modes± 95% credible intervals per subject. The subjects are not aligned across panels. (A) Lapses and biases for the 2-categories
condition of the first experiment. The left panel shows the lapse probability per subject (mode across subjects not significantly differ-
ent from zero, t21 = 1.9, p = 0.075). The right panel shows the response bias added to category 1 per subject (mode across subjects
not significantly different from zero, t21 = −1.7, p = 0.099). (B) The same as in (A), but for the 3-categories condition. The right
panel shows the response biases added to categories 1 and 2 per subject. Across subjects, the mode of only the lapse probability is
marginally different from zero (lapse probability, t21 = 2.1, p = 0.022; response bias 1, t21 = −1.5, p = 0.14; response bias 2,
t21 = 0.6, p = 0.6).
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2 Supplemental Experimental Procedures

Section 2.1 provides additional details about the stimulus and task. Sections 2.2 to 2.5 provide further
details about used models. All sections from Section 2.6 onwards provide more in-depth mathematical
details, but are not required reading to understand the essence of the models.

2.1 Stimulus and task design details

Stimuli were high-contrast, noise-free Gabor patterns (diameter: 4 degrees of visual angle, spatial fre-
quency: 2 cycles per degree of visual angle, Michelson contrast: 75%) of varying orientation, presented
at fixation for 100 ms at an average stimulation rate of 3 Hz with small amount of uniform jitter (±33 ms).
Sequence lengths (i.e., the number of stimuli per sequence) varied uniformly and unpredictably from 2 to
16 stimuli.

Each Gabor pattern was presented on top of a luminance pedestal, and each sequence began with two
luminance pedestals presented in rhythm with the following Gabor patterns so that the onset of the first
stimulus was predictable in time. At sequence offset, participants were prompted by a luminance pedestal
in the fixation point (go signal) for a choice regarding the most likely generative category of the sequence.
Participants provided their response by pressing one out of two (or three, depending on the condition)
keys with their right hand. The mapping between categories (represented as colors) and response keys was
fixed and explained to the participant before the start of the experiment. If no response was provided 1 s
following the go signal, the trial was aborted and the participant was informed by a beep that his response
was too slow which represented less than 1% of trials for all tested participants.

Following each response, feedback about the true generative category of the sequence was provided via
a transient change in the color of the fixation point (e.g., from grey to pink if the sequence was generated
from the pink category). We did not provide feedback as to whether participants picked the most likely
category given the limited evidence provided by the sequence. Consequently, as in the weather prediction
task, participants accuracy was bounded by the randomness of presented sequences around their generat-
ive means. Furthermore, this means that participants could learn not only the means, but also the spreads
of generative distributions.
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2.2 Optimal decision making without added variability

2.2.1 Generative model

The generative model of the task is as follows. In each trial n of N independent trials, the experimenter
picks one category k ∈ {1, . . . ,K} (called decks in the main text; K ∈ {2, 3} for 2 or 3 categories) with
associated category mean µk. Based on this mean, Tn orientations, θn1, . . . , θnTn , called samples (or cards in
the main text), are generated by drawing them independently and identically distributed (i.i.d.) from a von
Mises distribution over the half-ciricle [0, π), centered on µk and with concentration κ. That is, each sample
is independently drawn from

p (θnt|µk) =
eκ cos(2(θnt−µk))

πI0(κ)
, (S1)

where I0(·) is the modified Bessel function of order 0.

2.2.2 Optimal decision-making

To derive the optimal decision-making strategy, we assume a uniform prior over categories, and a 0-1 loss
function, charaterized by a gain (loss) of 0 (1) for correct (incorrect) decisions. For such a loss structure, it is
optimal to choose the option associated with the most likely generative category (Berger, 1993). To find this
most likely category, we assume subjects to know the category means, µ1, . . . , µK , and the concentration
parameter κ of the generative density, Eq. (S1). Based on this and the uniform category prior, p(µk) ∝ 1, the
posterior probability of category k having generated θn1:Tn = {θn1, . . . , θnTn} in trial n is by Bayes rule,

p(µk|θn1:Tn) ∝ p(θn1, . . . , θnTn |µk) =

Tn∏
t=1

p(θnt|µk). (S2)

If xn denotes the chosen category in trial n, then optimal decision-making is performed by choosing the
xn = k for which the above posterior is a maximum, that is xn = argmaxk p(µk|θn1:Tn).

The optimal strategy is implemented incrementally with each additional sample by tracking the log-
posteriors zntk for all k’s in trial n after the tth sample by

zntk = zn,t−1,k + `ntk, (S3)

where, initially, zn0k = 0, and `ntk is the decision-relevant component of the unnormalized log-likelihood
for the tth sample,

`ntk = log p (θnt|µk) + const. = κ cos (2(θnt − µk)) . (S4)

With these log-postieriors, optimal decision-making in trial n is achieved by choosing

xn = argmax
k

znTnk. (S5)
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2.3 Introducing variability

Before discussing individual models of variability, we relate two different general models of variable choices.
Assume K log-posteriors z1, . . . , zK , to each of which we add i.i.d. zero-mean noise εk, with 〈εk〉 = 0 for all
k. Choices are again based on picking the largest, but this time noise-perturbed, log-posterior, that is

x = argmax
k

(zk + εk) , (S6)

With this choice rule, the probability of picking category k becomes (Fig. 1D in main text)

p (x = k|z1:K) =

∫
p (∀j 6= k : zj + εj < zk + εk|z1:K , ε1:K)

∏
k

p(εk)dε1:K . (S7)

For Gaussian noise the above choice distribution become the cumulative function of a unimodal (K = 2)
or bimodal (K = 3) Gaussian. If the noise is Gumbel-distributed instead, the choice distribution is given
by a logistic sigmoid (K = 2), or its multidimensional generalization, the softmax function (K = 3) (see
Sec. 2.6).

From the empirical point-of-view, the choice distributions resulting from either Gaussian or Gumbel-
distributed noise are barely distinguishable. Specifically, a choice distribution resulting from Gumbel-
distributed noise with scale β−1 will appear like one resulting from Gaussian noise with variance σ2 ≈
π2/(6β2) (see Sec. 2.6). Thus, we can use these two distributions interchangeably when modeling the sub-
jects’ choices. We use this property for two purposes. First, we can relate choice predictions from different
models of variability, even if they predict different forms of the choice distribution. Second, we will fit
models using the computationally simpler softmax choice function even for models that assume Gaussian
noise.

2.3.1 Variability at the selection stage

A possible source of variability in the subjects’ choices is that, at the selection stage, they perform these
choices by drawing samples from their belief about the correctness of either choice. Such sampling corres-
ponds to choosing option k in trial n with probability

p (xn = k|θn1:Tn) ∝ p (µk|θn1:Tn)
β ∝ eβznTnk∑

j e
βznTnj

(S8)

where we have used Eqs. (S2) and (S3). With β = 1, the above constitutes strict posterior sampling. We
consider a slightly more general form by allowing β to take any non-negative value, allowing from com-
pletely random choices (β = 0), over strict posterior sampling (β = 1), to optimal decision making without
any added variability (β → ∞, leading to Eq. (S5)). In either case, the choice distribution corresponds to
the softmax function with fixed inverse temperature β.

This model predicts that the magnitude of the variability added to each of the log-posteriors does not
depend on the sequence length Tn. This is because the softmax parameter β in Eq. (S8) is independent of
the sequence length Tn that resulted in each of the log-posteriors, znTn1, . . . , znTnK . By the relation between
the softmax and Gaussian cumulative density (see Sec. 2.6), β can be translated into the Gaussian noise
variance σ2 ≈ π2/(6β2), which will also be independent of Tn. Thus, mechanistically, the above choice rule
can be implemented by adding a single zero-mean Gaussain noise term with variance σ2 to each of the K
log-posteriors.

2.3.2 Variability at the inference stage

We consider two possibilities of how the inference process introduces variability in the log-posteriors. The
likelihood variability model perturbs each log-likelihood by adding zero-mean Gaussian noise. The accumu-
lation variability model assumes noise to affect the accumulation of evidence itself, and is implemented by
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adding zero-mean Gaussian noise as soon as a new log-likelihood is added to the current log-posterior.
In the main text, both types of variability are discussed, but most inference variability models only use
accumulation variability, which is more strongly supported by Bayesian model comparison.

The difference between these two models of variability is subtle, and best understood by considering
a trial in which a choice is made after observing a sequence of only two samples, in which case each log-
posterior equals the sum of two log-likelihoods. In the likelihood variability model variability is added to
each of these log-likelihoods, such that each log-posterior is perturbed by two noise terms. In the accumula-
tion variability model, in contrast, only a single noise term perturbs each log-posterior, as only a single sum
has been performed. Here, we consider forming the log-posterior after the first sample as initialization of
the posterior rather than a sum. In general, the likelihood variability model will always add one more noise
term to the log-posteriors than the accumulation noise model. Thus, the difference in prediction between
these two models will be most pronounced for short sequence lengths, and they are hard to tell apart in
general. Therefore, we refer to both types of variability by the umbrella term ’inference’ variability.

