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Family of closed-form solutions for two-dimensional correlated diffusion processes
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Diffusion processes with boundaries are models of transport phenomena with wide applicability across many
fields. These processes are described by their probability density functions (PDFs), which often obey Fokker-
Planck equations (FPEs). While obtaining analytical solutions is often possible in the absence of boundaries,
obtaining closed-form solutions to the FPE is more challenging once absorbing boundaries are present. As a
result, analyses of these processes have largely relied on approximations or direct simulations. In this paper, we
studied two-dimensional, time-homogeneous, spatially correlated diffusion with linear, axis-aligned, absorbing
boundaries. Our main result is the explicit construction of a full family of closed-form solutions for their PDFs
using the method of images. We found that such solutions can be built if and only if the correlation coefficient
ρ between the two diffusing processes takes one of a numerable set of values. Using a geometric argument, we
derived the complete set of ρ’s where such solutions can be found. Solvable ρ’s are given by ρ = − cos ( π

k ),
where k ∈ Z+ ∪ {+∞}. Solutions were validated in simulations. Qualitative behaviors of the process appear to
vary smoothly over ρ, allowing extrapolation from our solutions to cases with unsolvable ρ’s.
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I. INTRODUCTION

Diffusion processes with absorbing boundaries are essen-
tial tools to model a multitude of real-world processes. In
neuroscience, for example, they act as models of decision-
making [1] and neuronal action potential generation [2]; in
finance, they are used for stock pricing [3] and risk model-
ing [4]; and in physics, they have, for example, been used
to model movement of charges through conductors [5,6].
Some applications involve higher-dimensional diffusions in
which the process can become spatially correlated. For exam-
ple, decision-making models can assume multiple, correlated
sources of decision-related evidence [7]. In models of neural
action potentials, correlated diffusions might occur if neurons
receive shared inputs [8]. In these cases, it is essential to
understand how these correlations impact the behaviors of the
process.

Due to their large number of applications, diffusion pro-
cesses with boundaries have been widely studied. A funda-
mental quantity describing these processes is the probability
density function (PDF) of x(t ), here denoted as �(x, t ). Its
time evolution is described by the Fokker-Planck equation
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(FPE) [9]. Once the PDF is known by solving the FPE, mul-
tiple other process properties, such as the survival probability
and boundary first-passage times, can be derived. Therefore,
finding the PDF is the first step toward a better understanding
of the process. Much work has been performed on finding
solutions to the FPE for one-dimensional processes. In this
case, PDFs for problems with one or two time-invariant ab-
sorbing boundaries can be found with the method of images,
which constructs PDFs as linear superpositions of free-space
solutions [9]. In higher dimensions, however, the geometry of
the process becomes significantly more complex, especially
in the presence of a nonzero drift. As a result, analytic results
are scarce despite decades of effort. Notable work includes
Ref. [10], which provided analytic PDF expressions for two-
dimensional processes with orthogonal boundaries on one
side but without drift. Later work provided some corrections,
and proposed numerical methods to approximate the PDFs
of processes with drift [11]. Most relevantly for our work is
Ref. [12] (Sec. 6), which provided PDFs for drifting two-
dimensional, correlated diffusion processes as infinite sums of
Bessel functions with space- and time-dependent arguments.

In particular for two-dimensional, correlated diffusion pro-
cesses, the majority of previous work only provided analyt-
ical PDF expressions that give limited insight, and whose
numerical evaluation might be cumbersome. Closed-form
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expressions are known only in rare cases, such as for uncor-
related processes or processes with a correlation coefficient
of ρ = −0.5 [7]. Reference [13] derived the solution for
ρ = −

√
2

2 , but it did not provide the resulting expression.
Such closed-form expressions have multiple benefits. They
are usually easier to interpret than direct simulations, and they
can provide a core around which an analytical approximation
can be found by perturbative expansions (e.g., colored noise
diffusion from white noise [2,8,14]). For numerical analyses,
closed-form expressions are significantly cheaper to compute
than simulations, and they are easy to evaluate to machine
precision with finite operations.

Our aim was to find closed-form expressions for PDFs that
describe two-dimensional, correlated diffusions with drift in
the presence of two time-invariant, orthogonal, and absorbing
boundaries. We approached this problem by focusing on
solutions that can be constructed with the method of images
(MoI). In particular, we aimed to determine under which
circumstances we can find solutions that are expressible with
such a finite number of images. In what follows, we show that
the only property that determines if such a solution exists is
the diffusion process’ correlation coefficient ρ. Specifically,
with the exception of ρ = 1, no close-form solution exists
for positive ρ. Furthermore, for negative ρ’s, we can only
find solutions for a countable but infinite number of ρ’s.
For those, we provide the closed-form solutions, and we
demonstrate their validity in numerical simulations. Thus, our
work provides all solutions to the FPE that contain countable
numbers of images and can be found with the MoI.