Formally, the variability for both models follows zero-mean Gaussian noise, εntk ∼ N (0, σ2
inf ), that

is independent across trials n, samples t in the sequence, and categories k. For the likelihood variability
model, this noise is added to each likelihood,

ˆ̀
ntk = `ntk + εntk, (S9)

where ˆ̀
ntk denotes the noise-perturbed log-likelihood. As the log-posterior with respect to each category

sums up these noisy log-likelihoods, it is distributed as

p (znTnk|θn1:Tn) = N

(
znTnk|

Tn∑
t=1

`ntk, Tnσ
2
inf

)
. (S10)

As can be seen, the noise only influences the log-posterior variance, which scales linearly with sequence
length Tn.

The accumulation variability model adds one less noise term to the log-posterior. Thus, for this model,
each log-posterior is distributed as

p (znTnk|θn1:Tn) = N

(
znTnk|

Tn∑
t=1

`ntk, (Tn − 1)σ2
inf

)
. (S11)

Both models predict that the magnitude of the variability added to each of the log-posteriors increases
linearly with sequence length.

2.3.3 Variability at the sensory stage

We assume that variability at the sensory stage perturbs each sensory percept θnt by additive zero-mean
Gaussian noise εnt ∼ N (0, σ2

sen), after which the noisy θnt is re-mapped onto its original half-circular
domain [0, π) by modular arithmetic. This results in the noisy log-likelihoods to be given by

ˆ̀
ntk = κ cos (2(θnt + εnt − µk)) . (S12)

As for likelihood or accumulation variability models, the magnitude of sensory variability increases with
sequence length Tn.

Adding Gaussian noise to the orientation percept rather than the log-likelihoods has the following ef-
fects. First, as the Gaussian noise is passed through a non-linearity (the cosine in the log-likelihood func-
tion), its distribution won’t be Gaussian in the log-posterior. Second, as the log-likelihoods for different
categories k are all affected by the same noise term εnt, their variability due to this noise will be highly
correlated. These correlations will only be apparent for the 3-category condition in which choices are de-
termined by two log-posterior differences rather than only one. In the 2-category condition, the only factor
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that distinguishes sensory variability from likelihood or accumulation variability is the structure of the
variability in the log-likelihoods (see Sec. 2.7.4).

To fit models that assume variability at the sensory stage, we deviate from Eq. (S7), and instead approx-
imate the densities of the relevant log-likelihood differences by matching the moments of a multivariate
Gaussian. See Section 2.7 for the resulting expressions.

2.3.4 Variability at the prior stage

Given that in each trial a series of log-likelihoods need to be accumulated to form a log-posterior, another
source of variability in this log-posterior might be in the initial state of the accumulator. Assuming this
variability to be i.i.d. zero-mean Gaussian noise, εk ∼ N

(
0, σ2

pri

)
for the accumulator of each category k,

this results in the log-posteriors to be distributed as

p (znTnk|θn1:Tn) = N

(
znTnk|

Tn∑
t=1

`ntk, σ
2
pri

)
, (S13)

with variability independent of sequence length. Perfect accumulation of evidence makes this model in-
distinguishable from one that assumes variability at the selection stage. These two models can only be dis-
tinguished if subjects feature temporal biases (to be introduced in Sec. 2.5.2), which cause them to weight
noise early in the sequence differently from noise late in the sequence (see Fig. S6).

2.3.5 Variability at multiple stages

In order to model variability at multiple stages of the decision process, we note that the variability at each
stage is well captured by log-posteriors, znTnk, or their difference between categories, that are perturbed
by (potentially correlated) Gaussian noise. Thus, variability introduced at multiple stages corresponds to
Gaussian noise with a covariance matrix that is the sum of the covariance matrices corresponding to the
individual stages. The log-posterior means are usually unperturbed, expect for when some of the variability
is introduced at the sensory stage (see Sec. 2.7). In this case, these means are the ones from the sensory
variability model, with covariances that again sum up across all stages.

2.3.6 Misspecification of subjective generative concentration κ

All models described so far were fitted using an implicit scaling parameter – corresponding to the subjective
concentration κ of the generative distributions of orientation, set at its true value (κ = 0.5 in the two-
category condition, κ = 0.7, in the three-category condition). In other words, we have expressed all noise
parameters in the models with respect to these true theoretical values. Although this use of a scaling
parameter does not affect any of our main conclusions about the type of variability (sensory, inference or
response selection) which causes choice suboptimality, we discuss below how parameter estimates in the
different noise models change if subjects did not estimate correctly κ – that is, the spread of the generative
distributions. For simplicity, we consider the bias-free case, even though the same principles apply if such
biases are included.

For the 2-categories condition, the choice in trial n is fully determined by the log-posterior difference
znTn2 − znTn1, which by Eqs. (S4), (S10), and Eqs. (S11) is distributed as

znTn2 − znTn1|θn1:Tn ∼ N

(
κ

Tn∑
t=1

(cos (2(θnt − µ2))− cos (2(θnt − µ1)) , 2Snσ
2
inf

)
, (S14)

with Sn = Tn and Sn = Tn − 1 for the likelihood and accumulation variability models, respectively. The
probability of choosing option xn = 1, which occurs if znTn2 − znTn1 < 0, is thus given by

p(xn = 1|θn1:Tn) = Φ

 κ√
σ2
inf

∑Tn
t=1 (cos (2(θnt − µ2))− cos (2(θnt − µ1)))√

2Sn

 , (S15)
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where Φ(·) is the cumulative distribution function of a standard Gaussian. For the 3-categories condition,
the choice probability has a different form due to the larger number of possible choices. What remains the
same, and what is essential here, is that κ in this choice probability again appears as the fraction κ√

σ2
inf

.

Thus, the magnitude of the estimated σ2
inf depends on the chosen κ.

What happens if the subject’s assumed κ̃ differs from the κ we have used to estimate σ2
inf? If subjects

have over-estimated κ̃ > κ then we have underestimated σ2
inf , as in this case σ2

inf = κ2

κ̃2 σ̃
2
inf < σ̃2

inf , where
σ̃2
inf is the true noise variance featured by the subject. On the other hand, if subjects have under-estimated
κ̃, then our estimated σ2

inf ’s are too large. None of this affects our main conclusions about the type of
variability, which depends on variability structure and scaling with sequence length rather than absolute
magnitudes.

The assumed size of κ only has an effect when comparing variability magnitudes between conditions.
In the main text we discuss that the estimated inference variability variance per category in the 3-categories
condition is significantly larger than that in the 2-categories condition. This comparison relies on assum-
ing that subjects use κ2 = 0.5 and κ3 = 0.7 in the 2-categories and 3-categories condition, respectively.
However, even if subjects have assumed κ̃2 = κ̃3, and we adjust our estimates for this assumption by
σ̃inf,3 = κ2

κ3
σinf,3, the variability per category in the 3-categories condition is still significantly larger than

in the 2-categories condition (two-sided, paired t21 = 2.4, p = 0.027). In fact, the difference remains signi-
ficant at the 0.05 level up to κ̃3 ≈ 0.70κ̃2 (variability per category) or κ̃3 ≈ 0.58κ̃2 (total variability). Thus,
as long as subjects did not assume the likelihood in the 3-categories condition to be less concentrated than
in the 2-categories condition, they featured significantly larger per-category variability in the 3-categories
condition.

The question of a mis-specified κ disappears if we focus on sensory instead of inference variability. In
this case, κ acts as a multiplicative factor in the noisy log-likelihood, Eq. (S12), and thus scales mean and
standard deviation of the noisy log-posterior difference equivalently. This causes κ to cancel out when
taking the ratio of these quantities, as is done to predict the sensory variability choice probability (see
Sec. 2.7 for equations). As a result, the choice probabilities predicted by the sensory variability model are
insensitive to any mis-specification of κ. This fact, together with the observation that we find the sensory
variability magnitude to grow when moving from 2 to 3 categories (see main text), further supports our
claim that the variability magnitude grows with the difficulty of the task.
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2.4 Decomposing variability into deterministic biases and residual terms

So far, variability at the inference stage was assumed to be to be additive in the log-posteriors. Here, we
provide a more fine-grained description of its structure by splitting the noise terms into a deterministic
bias and a residual variability component. Specifically, ˆ̀

ntk denotes the internal estimate of `ntk, which is
composed of

ˆ̀
ntk = `ntk + fk(θnt) + εntk, (S16)

where fk(·) is a deterministic, but unknown, function of the perceived orientation θnt, or a deterministic bias,
and εntk is zero-mean Gaussian noise, or unstructured variability. All of what is described below applies also
if the deterministic component is a function of the whole sample sequence rather than only single samples.
To keep the presentation simple, the derivation is only shown for the single-sample case.

For the 2-category case, bias fk(θnt) and residual variability εntk are across trials n and samples t as-
sumed to be distributed as

f2(θnt)− f1(θnt) ∼ N
(
0, 2σ2

b

)
, (S17)

εntk ∼ N
(
0, σ2

v

)
, k = 1, 2. (S18)

For f2(θnt) − f1(θnt), this distribution is induced by the randomization of θnt across trials and samples
(see Fig. S3A for a justification of the Gaussian assumption). We do not need to specify the distribution of
individual fk(θnt)’s, as only their differences matter for the choice distributions. For the 3-category case
we make conceptually similar assumptions, but the derivations are more burdensome and are provided in
detail in Sec. 2.8.2.

With the above, the log-likelihood difference estimates are Gaussian with moments〈
ˆ̀
nt2 − ˆ̀

nt1

〉
= `nt2 − `nt1 (S19)

var
(

ˆ̀
nt2 − ˆ̀

nt1

)
= var (f2(θnt)− f1(θnt)) + var (εnt2 − εnt1) = 2(σ2

b + σ2
v). (S20)

Setting σ2
b+σ2

v = σ2
inf , and using znTnk =

∑Tn
t=1

ˆ̀
ntk recovers our original likelihood variability formulation,

Eqs. (S9) and (S10).
In the above we have assume additive noise to each of the Tn log-likelihoods, just like for the likelihood

variability model. In the corresponding accumulation variability model, we only add Tn − 1 bias and
residual variability terms. For what follows, we for simplicity assume variability in the likelihoods. The
same concepts apply for accumulation variability.

2.4.1 The bias-variance decomposition

To see the influence of the bias terms, fk(·), consider the case in which multiple trials feature the exact same
sample sequence. In this case, the tth sample θnt and the associated fk(θnt) and fj(θnt) terms are the same
across all these trials, while the εntk terms vary. Then, the variance of the log-likelihood difference estimate
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around its true value decomposes into

var
(

ˆ̀
ntk − ˆ̀

ntj |fk(θnt), fj(θnt)
)

=

〈(
(`ntk − `ntj)−

(
ˆ̀
ntk − ˆ̀

ntj

))2
〉
p(ˆ̀

ntk−ˆ̀
ntj |fk(θnt),fj(θnt))

= (`ntk − `ntj)2 − 2
〈

ˆ̀
ntk − ˆ̀

ntj

〉
(`ntk − `ntj) +

〈(
ˆ̀
ntk − ˆ̀

ntj

)2
〉

=
〈

ˆ̀
ntk − ˆ̀

ntj

〉2

− 2
〈

ˆ̀
ntk − ˆ̀

ntj

〉
(`ntk − `ntj) + (`ntk − `ntj)2

+

〈(
ˆ̀
ntk − ˆ̀

ntj

)2
〉
− 2

〈
ˆ̀
ntk − ˆ̀

ntj

〉〈
ˆ̀
ntk − ˆ̀

ntj

〉
+
〈

ˆ̀
ntk − ˆ̀

ntj

〉2

=
(〈

ˆ̀
ntk − ˆ̀

ntj

〉
− (`ntk − `ntj)

)2

+

〈((
ˆ̀
ntk − ˆ̀

ntj

)
−
〈

ˆ̀
ntk − ˆ̀

ntj

〉)2
〉

(S21)

= (fk(θnt)− fj(θnt))2
+ (var(εntk) + var(εntj)) , (S22)

where all expectations are implicitly conditional on fk(θnt) and fj(θnt). The third equality is based on

adding and subtracting 2
〈

ˆ̀
ntk − ˆ̀

ntj

〉2

, and the last equality uses the above definition of ˆ̀
ntk, Eq. (S16).

In Eq. (S21), the first term in the sum is the square distance between the mean log-likelihood difference
estimate and its true value. Thus, it is a measure of the estimate’s deterministic bias. The second term is
the unstructured variability of the log-likelihood difference estimate around its mean, and thus measures
the estimate’s variance, irrespective of its bias. Therefore, this decomposition is commonly known as the
bias-variance decomposition (Bishop, 2006). Re-expressing these two measures in terms of the decomposition
of ˆ̀

ntk in Eq. (S22) confirms that fk(θnt) introduces bias, whereas εntk introduces variance.

2.4.2 Estimating the contribution of deterministic biases to the overall variability

To estimate the contribution of deterministic biases to the overall variability, we fit a model that contains
this contribution as an explicit parameter. We do so by grouping trials m and n in which the same sample
sequence has been shown to the subjects, that is, in which θn1:Tn = θm1:Tm , and by modeling the choice
probabilities in both trial in combination. Here, we only discuss the 2-categories condition. Handling
the 3-categories condition is conceptually similar, but mathematically more burdensome due to having to
specify the posterior over four log-posterior differences simultaneously. The mathematical details for both
the 2 and the 3-categories condition are provided in Sec. 2.8.

In the 2-categories condition, the (noise-perturbed) log-posterior differences znTn2 − znTn1 and zmTm2 −
zmTm1 fully determine the choices in trials n and m. Their joint probability is given by

p (znTn2 − znTn1, zmTm2 − zmTm1)

= N

((
znTn2 − znTn1

zmTm2 − zmTm1

) ∣∣∣( ∑Tn
t=1 (`nt2 − `nt1)∑Tn
t=1 (`nt2 − `nt1)

)
, 2Tnσ

2
inf

(
1 ρ
ρ 1

))
, (S23)

where we have used σ2
inf = σ2

b + σ2
v , and ρ = σ2

b/σ
2
inf is the fraction of variance that deterministic biases

contribute to the overall noise variance. The correlation ρ between the log-posterior differences is intro-
duced by the bias terms shared by trials n and m. Without these bias terms, the differences would be
completely uncorrelated. These shared terms boost the probability of performing the same choice in both
grouped trials (see Fig. 6A in main text), irrespective of its correctness.

The above defines our recipe for estimating to which degree deterministic biases contribute to the over-
all noise variance. We do so by fitting the full model to the behavior of each subject for each condition
separately to find the parameters that best explain this behavior (see Methods for the fitting procedure).
However, instead of modeling each trial in isolation, we group trials in which the same sample sequence
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has been shown, and model their choices jointly by use of Eq. (S23). This allows us to estimate ρ, which
directly quantifies the amount of bias contribution. A similar procedure, described in Sec. 2.8, leads to the
ρ-estimates for the 3-categories condition.
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2.5 Introducing explicit temporal and spatial biases

We introduce biases both on the way the sensory percepts are converted into log-likelihoods, as well as on
how these log-likelihoods are accumulated over time. We refer to the first kind of biases as spatial biases,
and to the second kind as temporal biases. These two types of biases do not interact directly, and so can be
implemented completely separately by first applying the spatial biases to compute the log-likelihoods, and
then the temporal biases to find the log-posterior predictions and associated choice distribution.

2.5.1 Spatial biases

All spatial biases influence the mapping from sensory percept to log-likelihoods, but different biases deal
with different aspects of this mapping. If several biases are combined, they are applied in the order they
are presented below.

Orientation bias. The orientation bias causes the stimulus orientation to be perceived with a bias γθ
(Fig. S5A). With this biases, the log-likelihoods is given by

`ntk = κ cos (2(θnt + γθ − µk)) , (S24)

instead of Eq. (S4).

Oblique effect. The oblique effect causes a bias of shifting the observed orientations towards the cardinal
directions, or away from them (Fig. S5C). It is realized conceptually by applying the cumulative of a von
Mises distribution on [0, π/2) and [π/2, π), such that the biased orientation is perceived as

θ̃ =
π

2

∫ 4θ

0

VonMises (a|0, γκ) da, (S25)

where γκ determines the strength of this bias.
Specified as above, γκ needs to be non-negative by definition, such that only biases towards the diagonal

directions are allowed. To also support biases towards cardinal directions, we use the series expansion of
the cumulative,

θ̃ = θ +
1

2I0(γκ)

∞∑
j=1

sin (4θj) Ij(γκ)

j
, (S26)

where Ij(·) is the modified Bessel function of order j. This series expansion allows for negative γκ’s and
thus a bias towards cardinal directions. In practice, we approximate the infinite series by its first ten terms.

Confirmation bias. The last bias over-emphasizes high likelihoods and thus introduces a bias towards
over-weighting the category supported by the current sample and under-weighting the other categories
(Fig. S5B). Its implementation is based on scaling the generative log-likelihood, Eq. (S4) by its exponential,
that is

`ntk = κ cos (2(θnt − µk)) eγc cos(2(θnt−µk)). (S27)

Here, γc > 0 causes a bias towards confirming the supported category, γc < 0 causes a bias away from it,
and γc = 0 leaves the log-likelihood unchanged.

2.5.2 Temporal biases

Temporal biases are introduced by modulating the degree to which each likelihood contributes to the pos-
terior upon which the decision is based. This allows us to implement both recency and primacy effects.
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Formally, we denote the weight on the tth noisy log-likelihood ˆ̀
ntk in trial n by λnt, such that the log-

posterior with respect to category k is given by

znTnk =

Tn∑
t=1

λnt ˆ̀ntk. (S28)

This weighting has the following effect on the log-posteriors. If we only consider single trials, and
assume likelihood variability as in Eq. (S9), then the log-posteriors that include the temporal bias are dis-
tributed as

p (znTnk|θn1:Tn) = N

(
znTnk|

Tn∑
t=1

λnt`ntk, σ
2
inf

Tn∑
t=1

λ2
nt

)
. (S29)

As can be seen, the weights also appear in the variance term. This is due to these weights scaling both the
log-likelihood and the additive Gaussian noise.