II. RESULTS

We consider a two-dimensional (2D) diffusion process
with drift, denoted as x(t ). Its dynamics are given by

dx(t ) = μdt + ξ(t ), (1)

where μ is the drift rate and ξ(t ) is a Gaussian process. ξ(t )
has zero mean and covariance,

〈ξ(t )ξ(t ′)T 〉 = δ(t − t ′)�, (2)

where δ(·) is the Dirac delta function and

� =
(

1 ρ

ρ 1

)
, ρ ∈ [−1, 1]. (3)

While we develop our solutions for covariance matrices of
this specific form, our results also capture processes x̃(t ) with
arbitrary positive-definite covariance matrices �̃ by letting
x1(t ) ≡ x̃1(t )/

√
�̃11 and x2(t ) ≡ x̃2(t )/

√
�̃22. The probability

density function �(x, t ) obeys the FPE,

∂�

∂t
= −μ · ∇x� + 1

2

2∑
i, j=1

�i j
∂�

∂xi∂x j
. (4)

We assume the initial condition x(0) = s(0). This is equiv-
alent to

�(x, t = 0) = δ(x − s(0) ). (5)

Without loss of generality, we assume the process to be in the
third quadrant QIII in Cartesian coordinates. Thus,

s(0) ∈ QIII ≡ {x|x1 < 0, x2 < 0}. (6)

The process is bounded from above by two linear, axis-
aligned, absorbing boundaries at

B1 ≡ {x|x1 � 0, x2 = 0}, (7)

B2 ≡ {x|x1 = 0, x2 � 0}, (8)

such that it additionally needs to obey Dirichlet (also known
as absorbing) boundary conditions

∀t � 0, ∀x ∈ B1 ∪ B2 : �(x, t ) = 0. (9)

These boundary conditions ensure that no probability mass
enters the space outside the third quadrant [see Ref. [9],
Sec. 5.7, Eq. (63)]. Finally, the solution for �(x, t ) must be
non-negative everywhere. This is guaranteed by the boundary
conditions and the maximum principle of elliptic PDEs, to
which the considered FPE belongs (Ref. [15], Chap. 2).

In what follows, we study the Dirichlet problem of obtain-
ing solutions [�(x, t )] to Eq. (4) under constraints Eqs. (5)
and (9). We will derive necessary and sufficient conditions
for the existence of MoI solutions, and we will determine
these solutions in cases in which they exist. As we will show,
such solutions only exist for a discrete set of correlation
coefficients ρ. To show this, we will first discuss a general
expression for MoI constructions. Second, we will identify
the conditions under which MoI constructions satisfy the
boundary condition, and third, we will identify the initial
condition. Our approach reveals a restricted, discrete set of ρ’s
for which exact solutions can be found, while at the same time
providing closed-form expressions for these solutions. Lastly,
we will validate exact solutions with numerical simulations of
the process.

A. MoI construction of potential solutions

Let us ignore for now the boundary condition, Eq. (9). In
this case, free-space solutions to the FPE are known to be the
PDF of a bivariate Gaussian distribution with mean s(0) + μt
and covariance �t ,

N (s(0) + μt,�t ) ≡ 1

2πt
√|�|e− 1

2t (x−s(0)−μt )T
�(x−s(0)−μt ),

(10)

where � = �−1.
The MoI constructs solutions to a PDE with boundary con-

ditions by adding scaled image functions, N (s(i) + μt,�t ), to
Eq. (10). Hereafter, we will simply refer to the image function
as an image s(i), and the point in space specified by s(i) as a
source s(i). The resulting MoI construction has the form

�(x, t ; s(0) ) = N (s(0) + μt,�t ) +
N−1∑
i=1

aiN (s(i) + μt,�t ),

(11)

where ai is the image weight associated with image s(i). MoI
constructions of the form of Eq. (11) satisfy the FP equation
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due to linearity of PDEs, and they will satisfy Eq. (5) for
any value of the weights if none of the added images are in
the third quadrant. Furthermore, they will satisfy Eq. (9) if
images cancel each other on the boundaries. We denote the
set of sources by � = {s(i)}N−1

i=0 and the set of image weights
by κ = {ai}N−1

i=0 (with constant a0 = 1). Overall, finding an
expression of the form of Eq. (11) that meets all criteria
implies that we have identified a closed-form solution.

B. Satisfying the boundary conditions

1. Placement of canceling images

As discussed above, an MoI construction satisfies the
boundary condition if and only if images cancel each other at
the boundaries. More specifically, for any image with source
s(i) ∈ � and at any time t , there should be a set of images that
cancel it on both boundaries ({B1,2}).

Importantly, linearity of exponential functions in Eq. (11)
requires all images canceling each other on a particular bound-
ary to have the same exponent on that boundary for all times
t � 0. For instance, to cancel image s(i) on B1, we must add at
least one other image s( j) to � that satisfies

(x − s(i) − μt )T �(x − s(i) − μt )

= (x − s( j) − μt )T �(x − s( j) − μt ) (12)

for all t � 0 and x ∈ B1.
To determine canceling images that satisfy this condition,

we rewrite Eq. (10) by separating terms linear and quadratic
in s in the exponent,

N (s + μt,�t ) = 1

2πt
√|�|e− 1

2t (x−μt )T �(x−μt )

× e− 1
2t sT �se

1
t (x−μt )T �s. (13)

The first exponent is independent of s, and therefore shared by
all images; matching the second exponent requires

s( j) ∈ E (s(i) ) = {
x|xT �x = s(i)T

�s(i)
}
; (14)

matching the last exponent for x ∈ B1,2, respectively, requires

s( j) ∈ L1,2(s(i) ) = {
x
∣∣eT

1,2�x = eT
1,2�s(i)

}
, (15)

where e1 = (1, 0)T and e2 = (0, 1)T are the Cartesian basis
vectors. Geometrically, E (s(i) ) is an ellipse and L1,2(s(i) ) are
lines, all of which pass through s(i) (Fig. 1). The ellipse and
each of the lines intersect at s(i) and, in general, another point
s( j), leading to a unique canceling image.

Algebraically, it is easy to show that the mapping from to-
be-canceled image source s(i) to canceling image source s( j)

for boundaries B1,2, respectively, is given by

B1 : s( j) =
(

1 −2ρ

0 −1

)
s(i) ≡ �1(ρ)s(i), (16)

B2 : s( j) =
( −1 0

−2ρ 1

)
s(i) ≡ �2(ρ)s(i). (17)

Hereafter, we drop the dependency of the mapping �1,2 on ρ

for notational convenience. Both �1,2 are involutory, that is,
�−1

k = �k for both k ∈ {1, 2}.

FIG. 1. Example construction to cancel s(0) at the two bound-
aries, here for ρ = − 1

2 and some arbitrary s(0). The intersections of
L1,2 with E uniquely determine the placement of image sources to
cancel s(0) at B1,2.

To find the scaling coefficient a j for the canceling image,
we solve

aiN (s(i) + μt,�t ) = −ajN (s( j) + μt,�t ) (18)

for all t � 0 and for all x ∈ B1 or x ∈ B2, leading to

a j = −aie
μT �(s( j)−s(i) ). (19)

What would happen if E (s(i) ) and Lk (s(i) ) (for k ∈ {1, 2})
only intersect at a single point? In this case, the line Lk (s(i) )
would be a tangent to the ellipse at s(i). It is easy to show
that, for L1 (or L2), this only occurs if s(i)

2 = 0 (or s(i)
1 = 0),

that is, if the image to be canceled happens to be located
on one of the axes. In those cases, s( j) = �ks(i) = s(i), such
that the canceling image is mapped onto the image to be
canceled. Furthermore, they receive opposite weights, that is,
a j = −ai, such that they cancel each other, and could both be
removed. While this is an intuitively odd scenario, it does not
invalidate our approach, as the mappings �1,2 remain valid.
Furthermore, as will become apparent later, no valid solution
will have this property. Therefore, it is not a case that requires
special attention.

2. Finding a complete set of images

We now consider how a set of images following the MoI
construction can satisfy the boundary condition in Eq. (9). As
we have two boundaries, two additional images, �1s(0) and
�2s(0), are introduced to cancel the density from image s(0).
The density of image �1s(0) is canceled on boundary B1 by
image s(0); however, it introduces additional density at B2.
Similarly, image �2s(0) introduces some additional density
at B1. Therefore, yet another pair of images, �2�1s(0) and
�1�2s(0), are needed, and a further pair of images to cancel
their densities, and so on. This leads to a pairwise construction
of images [Fig. 2(a)].

We proceed with the ansatz that having a finite set of
images, that is, |�| < ∞, is a necessary condition for the
existence of solutions (except when ρ = −1). The motivating
intuition is that one cannot introduce infinitely many sources

032132-3



SHAN, MORENO-BOTE, AND DRUGOWITSCH PHYSICAL REVIEW E 100, 032132 (2019)

without placing any in the third quadrant, thus violating the
initial condition. In a later section, this is shown to indeed be
the case.

The number of images is finite if and only if, at some point,
new images to be added are already in the set. Following
the pairwise construction [Fig. 2(a)], this occurs only if there
exist images that cancel two other images across different
boundaries, that is,

∃s(i, j,k) ∈ � : s(k) = �1s(i) = �2s( j). (20)

The alternative of canceling two images across the same
boundary, that is, �1s(i) = �1s( j), is invalid because this
would imply s(i) = s( j), in which case additional images are
not necessary.