Other models feature a similar mean of the log-posterior, but a different variance. For the accumulation
variability model we assume that the temporal weight is applied before new evidence is added, such that
the log-posterior is distributed as for the likelihood variability model, only with its variance replaced by
σ2
inf

∑Tn
t=2 λ

2
nt. Thus, the only change is that λn1 does not modulate the variability. In the prior variability

model, noise only influences the first log-likelihood, such that its associated log-posteriors are distributed
again as for the likelihood variability model, but with variance σ2

priλ
2
n1. The model that assumes variability

at the selection stage remains unchanged, as by assumption, λnTn = 1, always.
If we consider trials groups, n and m, in which the same sample sequence was presented, then the

log-posterior joint density for the 2-categories condition changes from Eq. (S23) to

p (znTn2 − znTn1, zmTm2 − zmTm1)

= N

((
znTn2 − znTn1

zmTm2 − zmTm1

) ∣∣∣( ∑Tn
t=1 λnt (`nt2 − `nt1)∑Tn
t=1 λnt (`nt2 − `nt1)

)
, 2σ2

inf

Tn∑
t=1

λ2
nt

(
1 ρ
ρ 1

))
(S30)

Thus, the mean is weighted as one would intuitively expect, and the covariance matrix is simply scaled by
the weight. The correlation structure itself remains unchanged, as the temporal weighting affects all log-
posterior differences equally. Similar changes apply to the joint distribution for the 3-categories condition.
Specifically, the means are replaced by their weighted equivalents, and the covariance matrix is scaled by∑Tn
t=1 λ

2
nt rather than by Tn.

We consider two different ways to parameterize the λnt’s, which are discussed in turn.

Time-invariant exponential weighting. Time-invariant exponential weighting is based on multiplying
the previous log-posterior with a constant α upon the addition of each new likelihood (Fig. S5D). For α < 1,
this can be interpreted as down-weighting the past upon perceiving new information. Formally, this leads
to

znTnk = α(α(. . . ) + ˆ̀
n,Tn−1,k) + ˆ̀

nTnk =

Tn∑
t=1

αTn−t ˆ̀ntk, (S31)

resulting in the weights
λnt = αTn−t. (S32)

With this scheme, α < 1 corresponds to a recency effect, putting more weight on log-likelihoods towards
the end of the sample sequences, and α > 1 leads to a primacy effect that puts more focus on samples early
in the sequence. When fitting behavioral data, we used −∞ < log(α) <∞ rather than α directly.
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Linearly changing exponential weighting. In the previous section we have assumed α to remain constant
across all samples in a sequence. Here, we introduce a slight generalization of this scheme that allows α to
change linearly over samples according to

αt = αa + αb(t− 1), (S33)

where t = 1, . . . , Tn is the index in the sample sequence (Fig. S5E). This leads to the log-posteriors

znTnk = (αa + αb(Tn − 2))
(

(αa + αb(Tn − 1)) (. . . ) + ˆ̀
n,Tn−1,k

)
+ ˆ̀

nTnk =

Tn∑
t=1

ˆ̀
ntk

Tn−2∏
s=t−1

(αa + αbs), (S34)

with corresponding weights

λnt =

Tn−2∏
s=t−1

(αa + αbs). (S35)

As before, for fitting behavioral data, we parameterized the model by −∞ < log(αa) < ∞ rather than
fitting αa directly.
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2.6 The relation between the softmax and the cumulative Gaussian

In this section, we derive choice distributions for Gaussian and Gumbel-distributed additive noise, and
discuss their relation. Specifically, assume a set of K log-posteriors z1:K , that are perturbed by i.i.d. zero-
mean additive noise ε1:K . A choice x is made by choosing the category associated with the largest of these
noisy log-posteriors, that is

x = argmax
k

(zk + εk) (S36)

In the following we derive the choice distribution p(x|z1:K) for both Gaussian and Gumbel-distributed
noise, for both K = 2 and K = 3, and show how they relate to each other.

2.6.1 Gaussian noise

First, assume that each εk is a zero-mean Gaussian with variance σ2, that is εk ∼ N (0, σ2). Then, for K = 2,
option 1 is chosen if z1+ε1 > z2+ε2, or equivalently, if ε2−ε1 < z1−z2. Noting that ∆ε = ε2−ε1 ∼ N (0, 2σ2),
the choice distribution is thus given by

p(x = 1|z1, z2) =

∫
p (∆ε < z1 − z2|z1, z2,∆ε)N

(
∆ε|0, 2σ2

)
d∆ε

=

∫ z1−z2

−∞
N
(
∆ε|0, 2σ2

)
d∆ε

= Φ

(
z1 − z2

σ
√

2

)
, (S37)

where Φ(a) =
∫ a
−∞N (b|0, 1)db is the cumulative distribution function of a standard Gaussian. As this

function is increasing in its argument, the likelihood of choosing option 1 increases in z1 and decreases in
z2, as one would expect.

For K = 3 options, option k is chosen if ∀j 6= k : zk + εk > zj + εj , or equivalently, if ∀j 6= k : εj − εk <
zk − zj . Without loss of generality we assume k = 1 and define ∆2 = ε2 − ε1 and ∆3 = ε3 − ε1, which are
jointly Gaussian and distributed as

p(∆2,∆3) = N
((

∆2

∆3

) ∣∣∣( 0
0

)
,

(
2σ2 σ2

σ2 2σ2

))
. (S38)

Option 1 is chosen if ∆2 < z1 − z2 and ∆3 < z1 − z3, resulting in

p(x = 1|z1:3) =

∫ z1−z2

−∞

∫ z1−z3

−∞
p(∆2,∆3)d∆3d∆2, (S39)

which is the cumulative distribution function of a bivariate Gaussian. There is no closed form for this
function, and thus it needs to be computed numerically.

2.6.2 Gumbel-distributed noise

For Gumbel-distributed noise the resulting choice distribution is very similar to that resulting from Gaus-
sian noise, but is mathematically more appealing. In particular, noise variables are distribution as

p(εk) = βe−βεk−e
−βεk

, p(εk < c) = e−e
−βc

, (S40)

where β is the inverted scale parameter of the distribution.
Assuming K = 2 and proceeding as for the Gaussian case, it can be shown that ∆ε = ε2 − ε1 follows

a zero-mean Logistic distribution with scale β−1, that is ∆ε ∼ Logistic
(
0, β−1

)
. The choice probability for

option 1 is the cumulative of this distribution at z1−z2 and is thus given the cumulative of this distribution,

p(x = 1|z1, z2) =
1

1 + e−β(z1−z2)
, (S41)
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which is the logistic sigmoid.
For K > 2, option k is chosen if ∀j 6= k : εj < zk − zj + εk, resulting in the choice distribution

p(y = k|z1:K) =

∫ ∞
−∞

dεkp(εk)
∏
j 6=k

∫ zk−zj+εk

−∞
dεjp(εj)

=

∫ ∞
−∞

dεkp(εk)
∏
j 6=j

p (εj < zk − zj + εk|zk, zj , εk) , (S42)

which is a product of cumulative probabilities marginalized over different values of εk. Substituting the
Gumbel distribution for the p(ε)’s results in

p(y = k|z1:K) =

∫ ∞
−∞

βe−βεk−e
−βεk

∏
j 6=k

e−e
−β(zk−zj+εk)

dεk

=

∫ ∞
−∞

βe−βεke−e
−βεk

∑
j e

−β(zk−zj)

dεk

= −
∫ 0

∞
e−y

∑
j e

−β(zk−zj)

dy

=
1∑

j e
−β(zk−zj)

=
eβzk∑
j e
βzj

, (S43)

where the third equality is based on y = e−βεk , and the fourth equality uses
∫
ecydy = c−1ecy with c =

−
∑
j e
−β(zk−zj). This shows that, unlike for Gaussian noise, assuming Gumbel-distributed noise results

in the choice distribution for K > 2 to be given by the easy-to-evaluate softmax function. For K = 2 this
function reduces to the logistic sigmoid.

2.6.3 Relating Gaussian and Gumbel-distributed noise

For K = 2, the choice distribution resulting from assuming Gaussian noise is a cumulative Gaussian,
whereas that resulting from noise following the Gumbel distribution is a logistic sigmoid. From an exper-
imental point of view, these two distributions are extremely similar and can only be distinguished with a
large amount of data (see Fig. S3C). With only around 500 trials per subject, we can treat these two distri-
butions as interchangeable.

Specifically, for most variability models we assume Gaussian noise, but fit the individual subject’s be-
havior with a logistic sigmoid. To recover the standard deviation of the Gaussian noise, we relate the
parameters of these two choice distributions by moment matching: the logistic sigmoid emerges from the
cumulative of a logistic random variable with scale β−1, which has variance π2/(3β2). The cumulative
Gaussian, in contrast, is based on a Gaussian with variance 2σ2. Equating these two variances results in

σ2 ≈ π2

6β2
, (S44)

which provides a good match between the two distributions (Fig. S3C).
For K = 3, the choice distribution is again determined by pairwise differences between noise variables,

which are now correlated. In case of Gaussian noise, this results in the hard-to-evaluate cumulative distri-
bution function of a bivariate Gaussian, whereas Gumbel-distributed noise results in the analytic softmax
function. Thus, to simplify computation, we use the softmax function to fit the subject’s behavior, even if the
underlying model assumes Gaussian noise, using again Eq. (S44) to recover the noise standard deviation.
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To test the quality of the approximate relationship in Eq. (S44) we simulated a large number of trials
with statistics similar to these shown to the subjects. Furthermore, we added Gaussian noise to the log-
posteriors in each trial, with a variance matching that observed in human data, and found the predicted
choice distribution by evaluating Eq. (S37) or (S39) for 2 or 3 categories, respectively. Finally, we found the
β that minimized the Kullback-Leibler divergence between these choice probabilities and those predicted
by the sigmoid Eq. (S41) or softmax Eq. (S43). As shown below, the β’s that provided the best match (when
minimizing the Kullback-Leibler divergence) deviated slightly from those predicted by Eq. (S44). Thus, for
any conversion between σ2 and β (e.g., model fits, parameter estimates) we used the below values rather
than Eq. (S44), using β = C

σ .

C C
CMM

Moment matching, CMM
π√
6
≈ 1.283 –

2 categories 1.274 0.993
3 categories 1.303 1.016
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2.7 Sensory variability choice distributions

In this section, we derive the choice distributions predicted by the sensory variability model. This model
assumes that the perception of sample θnt is perturbed by zero-mean additive Gaussian noise εnt with
variance σ2

sen, that is εnt ∼ N (0, σ2
sen). This results in the noise-perturbed log-likelihoods to be given by

ˆ̀
ntk = κ cos (2(θnt + εnt − µk)) . (S45)

Decision-making is performed by accumulating these log-likelihoods to form a log-posterior, followed by
choosing the option associated with the largest of these log-posteriors.

2.7.1 Choice distribution for 2-categories condition

In the 2-categories condition, the decision-related quantity is the difference between the log-posterior for
category 1 and that for category 2, given by

znTn1 − znTn2 =

Tn∑
t=1

(ˆ̀
nt1 − ˆ̀

nt2) = 2κ

Tn∑
t=1

cos (2(θnt + εnt − µ1)) , (S46)

where we have used the fact that µ2 = µ1 + π/2, such that cos (2(θ − µ2)) = − cos (2(θ − µ1)). A positive
difference, znTn1 − znTn2 > 0, leads to the choice of option 1.

To find the probability of choosing option 1, we assume the log-likelihood differences to be roughly
Gaussian, with moments〈

ˆ̀
nt1 − ˆ̀

nt2

〉
= 2κ

∫
cos (2(θnt + εnt − µ1))N

(
εnt|0, σ2

sen

)
dεnt

= 2κe−2σ2
sen cos (2(θnt − µ1)) , (S47)〈(

ˆ̀
nt1 − ˆ̀

nt2

)2
〉

= 4κ2

∫
cos (2(θnt + εnt − µ1))

2N
(
εnt|0, σ2

sen

)
dεnt

= 2κ2
(

1 + e−8σ2
sen cos (4(θnt − µ1))

)
, (S48)

var
(

ˆ̀
nt1 − ˆ̀

nt2

)
=

〈(
ˆ̀
nt1 − ˆ̀

nt2

)2
〉
−
〈

ˆ̀
nt1 − ˆ̀

nt2

〉2

, (S49)

where the solutions to the above integrals have been found by Mathematica (Wolfram Research, Inc., 2010).
As the log-posterior difference is the sum of the log-likelihood differences, it will also be approximately
Gaussian, given by

p (znTn1 − znTn2|θn1:Tn) ≈ N

(
znTn1 − znTn2|

Tn∑
t=1

〈
ˆ̀
nt1 − ˆ̀

nt2

〉
,

Tn∑
t=1

var
(

ˆ̀
nt1 − ˆ̀

nt2

))
. (S50)

As a result, the probability for choosing option 1 is given by

p (xn = 1|θn1:Tn) = p (znTn1 − znTn2 ≥ 0|θn1:Tn) ≈ Φ


∑Tn
t=1

〈
ˆ̀
nt1 − ˆ̀

nt2

〉
√∑Tn

t=1 var
(

ˆ̀
nt1 − ˆ̀

nt2

)
 , (S51)

where Φ(·) is the cumulative distribution function of the standard Gaussian.
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2.7.2 Choice distribution for 3-categories task

In the 3-categories condition, the choice is fully determined by the two log-posterior differences, znTn1 −
znTn2 and znTn1 − znTn3. To derive their moments, we again take into account that the category means are
related by µ2 = µ1 − π/3 and µ3 = µ1 − 2π/3. Let us define

ant =
ˆ̀
nt1 − ˆ̀

nt2

κ
= cos (2(θnt + εnt − µ1))− cos

(
2
(
θnt + εnt − µ1 +

π

3

))
, (S52)

bnt =
ˆ̀
nt1 − ˆ̀

nt3

κ
= cos (2(θnt + εnt − µ1))− cos

(
2

(
θnt + εnt − µ1 +

2π

3

))
, (S53)

such that

znTn1 − znTn2 = κ

Tn∑
t=1

ant, and znTn1 − znTn3 = κ

Tn∑
t=1

bnt. (S54)

As for the 2-categories condition, we assume that the ant’s and bnt’s are roughly Gaussian, with moments

〈ant〉 = e−2σ2
sen

(
cos (2(θnt − µ1)) + sin

(
2 (θnt − µ1) +

π

6

))
, (S55)〈

a2
nt

〉
=

1

4

(
6 + 3e−8σ2

sen

(
cos (4(θnt − µ1)) +

√
3 sin (4(θnt − µ1))

))
, (S56)

var(ant) =
〈
a2
nt

〉
− 〈ant〉2 , (S57)

〈bnt〉 = e−2σ2
sen

(
cos (2(θnt − µ1)) + cos

(
2(θnt − µ1) +

π

3

))
, (S58)〈

b2nt
〉

=
1

4

(
6 + 3e−8σ2

sen

(
cos (4(θnt − µ1))−

√
3 sin (4(θnt − µ1))

))
, (S59)

var(bnt) =
〈
b2nt
〉
− 〈bnt〉2 , (S60)

〈antbnt〉 =
1

4

(
3 + 6e−8σ2

sen cos (4(θnt − µ1))
)
, (S61)

cov(ant, bnt) = 〈antbnt〉 − 〈ant〉 〈bnt〉 . (S62)

where the involved integrals have again been solved by Mathematica (Wolfram Research, Inc., 2010). Using
these moments, the joint distribution of the log-posterior differences is given by

p (znTn1 − znTn2, znTn1 − znTn3|θn1:Tn) (S63)

≈ N

((
znTn1 − znTn2

znTn1 − znTn3

) ∣∣∣κ( ∑Tn
t=1 〈ant〉∑Tn
t=1 〈bnt〉

)
, κ2

( ∑Tn
t=1 var(ant)

∑Tn
t=1 cov(ant, bnt)∑Tn

t=1 cov(ant, bnt)
∑Tn
t=1 var(bnt)

))
.

Based on this joint distribution we find the choice distribution by

p(xn = 1|θn1:Tn) = p (znTn1 − znTn2 ≥ 0, znTn1 − znTn3 ≥ 0|θn1:Tn) (S64)
p(xn = 2|θn1:Tn) = p (znTn1 − znTn2 < 0, znTn1 − znTn2 < znTn1 − znTn3|θn1:Tn) , (S65)
p(xn = 3|θn1:Tn) = 1− p(xn = 1|θn1:Tn)− p(xn = 2|θn1:Tn). (S66)

Finding the above involves the numerical computation of the cumulative distribution function of a mul-
tivariate Gaussian, which we perform by using the function mvncdf in SciPy (Jones et al., 2001).

2.7.3 Accuracy of the Gaussian approximation

For both the 2-categories and the 3-categories condition we approximate the distribution of the log-likelihood
differences by Gaussians. If this approximation is too coarse, the model fits are guided by the approxima-
tion rather than by the features of the model. To make sure that this is not the case, we tested its accuracy
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by comparing for 500 typical trials the choice probability estimated by 50.000 instantiations of this noise to
that predicted by the above derivation. As shown in Fig. S3B, this results in a very good match between
theory and simulation, confirming that the applied approximations are adequate and do not confound our
conclusions.

2.7.4 The relation between sensory and inference variability

In the 2-category condition, the log-posterior difference is Gaussian with variance 2(Tn − 1)σ2
inf , such that

the probability of choosing option 1 is for the accumulation variability model given by

Φ

−2κ
∑Tn
t=1 cos (2(θnt − µ1))√
(Tn − 1)2σ2

inf

 . (S67)

For sensory variability, we find with the above expressions that

Tn∑
t=1

var
(

ˆ̀
nt1 − ˆ̀

nt2

)
= 4κ2e−4σ2

sen

(
Tn
2

(
e4σ2

sen − e−4σ2
sen

)
−
(

1− e−4σ2
sen

) Tn∑
t=1

cos2 (2(θnt − µ1))

)
, (S68)

where we have used cos(4α) = 2 cos2(2α)− 1. This leads to the probability of choosing option 1 to be given
by

Φ

 −2κ
∑Tn
t=1 cos (2(θnt − µ1))

2κ
√

Tn
2

(
e4σ2

sen − e−4σ2
sen

)
−
(
1− e−4σ2

sen

)∑Tn
t=1 cos2 (2(θnt − µ1))

 . (S69)

Thus, the main difference to inference variability is that the denominator also depends on the sample se-
quence, through

∑
t cos2 (2(θnt − µ1)). This term measures sums over the angular distances between the

orientations and the generative mean. In particular, each term in the sum is largest if the orientation matches
one of the generative means, µk, such that the sum is smallest if all orientations in the sequence are furthest
away from these means. As the term sums over all orientations in the sequence, it will vary most for short
sequences, and will converge to a common value for long sequences. Therefore, short sequences are best to
distinguish between models postulating sensory and those postulating inference variability.
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2.8 Choice distributions with deterministic biases

This section describes how to find the choice distribution under the assumption of a biased log-posterior
estimate, for both the 2-categories and 3-categories condition. In both cases, we assume that the exact same
sample sequence θn1:Tn has been presented in both trials n and m. Our aim is to derive the joint probability
of choosing categories xn and xm in these trials.