Due to the involutoriness of �1,2, Eq. (20) leads to s(i) =
�1s(k) and s( j) = �2s(k). Here, s(i) is the image that is can-
celed by image s(k) across B1. Unless s(i) is the original image
s(0), s(i) was introduced to cancel another image �2s(i) =
�2�1s(k) across B2. This implies that, by further alternating
application of �1 and �2, we can trace its origin back to
s(0). It follows that if two images “meet” in the fashion of
Eq. (20), then the complete set of images can be generated by
following the sequence �1s(0),�2�1s(0),�1�2�1s(0), . . .

until we find an image with a source that coincides with
the original location s(0) [Fig. 2(b)], resulting in |�| < ∞.
Formally, this sequential image construction is given by the
source-generating function

�
(
s(0), n

) =
{

(�2�1)n/2s(0) if n is even,

�1(�2�1)(n−1)/2s(0) if n is odd.
(21)

Following this formalism, we define all images with even n
“even-numbered images” (and similarly for “odd-numbered
images”). For the number of images to be finite, we require

∃n ∈ Z+ : �(s(0), n) = s(0). (22)

This condition cannot hold for odd n, as |� j | = −1 for both
j ∈ {1, 2}, such that the product of an odd number of these
mapping has a determinant of −1, such that the product cannot
equate the identity matrix. Therefore, we consider only even
n. Letting n = 2k, Eq. (22) equals

∃k ∈ Z+ : (�2�1)k = I. (23)

FIG. 2. Two constructions to create a complete set of images,
here illustrated for ρ = − 1

2 . Note that the same source can be
expressed in multiple ways, allowing two formalisms to characterize
the same set of images. (a) Pairwise construction. (b) Sequential
construction.

To show which values of ρ satisfy this condition, let us first
introduce a whitened process for mathematical convenience.

3. Whitening the process

We have shown that all images lie on the ellipse E (s(0) )
whose eccentricity increases with |ρ|. We can simplify the
analysis of image locations by whitening the process, after
which all images come to lie on a circle, such that the location
of each image is fully determined by its angle. To perform
this whitening, we desire to find a linear mapping Q that
maps the original process x(t ) into its whitened equivalent,
x̂(t ) = Qx(t ). Under the required whitening constraint that
� = QT Q, one choice of Q that is symmetric is given by

Q = q

(
ρ

√
1 − ρ2 − 1√

1 − ρ2 − 1 ρ

)
, (24)

with

q = sgn(ρ)√
2(1 − ρ2)(1 −

√
1 − ρ2)

. (25)

This mapping, Q, has singularities at ρ = ±1, where the
process collapses into a 1D process with one or two absorbing
boundaries for ρ = 1 and −1, respectively. Solutions in these
special cases are known, and are given in Ref. [9] [Sec. 5.7,
Eqs. (71) and (78)]. We thus restrict our discussions to 0 <

|ρ| < 1.
The consequences of this remapping are as follows (see the

Appendix for derivations). First, the image cancellation maps
for the whitened process become �̂1,2 = Q�1,2Q−1, which,

as before, obey �̂
2
1 = �̂

2
2 = I. Second, as desired, all images

are now located on the circle

x̂T x̂ = ŝ(0)T ŝ(0), (26)

where ŝ(0) = Qs(0) (Fig. 3). Third, �̂2�̂1 is a clockwise
rotation matrix of angle 2α [which we denote as R(2α)],
where α = arccos(ρ) ∈ (0, π )). Thus, if we define the source-
generating function for the whitened process analogous to

FIG. 3. Whitening the diffusion (a) expands (for 0 < ρ < 1) or
(b) shrinks (for −1 < ρ < 0) the original third quadrant (shaded)
into a new region (green). The ellipse (gray line) upon which images
are found becomes a circle (green line). Boundaries (B1, B2, thick
black line) are rotated into or away from the third quadrant (B̂1, B̂2,
thick green line). s(0) here was chosen not to lie on the identity line,
to show the resulting angular displacement of ŝ(0) relative to s(0) in
such circumstances.
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Eq. (21) by

�̂(ŝ(0), n) =
{

(�̂2�̂1)n/2ŝ(0) if n is even,

�̂1(�̂2�̂1)(n−1)/2ŝ(0) if n is odd,
(27)

then all even-numbered sources satisfy

ŝ(2m) = (�̂2�̂1)mŝ(0) = R(2mα)ŝ(0) (28)

for positive integers m ∈ Z+. Fourth, the odd-numbered
sources can be found similarly by

ŝ(2m+1) = �̂1ŝ(2m) = F{R[(2m + 1)α]ŝ(0)}, (29)

which corresponds to a clockwise rotation of ŝ(0) by (2m +
1)α, followed by a flip across the antidiagonal,

F =
(

0 −1
−1 0

)
. (30)

With these properties established, let us return to the ques-
tion about which values of ρ lead to a finite set of images,
|�| < ∞. As for the nonwhitened process, this number is
finite if the source-generating process returns to its origin after
a finite number of steps. We have already established that this
only holds for an even number of steps. Therefore, there needs
to exists some integer k such that ŝ(2k) = ŝ(0). By Eq. (28),
this implies R(2kα) = I, which holds as long as 2kα is some
multiple of 2π (i.e., one or several full rotations). Overall, this
means that the only values of ρ that lead to a finite set of
images are

ρ = cos (α) with α = lπ

k
, k ∈ Z+, l = 1, . . . , k − 1,

(31)
where we have used α = arccos(ρ), and we have restricted l
to 1 � l � k − 1 to ensure l/k < 1.