We assume the log-posterior to be based on noisy and biased log-likelihoods, ˆ̀
ntk = `ntk + fk(θnt) +

εntk, where `ntk is the true log-likelihood of sample t in trial n with respect to category k. Our aim is to
distinguish the contribution of bias fk(θnt) and variance εntk to the overall variability. In the below, we
assume the biases to act on single orientation percepts, and to be independent across samples and trials.
The same results follow if we were to assume biases to act on the whole sequence of orientations.

2.8.1 Choice distribution for the 2-categories condition

In the 2-categories condition, we assume assume bias and variance terms, fk(θnt) and εntk, the be across
trials and samples distributed as f2(θnt) − f1(θnt) ∼ N (0, 2σ2

b ) and εntk ∼ N (0, σ2
v) for k ∈ {1, 2} (see

Fig. S3A for a justification of this assumption). We only consider bias differences, as the log-posterior
differences znTn2 − znTn1 and zmTm2 − zmTm1 fully determine the choice in trials n and m. Conditional on
fn1:Tn1 and fn1:Tn2, where fn1:Tnk = {fk(θn1), . . . , fk(θTn1)}, their joint distribution is

p (znTn2 − znTn1, zmTm2 − zmTm1|fn1:Tn1, fn1:Tn2) (S70)

= N

((
znTn2 − znTn1

zmTm2 − zmTm1

) ∣∣∣( ∑Tn
t=1 (`nt2 − `nt1 + f2(θnt)− f1(θnt))∑Tn
t=1 (`nt2 − `nt1 + f2(θnt)− f1(θnt))

)
,

(
2Tnσ

2
v 0

0 2Tnσ
2
v

))
.

Thus, they share the same mean, including the bias terms. However, due to assuming knowledge of all bias
terms, they are uncorrelated and thus independent.

The log-posterior difference become dependent as soon as we average across many trial grouping. Spe-
cifically, averaged over many such grouping with different sample sequences, we have f2(θnt)− f1(θnt) ∼
N
(
0, 2σ2

b

)
, such their sum over Tn samples is distributed as N

(
0, 2Tnσ

2
b

)
. As a result, if we replace know-

ledge of the bias terms by their averages (that is, by marginalizing them out), the resulting joint distribution
becomes

p (znTn2 − znTn1, zmTm2 − zmTm1)

=

∫∫
p (znTn2 − znTn1, znTm2 − zmTm1|fnTn) p (fn1:Tn1, fn1:Tn2) dfn1:Tn1dfn1:Tn2

= N

((
znTn2 − znTn1

zmTm2 − zmTm1

) ∣∣∣( ∑Tn
t=1 (`nt2 − `nt1)∑Tn
t=1 (`nt2 − `nt1)

)
, 2Tnσ

2
inf

(
1 ρ
ρ 1

))
, (S71)

where the log-posterior difference are now correlated with coefficient ρ. To find the above, we have used

var(znTn2 − znTn1) = 2Tnσ
2
b + 2Tnσ

2
v = 2Tnσ

2
inf , (S72)

cov (znTn2 − znTn1, zmTm2 − zmTm1) =

Tn∑
t=1

〈
(f2(θnt)− f1(θnt)

2
〉

= 2Tnσ
2
b , (S73)

ρ =
2Tnσ

2
b

2Tnσ2
v + 2Tnσ2

b

=
σ2
b

σ2
inf

. (S74)

This shows that bias terms introduce correlations in log-posterior differences of grouped trials, and as a
result also in their choices. Furthermore, these correlations are always non-negative, which results in an
increase in the probability of making the same choice (correct or incorrect) in both of these trials. At last,
by the definition of the correlation coefficient ρ = σ2

b/σ
2
inf , this coefficient determines the fraction of noise

variance that the biases contribute to the overall inference noise variance. We estimated this ρ for each
subject by fitting a model in which the above joint distribution determined the subjects’ choices in each trial
pair in which the same sample sequence was presented.
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2.8.2 Choice distribution for the 3-categories condition

The same principles apply in the 3-categories condition, but their formulation is more complex due to
choices being based on two log-posterior differences per trial rather than one. This causes the joint choice
probability of trials n and m to be given by the cumulative of a 4-dimensional multivariate Gaussian. For
now, we will focus on the covariance matrix of this Gaussian. We will come back to its mean in a later
section.

To fully specify the covariance between all four random variables, we need to additionally introduce
the parameters ρ21, ρ31, and ρ32, based on which we define

var (f2(θnt)− f1(θnt)) = 2σ2
infρ21, (S75)

var (f3(θnt)− f1(θnt)) = 2σ2
infρ31, (S76)

var (f3(θnt)− f2(θnt)) = 2σ2
infρ32. (S77)

Furthermore, we define the total average variance, 3−1
∑
k 6=l var (fk(θnt)− fl(θnt) + εk − εl) to equal 2σ2

inf ,
where each εk is an independent zero-mean Gaussian with variance

〈
ε2
k

〉
= σ2

v . We allow the three correla-
tion parameters to become negative, in which case, the above terms cease to be variances (which cannot be
negative). Even then, however, we have σ2

v = (1− ρ̄)σ2
inf , where ρ̄ = 3−1

∑
k 6=l ρkl is the average correlation

coefficient, such that −1 ≤ ρ̄ ≤ 1, and consequently, σ2
v ≥ 0, leaving the problem well-defined.

Based on the above definitions it is easy to show that the relevant covariances are given by

cov (f2(θnt)− f1(θnt), f3(θnt)− f1(θnt)) = σ2
inf (ρ21 + ρ31 − ρ32) , (S78)

cov (f2(θnt)− f1(θnt), f3(θnt)− f2(θnt)) = σ2
inf (−ρ21 + ρ31 − ρ32) , (S79)

cov (f3(θnt)− f1(θnt), f3(θnt)− f2(θnt)) = σ2
inf (−ρ21 + ρ31 + ρ32) , (S80)

Overall, the whole model is specified by the four parameters σ2
inf , ρ21, ρ31, and ρ32.

The base covariance matrix. Here we derive the base covariance matrix, which is the one corresponding
to the choice distribution in which option 1 is chosen in both trials n and m. As will be shown in a later
section, all other covariance matrices can be derived from this one. Choosing option 1 in both trials cor-
responds to znTn2 − znTn1 ≤ 0 and znTn3 − znTn1 ≤ 0 for trial n, and the analogous inequalities for trial
m. To specify the full covariance matrix over the four log-posterior differences, we require the following
individual variances and covariances:

var
(

ˆ̀
nt2 − ˆ̀

nt1

)
= 2σ2

infρ21 + 2σ2
v = 2σ2

inf

(
1 +

2

3
ρ21 −

1

3
ρ31 −

1

3
ρ32

)
, (S81)

var
(

ˆ̀
nt3 − ˆ̀

nt1

)
= 2σ2

inf

(
1− 1

3
ρ21 +

2

3
ρ31 −

1

3
ρ32

)
, (S82)

cov
(

ˆ̀
nt2 − ˆ̀

nt1, ˆ̀
nt3 − ˆ̀

nt1

)
= σ2

inf (ρ21 + ρ31 − ρ32) + σ2
v = 2σ2

inf

(
1

2
+

1

3
ρ21 +

1

3
ρ31 −

2

3
ρ32

)
,(S83)

cov
(

ˆ̀
nt2 − ˆ̀

nt1, ˆ̀
mt2 − ˆ̀

mt1

)
= 2σ2

infρ21, (S84)

cov
(

ˆ̀
nt2 − ˆ̀

nt1, ˆ̀
mt3 − ˆ̀

mt1

)
= 2σ2

inf

(
1

2
ρ21 +

1

2
ρ31 −

1

2
ρ32

)
, (S85)

cov
(

ˆ̀
nt3 − ˆ̀

nt1, ˆ̀
mt3 − ˆ̀

mt1

)
= 2σ2

infρ31. (S86)

Multiplied by Tn for the likelihood variability model or Tn−1 for the accumulation variability model, these
terms form the covariance matrix of the four log-posterior differences.

The covariance matrix is by definition positive semi-definite, which introduces constraints on the pos-
sible parameter combinations (ρ21, ρ31, ρ32). Positive semi-definiteness is guaranteed as long as all eigen-
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values of the matrix are non-negative. Its four eigenvalues can be shown to be given by

1

6



3− ρ21 − ρ31 − ρ32,
9− 3ρ21 − 3ρ31 − 3ρ32,
6 + 4(ρ21 + ρ31)− 2ρ32

−
√

61(ρ2
21 + ρ2

31) + ρ31(30− 70ρ32) + ρ21(30− 22ρ31 − 70ρ32) + (3− 7ρ32)2,
6 + 4(ρ21 + ρ31)− 2ρ32

+
√

61(ρ2
21 + ρ2

31) + ρ31(30− 70ρ32) + ρ21(30− 22ρ31 − 70ρ32) + (3− 7ρ32)2


(S87)

The first, second, and fourth eigenvalue are guaranteed to be non-negative for all possible correlation coef-
ficient combinations. The third eigenvalue, however, can become negative for some points within the cube
(ρ21, ρ31, ρ32) of correlation coefficients. In particular, it becomes negative for parameter combinations out-
side of the cone defined by

5(ρ2
21 + ρ2

31 + ρ2
32)− 2(ρ21 + ρ31 + ρ32)− 6(ρ21ρ31 + ρ21ρ32 + ρ31ρ32)− 3 = 0, (S88)

In what follows, we re-parameterize the correlation coefficients to ensure that the used coefficients always
remain inside this cone.

Re-parameterizing the correlation coefficients. The cone that describes the boundary within which the
covariance remains positive semi-definite has its peak at (−1,−1,−1) and its axis along the line ρ21 = ρ31 =
ρ32. First, we introduce a re-parameterization (ρ̄, a, b) based on rotation and scaling,

ρ21 = ρ̄− a

6
− b

2
√

3
, ρ31 = ρ̄− a

6
+

b

2
√

3
, ρ32 = ρ̄+

a

3
. (S89)

Here ρ̄ determines the coordinate along the axis of the cone, and a and b the coordinates in the plane
orthogonal to the cone’s axis. With these parameters, the cone reduces to 9(1 + ρ̄)2 = 4(a2 + b2), showing
that a and b need to lie within a circle with radius 3(1 + ρ̄)/2. A further re-parameterization

a =
3

2
(1 + ρ̄)α

√
1− β2

2
, b =

3

2
(1 + ρ̄)β

√
1− α2

2
, (S90)

ensures that a and b remain within this circle for all α ∈ [−1, 1] and β ∈ [−11]. This leads to the final
mapping

ρ21 = ρ̄− α′ −
√

3β′, ρ31 = ρ̄− α′ +
√

3β′, ρ32 = ρ̄+ 2α′, (S91)

with

α′ =
ρ̄+ 1

4
α

√
1− β2

2
, β′ =

ρ̄+ 1

4
β

√
1− α2

2
. (S92)

Thus, as long as ρ̄ ∈ [−1, 1], α ∈ [−1, 1] and β ∈ [−1, 1], we guarantee to find parameters (ρ21, ρ31, ρ32)
within or on the surface of the cone. What this parameterization does not guarantee is that all correlation
coefficients are bounded by −1 and 1, which needs to be checked additionally. Overall, this leads to the
base covariance matrix

cov


ˆ̀
nt2 − ˆ̀

nt1

ˆ̀
nt3 − ˆ̀

nt1

ˆ̀
mt2 − ˆ̀

mt1

ˆ̀
mt3 − ˆ̀

mt1

 = 2σ2
inf


1− α′ −

√
3β′ 1

2 − 2α′ ρ̄− α′ −
√

3β′ 1
2 ρ̄− 2α′

1
2 − 2α′ 1− α′ +

√
3β′ 1

2 ρ̄− 2α′ ρ̄− α′ +
√

3β′

ρ̄− α′ −
√

3β′ 1
2 ρ̄− 2α′ 1− α′ −

√
3β′ 1

2 − 2α′
1
2 ρ̄− 2α′ ρ̄− α′ +

√
3β′ 1

2 − 2α′ 1− α′ +
√

3β′

 .

(S93)
In the main text, only the average correlation coefficient, ρ̄, is reported.
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The choice distribution for arbitrary trial groups. Based on the above, we can compute the choice prob-
ability of choosing xn and xm in grouped trials n and m. This is based on using the statistics

znTn2 − znTn1

znTn3 − znTn1

zmTm2 − zmTm1

zmTm3 − zmTm1

 ∼ N
 Tn∑
t=1


`nt2 − `nt1
`nt3 − `nt1
`mt2 − `mt1
`mt3 − `mt1

 ,

Tn∑
t=1

cov


ˆ̀
nt2 − ˆ̀

nt1

ˆ̀
nt3 − ˆ̀

nt1

ˆ̀
mt2 − ˆ̀

mt1

ˆ̀
mt3 − ˆ̀

mt1


 , (S94)

which we will denote zn,m ∼ N (µn,m,Σn,m) (for the accumulation variability model, the sum’s lower
limit for the variance is t = 2 rather than t = 1). For choice xn = xm = 1, the choice probability is simply
the probability of zn,m ≤ 0 (element-wise), which can be easily computed from the above normal density.

For choices other than xn = 1 or xm = 1, we can derive the choice probability through a linear trans-
formation of the above density. In particular, define

A1 =

(
1 0
0 1

)
, A2 =

(
−1 0
−1 1

)
, A3 =

(
0 −1
1 −1

)
, (S95)

such that these matrices map the base case into the ones of interest for the corresponding choice, that is

A2

(
z2 − z1

z3 − z1

)
=

(
z2 − z1

z3 − z2

)
, A3

(
z2 − z1

z3 − z1

)
=

(
z1 − z3

z2 − z3

)
. (S96)

With these mapping we can define the 4× 4 matrix

Bn,m =

(
Axn 0

0 Axm

)
. (S97)

This allows us to compute the corresponding choice probability by the mass ofBn,mzn,m ≤ 0, where

Bn,mzn,m ∼ N
(
Bn,mµn,m,Bn,mΣn,mB

T
n,m

)
. (S98)

Thus, computing the cumulative of the above multivariate Gaussian reveals the choice probability for ar-
bitrary trial groups.

2.8.3 Fitting models with deterministic biases

We estimated the balance between bias and variance by fitting subjects choices in pairs of trials of the
second experiment in which the same sample sequence was shown. Fitting was performed by maximum-
likelihood, using the same hybrid posterior sampling/gradient ascent approach as to fit all other models
(see Sec. 2.9). This resulted in the overall bias/variance decomposition reported in the main text and in
Fig. 6B. We performed the decomposition into temporal and spatial (i.e., orientation perception) determin-
istic distortions by fitting three additional models, either only assuming temporal or spatial distortions, or
a combination of both. The contribution of each type of distortion was measured by the amount of bias we
were able to explain away by adding these distortions, and is shown in Fig. 6B (green and blue portion). A
two-way repeated-measures ANOVA with spatial and temporal biases as separate factors revealed a signi-
ficant effect of both bias types on the residual bias (two categories: spatial F1,17 = 55.9, p < 0.001, temporal
F1,17 = 28.0, p < 0.001; three categories: spatial F1,17 = 14.2, p = 0.002, temporal F1,17 = 4.6, p = 0.046)
but not significant interaction between them (spatial temporal: two categories F1,17 = 4.4, p ≈ 0.051;
three categories F1,17 < 0.1, p > 0.5). The lack of interaction allowed us to interpret their contributions as
additive.

2.8.4 The contribution of sequential biases

We analyzed the effect of sequential choice dependencies, as shown in Fig. 2B, on the choice variability
decomposition as follows. First, we introduced an additional bias towards choosing the previous feedback
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(i.e., the previously drawn deck) to the variability structure model, whose magnitude was a free parameter
in units of log-posterior odds. Second, we fitted this sequential bias-augmented model as before to the
participants behavior. Any kind of variability due to such sequential biases was reflected in a reduction
of unstructured variability when compared to model fits that did not include this bias. Thus, third, we
attributed any such reduction to sequential deterministic bias, as illustrated by the orange portion in Fig. 6B.
We repeated this analysis by adding a second sequential bias towards choosing the same deck as in the
previous. This second, choice repetition regressor: 1) did not differ significantly from zero across human
participants (Fig. 2B), and 2) did not result in a measurable reduction of unstructured variability when
compared to model fits that did not include this bias. We therefore safely omitted it when computing the
overall impact of sequential deterministic bias depicted in Fig. 6B.

2.8.5 Stability of deterministic biases

A drift in deterministic biases throughout an experimental session would be captured by the unbiased vari-
ability term εntk, and would inflate our measure of σ2

v . We performed several tests to detect such a drift.
First, a change in bias might be reflected by a change in performance throughout an experimental session.
Comparing behavior between the first and second half of trial did not reveal any significant change in
neither performance (Fig. S1A) not inferred behavioral variability (Fig. S1C). Second, neither did we find
any significant change in spatial or temporal biases between the first and second half of trials (Fig. S4A).
Third, a strategy employed by the subjects might be influenced by the outcome of the previous choice.
However, as discussed in the main text, we did not find any influence of a trials outcome on successive
choices. Estimating spatial and temporal biases conditional on this outcome revealed a qualitative, but
insignificant difference in the temporal biases, but not the spatial biases (Fig. S4B). Fourth, a drift in de-
terministic biases might change the fraction of matched choices in trial pairs in which the same sample
sequence was shown. Comparing this fraction between first and second half of trials in the third experi-
ment did not reveal any significant difference across trial subgroups (Fig. S4C). Fifth, a drift in deterministic
biases predicts a larger measure of these biases for close than for distant trials. Estimating the contribution
of bias to total variability separately for different trial subgroups (same trial groupings as in Fig. S4C) did
not reveal any significant change in bias magnitudes between either trial subgroups (Fig. 6B). Finally, we
found that in both the two- and three-decks condition, participants choice consistency across repeated se-
quences was unrelated to the strongly varying temporal distance between the paired sequences (logistic
regression, both t17 < 0.9, p > 0.2; trial distance mean = 72 trials, ≈ 7min.; interquartile range = 42 trials,
≈ 3 to 12min.). This validated our assumption that deterministic biases are systematic across trials. In
combination, this makes it unlikely that our measure of the contribution of deterministic biases to overall
variability was strongly influence by a drift in these biases across trials.
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2.9 Model fitting, fit validation, and number of parameters

To distinguish between the different hypotheses, we fitted each model to the choice behavior of each par-
ticipant separately by maximum-likelihood, following a two-step procedure. First, we drew 1,000,000
samples (+ 50,000 burn-in; 100,000 samples + 5,000 burn-in for the above noise structure models) from the
parameter posterior (assuming a uniform prior over a limited parameter range) using a population Markov
Chain Monte Carlo (MCMC) method (Goodman and Weare, 2010) implemented in Python (Foreman-
Mackey et al., 2012), and then chose the sample associated with the largest posterior probability as a starting
point for pseudo-gradient ascent on this posterior. The found mode resulted in the maximum-likelihood
parameters. We performed this two-step procedure: 1) to avoid getting stuck in localized maxima, 2) to
estimate the parameter uncertainty by the width of the posterior, and 3) to ensure finding the posterior
mode rather than a close-by set of parameters.