C. Satisfying the initial condition

So far we have focused on satisfying the boundary condi-
tion, Eq. (9), which has led to a restriction on the values that ρ

can take. Let us now consider which of those ρ’s additionally
satisfy the initial condition, Eq. (5). This condition implies
that no other image than s(0) can lie in the third quadrant.
After whitening, the third quadrant QIII is mapped into a
circular sector

Q̂III =
{

x̂|x̂2 �
√

1 − ρ2 − 1

ρ
x̂1,

sgn(ρ)x̂1 � sgn(ρ)

√
1 − ρ2 − 1

ρ
x̂2

}
. (32)

For ρ < 0 or ρ > 0, the corresponding boundaries are ro-
tated into or out of the original third quadrant, respectively
(Fig. 3), by

ψ = arctan

(√
1 − ρ2 − 1

ρ

)
= α

2
− π

4
. (33)

Therefore, the angular width of Q̂III is π/2 − 2ψ = π − α.
To determine when it is possible to avoid placing sources

(other than ŝ(0)) in the whitened third quadrant, Q̂III, we will
use the fact that all sources in the whitened space are located

FIG. 4. Using polar coordinates, the third quadrant after
whitening, qIII (green shade), and region D (yellow shade) together
have width 2π − 2α; geometrically adjacent even-numbered sources
(red dots) have angular distance β. The odd-numbered sources are
indicated by blue crosses. (a) 0 < ρ < 1 (α = 1

5 π ). (b) −1 < ρ < 0
(α = 4

5 π ).

on a circle, such that it is sufficient to describe any source
ŝ(i) by its polar angle θi. In addition, we will use the polar
representation for the third quadrant,

Q̂III = {(r, θ )|θ ∈ qIII} with qIII =
[

3π

4
+ α

2
,

7π

4
− α

2

]
,

(34)
where qIII is the range of polar angles within the third quadrant
in whitened space. A source ŝ(i) falls into the third quadrant
if θi ∈ qIII.

1. An infinite number of images

We can now revisit the previous ansatz that, unless ρ=−1,
sets with an infinite number of images will violate the ini-
tial condition. To do so, note that, by Eqs. (28) and (31),
consecutive even-numbered images are placed at an angular
distance 2α = 2lπ

k from each other. However, as a complete
construction might imply multiple full rotations (if l > 1),
these consecutive even-numbered sources are not necessarily
the even-numbered sources closest to each other. Indeed, by
periodicity, the angular spacing between all even-numbered
sources is regular (Fig. 4) and given by

β = 2π

k
. (35)

Therefore, once the number of images approaches infinity,
β approaches zero. However, for any |ρ| < 1, α < π such
that the angular width of Q̂III remains positive. This implies
that some images will fall into the third quadrant, such that
such an infinite number of images will violate the initial
condition. This argument does not apply to ρ = −1, for which
the whitening transformation is not well-defined.

2. A finite number of images

Let us now focus on finite image sets. Since, by Eq. (29),
there is a one-to-one mapping from source ŝ(2m) to source
ŝ(2m+1), we can reformulate the constraint that ŝ(2m+1) /∈ Q̂III

as a constraint on source ŝ(2m). That is, there exists some
region D such that θ2m /∈ D guarantees that θ2m+1 /∈ qIII. This
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TABLE I. Full expression of closed-form solutions for 2k images, corresponding to correlation coefficient ρ = − cos (π/k). Image
locations are given in two alternative formalisms. The image mapping formalism is based on Eq. (21). The image rotation formalism is
based on Eqs. (28) and (29) (see the Appendix for derivation). Both solutions have a computational complexity that scales linearly with the
number of images.

Image mapping formalism Image rotation formalism

s( j) =
{

(�2�1) j/2s(0) j is even,

�1(�2�1)( j−1)/2s(0) j is odd,

�1 =
(

1 −2ρ

0 −1

)
, �2 =

( −1 0

−2ρ 1

), s( j) = 1

sin
(

π

k

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
sin

(
jα + π

k

)
sin ( jα)

− sin ( jα) − sin
(

jα − π

k

)
)

s(0) j is even,

(
sin ( jα) sin

(
jα − π

k

)
− sin

(
jα + π

k

) − sin ( jα)

)
s(0) j is odd,

α = k − 1

k
π,

�(x, t ) = N
(
s(0) + μt, �t

) +
2k−1∑
j=1

ajN (s( j) + μt, �t ),

a( j) = (−1) j exp[μT �(s( j) − s(0) )], where � = �−1.

region is given by (see the Appendix)

D =
[
−π

4
+ 3α

2
,
α

2
+ 3π

4

]
. (36)

Therefore, we only need to make sure that the even-numbered
sources do not fall into qIII ∪ D. Incidentally, qIII and D are
adjacent, such that together they form a single sector with a
combined width 2π − 2α (Fig. 4). For what follows we will
again exclude the special cases of ρ ∈ {±1, 0} where solutions
are known. This corresponds to taking l ∈ 1, . . . , k − 1 in
Eq. (31).