Wherever shown, Bayesian credible intervals on parameter estimates were found in two steps. First, we
ensured good sample coverage of the posterior by re-sampling all posterior samples by drawing them with
replacement from the set of MCMC samples with a probability proportional to their posterior probability.
Second, we computed the x% credible intervals by the x/2th and (1 − x/2)th percentile of the re-sampled
set.

The log-likelihood per subject, model, and condition resulted from summing the log-likelihoods for
the subjects choices for individual trials (or trial pairs for the noise structure models). Per trial, the choice
likelihoods were given by the softmax function for selection, likelihood and accumulation noise models,
and the cumulative Gaussian for all other models. To avoid confounds due to occasional random responses
and response biases, we added to each model a lapse probability (choosing uniformly random rather than
according to choice model) and K − 1 response biases (fixed offset added to final log-posterior for all but
one category, see Fig. S7). The resulting total number of parameters per model is provided further below.

Based on these model fits, we performed two types of Bayesian model comparisons. In both cases, we
used the Bayesian model evidence (approximated by the Bayesian Information Criterion) as a measure of
model fit quality. This model evidence adequately takes into account the model complexity by penalizing
models with an overly large number of parameters. The fixed-effects comparison assumes all participants
to have used the same underlying model to generate their behavior, such that the overall model evidence
for modelM is proportional to the product of model evidences for modelM for all participants. Based on
this model evidence, we compared different models by computing their Bayes factor as the ratio of model
evidences of the compared model. A Bayes factor exceeding 100 was considered decisive evidence sup-
porting the model in the nominator of this factor (Kass and Raftery, 1995). The random-effects comparison
is more conservative in allowing different participants to use different models to generate their behavior,
and aims at inferring the distribution over models that participants draw from (Stephan et al., 2009). For
this comparison, we computed support for the most likely model by the exceedance probability (by MCMC
sampling, 20,000 samples + 10,000 burn-in), which is the (second-order) probability that participants were
more likely to choose this model to generate behavior than any alternative model.

2.9.1 Validating the model fitting procedure

To assess the validity of our model comparison approach in discriminating the three hypothesized sources
of choice variability, we performed the following validation procedure: we generated synthetic choice data
from the sensory, inferential or selective source models with variability magnitudes corresponding to the
best-fitting values predicting human choice variability. Specifically, For each of the 22 subjects and both
two/three-category conditions we performed three simulations, each introducing variability at a different
point in the decision-making process (sensory/inference/selection), using the models described further
above. We then applied our model fitting procedure to the synthetic choice data for estimating the discrim-
inative power of our model comparison procedure (Fig. S2D and Fig. 3C in main text). We found that in
both conditions, synthetic choice variability reflecting sensory and selective imperfections were classified
as stemming from sensory and selective imperfections, respectively, with more than 99% of correct classific-
ation in terms of both fixed- and random-effects statistics. Synthetic choice variability reflecting inferential
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imperfections were classified as stemming from inferential imperfections with 90% of correct classification
(Fig. 3C in main text). Moreover, Fig. S2A shows that our procedure was able to accurately differentiate
inferential from attentional sources of choice variability. Lastly, repeating the same analysis with synthetic
choice data using heavy-tailed instead of Gaussian inference variability revealed that model-fitting was
not sensitive to the specifics of the assumed variability structure (Fig. S2D). Overall, this indicates that our
approach was able to accurately recover the sources of choice suboptimality, and was even conservative
in detecting inferential imperfections by tending to attribute choice variability stemming from inferential
imperfections to peripheral imperfections rather than the converse.

2.9.2 Number of parameters

The following table shows the total number of parameters, depending on the model type and the added
biases. The number of base parameters depends on the number of categories and if trials are modeled
individually (experiments 1, 2 and 3) or in pairs (experiment 3). It does not depend on the assumed type of
variability (e.g. inference variability, sensory variability, . . . ). Each bias adds additional parameters to the
model. As the linearly changing exponential temporal bias is strictly more general than the time-invariant
type, only one of the two temporal biases can be added at one time.

individual trials trial pairs
2 categories 3 categories 2 categories 3 categories

Variability model 1 1 2 4
Response biases 1 2 1 2
Lapse probability 1 1 1 1
Spatial biases
Orientation bias +1
Oblique effect +1
Confirmation bias +1
Temporal biases
Time-invariant exponential +1
Linearly changing exponential +2

Total 3 – 8 4 – 9 4 – 9 7 – 12
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2.10 Computing the information loss for the 2-categories condition

We quantified the information loss by computing the mutual information between generative category and
log-likelihood ratio for a single stimulus orientation for both the noise-free and the noisy case. The informa-
tion loss itself is the mutual information for the noisy case divided by that of the noise-free case. By the data
processing inequality, this fraction is guaranteed to be at most one. We also decomposed this loss into con-
tributions due to unstructured variability and deterministic biases. Due to the non-linear mapping between
variability and information loss, this decomposition was not unique, such that we computed the bounds on
the loss decomposition within which it is compatible with the estimated variability decomposition. These
bounds are shown in Fig. 6C (main text).

Denoting the generative category by x and the noise-free log-likelihood ratio by ∆`, the mutual inform-
ation can be written as

MI(x; ∆`) =
∑
x

p(x)

(∫
p(∆`|x) log p(∆`|x)d∆` −

∫
p(∆`|x) log p(∆`)d∆`

)
. (S99)

The expression for the noisy case is analogous, with ∆`’s replaced by the noisy log-likelihood ratio, ∆̃`.
To compute the mutual information, we first need to find an expression for p(∆`|x). For a given stimulus

orientation θ, the log-likelihood ratio of category one vs. category two is given by

∆` = `··1 − `··2 = 2κ cos (2(θ − µ1)) , (S100)

where we have used the fact that, in the 2-categories condition, we have µ2 = µ1 + π
2 . The above shows

that ∆` is a deterministic function of θ that is bounded by −2κ ≤ ∆` ≤ 2κ. Thus we can use the generative
model to find p(∆`|x) by

p(∆`|x) = p(θ|x)

∣∣∣∣ dθ
d∆`

∣∣∣∣ =
eκ cos(2(θ−µx))

πI0(κ)

∣∣∣∣ 1

−4κ sin (2(θ − µ1))

∣∣∣∣ , (S101)

where the second equality is based on replacing dθ
d∆`

by one over the evaluated derivative d∆`

dθ . What
remains is to re-express the θ’s in the above in terms of ∆`’s. Considering first x = 1, we find that

θ =

{
µ1 + 1

2 cos−1
(

∆`

2κ

)
if θ ≤ µ1,

µ1 − 1
2 cos−1

(
∆`

2κ

)
otherwise

(S102)

Using this expression, the evenness of cos(·), and sin
(
± cos−1(a)

)
= ±
√

1− a2 reveals after a few lines of
algebra that

p(∆`|x = 1) =
e

∆`
2

4κπI0(κ)

√
κ2 − ∆2

`

4

. (S103)

An analogous derivation for x = 2 leads to

p(∆`|x = 2) =
e−

∆`
2

4κπI0(κ)

√
κ2 − ∆2

`

4

. (S104)

With the above, the marginal p(∆`) is given by

p(∆`) =
1

2
(p(∆`|x = 1) + p(∆`|x = 2)) , (S105)

where we have used p(x = 1) = p(x = 2) = 1
2 . Based on these expressions, we have computed MI(x; ∆`)

by numerically evaluating the required integrals in Eq. (S99) over ∆` ∈ [−2κ, 2κ], using the integral
function of MATLAB (The MathWorks Inc., 2013).
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To find the mutual information for the inference noise model, we have used

p
(

∆̃`|∆`

)
= N

(
∆̃`|∆`, 2σ

2
inf

)
, (S106)

where σ2
inf is the estimated inference noise variance that appears twice, as the log-likelihood ratio is the

difference between two noisy log-likelihoods. This results in the conditional densities

p(∆̃`|x) =

∫ 2κ

−2κ

p
(

∆̃`|∆`

)
p(∆`|x)d∆`, (S107)

whose values we again found by numerical integration using the integral function. The marginal p
(

∆̃`

)
was found as before. Based on these expressions we computed MI

(
x; ∆̃`

)
again numerically, using the

integral function, but this time over ∆̃` ∈ [−2κ − 4
√

2σinf , 2κ + 4
√

2σinf ] to capture four standard
deviations of the Gaussian inference noise. How information loss depends on σ2

inf is shown in Fig. S3D.
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