As the angular width of both qIII and D individually is
π − α, a necessary condition for even-numbered sources to
“avoid” them is for the angle between two geometrically
adjacent sources β to be larger than this region, that is,

β = 2π

k
> π − α ⇒ k − l < 2, (37)

where the second inequality follows from α = lπ/k. We will
consider the two cases of positive and negative correlations ρ

in turn.
For all 0 < ρ < 1, we have the additional constraint of

2l < k [since ρ = cos ( lπ
k )]. Together with the previous in-

equality, this implies l < 2 and thus l = 1. However, there
is no value of k ∈ Z+ that satisfies both inequalities. Thus,
initial conditions cannot be satisfied for any 0 < ρ < 1,
regardless of ŝ(0).

FIG. 5. Illustration of full solutions in the nonwhitened space.
Even- and odd-numbered sources are shown as red and blue dots,
respectively. (a) k = 3 (ρ = − 1

2 ). (b) k = 5 (ρ ≈ −0.809).

Since the original source is in the sector qIII, a sufficient
condition for all other sources to skip the sector is

β = 2π

k
� 2π − 2α ⇒ k − l � 1, (38)

which holds if we simply choose l = k − 1. On the other
hand, a necessary condition is that β is larger than half the
width of the combined qIII ∪ D region, such that even if ŝ(0)

approaches the center of that region, adjacent sources will be
outside of it. This leads to

β = 2π

k
> π − α ⇒ k − l < 2, (39)

which only holds for l = k − 1. Thus, for −1 < ρ < 0, initial
conditions are satisfied if and only if l = k − 1.

D. Exact solutions and their construction

Having derived the necessary and sufficient conditions on
ρ for 0 < |ρ| < 1 to satisfy the initial boundary condition, we
can now combine these solutions with those known for ρ = 0
[Ref. [7], Eq. (A.9)], ρ = 1 [Ref. [9], Sec. 5.7, Eq. (71)], and
ρ = −1 [Ref. [9], Sec. 5.7, Eq. (78)]. Overall, that leads to the
necessary and sufficient conditions on ρ for the existence of
an exact solution to be given by

ρ = − cos
(π

k

)
, k ∈ Z+ ∪ {+∞}, (40)

where k = ∞ corresponds to the case of ρ = −1. It is worth
reiterating that this condition holds regardless of ŝ(0). So-
lutions, if they exist, are given by the MoI construction in
Table I. This construction also recovers the known solutions
for ρ = −1 (see the Appendix). Examples for k = 3 and 5 are
shown in Fig. 5.

E. Validation with simulations

To validate the closed-form solutions we obtained, we
compared them with Monte Carlo simulations based on
Eq. (1), using a time step-size δt = 0.1 ms and 50 000 rep-
etitions per figure panel.

We first compared our closed-form expressions of �(x, t )
with those obtained from simulations (Fig. 6). Our expres-
sions show good agreement with results from simulation.
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FIG. 6. Illustration of PDFs at different t obtained from Monte
Carlo simulations (top row) and closed-form expressions (bottom
row). The diamond marks s(0) and the arrow indicate the direction of
drift. Solid lines indicate boundaries. Part (a) uses k = 3 (ρ = − 1

2 ),
μ = (1, 2), s(0) = (−1.5,−1.5); (b) uses k = 8 (ρ ≈ −0.924), μ =
(3, 1), s(0) = (−1, −1.5). Note that s(0) and μ differ between (a) and
(b). The analytical results were computed using the image rotation
formalism. The image mapping formalism yielded, as expected,
equivalent results (not shown).

A quantity of interest for diffusion processes with Dirichlet
boundaries is the survival probability, defined as the prob-
ability mass within boundaries at a given time. Once these
survival probabilities are known, it is easy to compute other
quantities, such as the probability flux across boundaries.
Using our expressions, the survival probabilities become a
weighted sum of the cumulative distribution functions (CDFs)
of the different images. Since each image is a scaled bivariate
Gaussian distribution, evaluation of its CDFs can be carried
out efficiently (we used the stats.multivariate_normal
object in SciPy). We compared the survival probability ob-
tained from expressions to that obtained from simulations
[Fig. 7(a)]. The two again show good agreement.

Finally, we validated by simulations that qualitative behav-
iors of the process vary smoothly with ρ, even though we
could only find closed-form expressions for a limited set of

FIG. 7. (a) Survival probability [k = 3 (ρ = − 1
2 )]. Results from

numerically integrating closed-form expressions are shown in black;
results from simulations are shown in gray. (b) Survival probability
at a fixed time increases as a function of ρ. (c) Survival probability
over time for some solvable ρ’s. In all panels, μ = (2, 1) and
s(0) = (−1.5,−1.5). All numerical solutions were computed using
the image rotation formalism.

ρ’s. To do so, we computed the survival probability from these
simulations at fixed time t = 1 for processes with different
ρ’s. As shown in Fig. 7(b), the survival probability varies
smoothly (and for most ρ’s, linearly) as a function of ρ, and
it matched those found numerically for the ρ’s for which such
numerical evaluation was possible. To further demonstrate
this smoothness, we plotted the survival probability across
time for various solvable ρ’s [Fig. 7(c)]. The smoothness
validates that we can generalize qualitative insights from
solvable ρ’s to unsolvable ones.

III. DISCUSSION

We used the method of images (MoI) to derive a fam-
ily of closed-form, analytical solutions for two-dimensional
Fokker-Planck equations (FPEs). The resulting solutions are
unique, exact, and compact. Using geometric arguments, we
derived necessary and sufficient conditions for MoI solutions
to exist, and we validated these solutions through Monte Carlo
simulations.

While we focused on two-dimensional spaces, it should
be possible to generalize our approach to higher-dimensional
spaces. Specifically, the analogous version of our problem
in N dimensions entails N orthogonal, hyperplanar Dirich-
let boundaries that are orthogonal to each of the axes. In
such cases, the ellipse E (s(0) ) is replaced by hyperellipsoids,
and lines L1,2(s(0) ) are replaced by hyperplanes. However,
even for three dimensions, we would need three additional
images to cancel a single image along each boundary. For
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three-dimensional, uncorrelated diffusion, for example, we
require seven images, rather than the three required for the
analogous two-dimensional, uncorrelated diffusion. Thus, the
solution complexity will increase with the dimensionality of
the space. A similar approach may lead to closed-form solu-
tions for other boundary conditions, such as nonorthogonal or
reflecting boundaries.

While we considered spatially homogeneous diffusion, our
results can be extended to spatially heterogeneous cases as
long as they can be transformed into cases we considered
here via a diffeomorphism of the third quadrant. For example,
we could define a new process y(t ) : yi(t ) = xi(t )2 with spa-
tially heterogeneous diffusion, since ∇yyP depends on y. Its
solutions can nonetheless be found by transforming the MoI
solution for x(t ) with the same diffeomorphism.

The set of ρ’s for which we derived closed-form solutions
is discrete and covers the regime of strong anticorrelations,
ρ < −1/2 densely. In contrast, positive correlations are not
covered at all. Based on our numerical analyses, we con-
tend that qualitative behaviors of the process are sufficiently
smooth over ρ, and that insights from solvable ρ’s are highly
relevant in unsolvable cases as well. Further quantitative
extrapolations can be explored now by using perturbative
expansions around solvable ρ’s, which our solutions enable.

Finally, note that showing that it is impossible to find
closed-form solutions for certain ρ’s with the MoI does not
imply that there do not exist any closed-form solutions for
these ρ’s with a different form. It remains an open question
whether such solutions exist, and what form they might take.
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APPENDIX

1. Properties of the whitening transformation

a. Source locations

After whitening the process spatially with Eq. (24), the
mapping between sources becomes [analogous to Eqs. (16)
and (17)]

B̂1 : �̂1 = Q�1Q−1 =
(√

1 − ρ2 −ρ

−ρ −
√

1 − ρ2

)
, (A1)

B̂2 : �̂2 = Q�2Q−1 =
(

−
√

1 − ρ2 −ρ

−ρ
√

1 − ρ2

)
. (A2)

Their product is

�̂2�̂1 =
(

2ρ2 − 1 2ρ
√

1 − ρ2

−2ρ
√

1 − ρ2 2ρ2 − 1.

)

=
(

cos(2α) sin(2α)

− sin(2α) cos(2α)

)
= R(2α), (A3)

where the second equality follows from ρ = cos(α) and
trigonometric identities. The result is a clockwise rotation
matrix R(2α) by an angle 2α. To find the odd-numbered
sources on the circle, we will use ŝ(2m+1) = �̂1(�̂2�̂1)

m
ŝ(0),

and we observe that �̂1 can be decomposed into

�̂1 =
(

0 −1

−1 0

)(
cos(α) sin(α)

− sin(α) cos(α)

)
≡ F[R(α)]. (A4)

Here, R is again a clockwise rotation matrix, and the per-
mutation F [see Eq. (30)] mirrors the source across the
antidiagonal (where x1 = −x2). Therefore, the odd-numbered
source locations are given by

ŝ(2m+1) = F
{
R[(2m + 1)α]ŝ(0)

}
, (A5)

which again corresponds to an even spacing along the circle in
steps of 2α, but, due to the mirroring, in the opposite direction
as the even-numbered sources.

b. The avoidance region D

As Eqs. (28) and (29) show, the sources 2m and 2m + 1
are related by a one-to-one mapping. In particular, the source
2m follows from a clockwise rotation by 2mα of ŝ(0), whereas
the source 2m + 1 follows from a similar clockwise rotation
by (2m + 1)α of ŝ(0), followed by a flip along the antidiago-
nal. In terms of polar angle transformation, the relations are
given by

θ2m = θ0 − 2mα, (A6)

θ2m+1 = 3
2π − θ2m + α, (A7)

where θk is the polar angle of ŝ(k).
To derive conditions for avoiding placing images in qIII,

we use the above relationship to find a region D such that
θ2m+1 /∈ qIII ⇐⇒ θ2m /∈ D. This way, all conditions will be
about even-numbered images. The expression for D simply
follows Eqs. (34) and (A7), and results in the D given by
Eq. (36) in the main text.

2. Deriving the closed-form solution
in the image rotation formalism

We rely on Eqs. (28) and (29) to derive the closed-form
solution in the image rotation formalism. They use 2k images,
corresponding to the correlation coefficient ρ = − cos (π/k),
resulting in the sources

s( j) =
{

Q−1R( jα)Qs(0) j is even,

Q−1FR( jα)Qs(0) j is odd,
(A8)

where α = π (k − 1)/k, Q and F are given by Eqs. (24)
and (30), respectively, and R( jα) is a 2D clockwise rotation
matrix of angle jα. In the above, Q and Q−1 map into and out
of the whitened space, respectively.

For even-numbered images, the image mapping can be
simplified to

Q−1R( jα)Q =
⎛
⎝cos ( jα) − ρ sin ( jα)√

1−ρ2

sin ( jα)√
1−ρ2

− sin ( jα)√
1−ρ2

cos ( jα) + ρ sin ( jα)√
1−ρ2

⎞
⎠.

(A9)
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Substituting ρ = − cos (π/k) results, after some simplifica-
tion, in

Q−1R( jα)Q = 1

sin
(

π
k

)(
sin

(
jα + π

k

)
sin ( jα)

− sin ( jα) − sin
(

jα − π
k

)).

(A10)
For odd-numbered images,

Q−1FR( jα)Q

=
⎛
⎝ sin ( jα)√

1−ρ2
− cos ( jα) − ρ sin ( jα)√

1−ρ2

− cos ( jα) + ρ sin ( jα)√
1−ρ2

− sin ( jα)√
1−ρ2

⎞
⎠.

(A11)

Substituting again ρ = − cos (π/k) results, after some sim-
plification, in

Q−1FR( jα)Q = 1

sin
(

π
k

)
(

sin ( jα) sin
(

jα − π
k

)
− sin

(
jα + π

k

) − sin ( jα)

)
.

(A12)

3. Recovering the known solution for ρ = −1

For ρ = −1, the process is a one-dimensional drift-
diffusion process between two absorbing boundaries. The
solution to this problem is provided in Ref. [9] [Sec. 5.7,
Eq. (78)] by using the MoI with an infinite number of images.
They denote the one-dimensional drift by μ, the diffusion
variance by σ 2, assume boundaries at x = a and x = −b, and
initial condition p(x, 0) = δ(x). Under these circumstances,

they show the solution to be given by

p(x, t ) = 1

σ
√

2πt

∞∑
k=−∞

[
exp

(
μx′

k

σ 2

)
exp

(
−

(
x−x′

k −μt
)2

2σ 2t

)

− exp

(
μx′′

k

σ 2

)
exp

(
−

(
x − x′′

k − μt
)2

2σ 2t

)]
, (A13)

where x′
k = 2k(a + b) and x′′

k = (2 − 2k)a − 2kb are loca-
tions of image sources for k = 0,±1,±2, . . . , and a, b > 0
are the distances from the origin to the two boundaries.

Our formalism can also recover the infinite-image solution
for ρ = −1. In this case,

�1 =
(

1 2
0 −1

)
, �2 =

(−1 0
2 1

)
, (A14)

placing sources on the line defined by s(i)
1 + s(i)

2 = s(0)
1 +

s(0)
2 . More generally, �1s = (s1 + 2s2,−s2)T and �2s =

(−s1, 2s1 + s2)T .
To relate this to the above infinite-image expression, note

that the drift-diffusion process is now restricted to the line
Z = {x|x1 + x2 = c}, where c = s(0)

1 + s(0)
2 . Let xZ denote how

far we move along this line from s(0) in the (1,−1)T direction,
such that, for a given xZ , the two-dimensional coordinates
are x = s(0) + xZ (1,−1)T /

√
2. The mapping from x to xZ

is thus given by xZ (x) = √
2(x1 − s(0)

1 ) = √
2(s(0)

2 − x2). This
implies that the distances at which the line Z intersects the
boundaries, B1 and B2, are at

a = xZ
((

0, s(0)
1 + s(0)

2

)T ) = −
√

2s(0)
1 and b = −xZ

((
s(0)

1 + s(0)
2 , 0

)T ) = −
√

2s(0)
2 , (A15)

respectively. Furthermore, it is easy to verify that

xZ (�1x) = −2b − xZ (x), (A16)

xZ (�2x) = 2a − xZ (x). (A17)

Then xZ (s(0) ) = x′
0, and

xZ (�1s(0) ), xZ (�2�1s(0) ), xZ (�1�2�1s(0) ), xZ (�2�1�2�1s(0) ), . . . = −2b, 2a + 2b,−2a − 4b, 4a + 4b, . . .

= x′′
1 , x′

1, x′′
2 , x′

2, . . . , (A18)

xZ (�2s(0) ), xZ (�1�2s(0) ), xZ (�2�1�2s(0) ), xZ
(
�1�2�1�2s(0)

)
, . . . = 2a,−2a − 2b, 4a + 2b,−4a − 4b, . . . ,

= x′′
0 , x′

−1, x′′
−1, x′

−2, . . . , (A19)

which corresponds to the image sequence of the above solution.
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