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Abstract

In an uncertain and ambiguous world, effective decision making requires that subjects form and maintain a belief about the
correctness of their choices, a process called meta-cognition. Prediction of future outcomes and self-monitoring are only
effective if belief closely matches behavioral performance. Equality between belief and performance is also critical for
experimentalists to gain insight into the subjects’ belief by simply measuring their performance. Assuming that the decision
maker holds the correct model of the world, one might indeed expect that belief and performance should go hand in hand.
Unfortunately, we show here that this is rarely the case when performance is defined as the percentage of correct responses
for a fixed stimulus, a standard definition in psychophysics. In this case, belief equals performance only for a very narrow
family of tasks, whereas in others they will only be very weakly correlated. As we will see it is possible to restore this equality
in specific circumstances but this remedy is only effective for a decision-maker, not for an experimenter. We furthermore
show that belief and performance do not match when conditioned on task difficulty – as is common practice when plotting
the psychometric curve – highlighting common pitfalls in previous neuroscience work. Finally, we demonstrate that
miscalibration and the hard-easy effect observed in humans’ and other animals’ certainty judgments could be explained by
a mismatch between the experimenter’s and decision maker’s expected distribution of task difficulties. These results have
important implications for experimental design and are of relevance for theories that aim to unravel the nature of meta-
cognition.
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Introduction

In an uncertain and ambiguous world, effective decision making

requires computing one’s certainty about all decision-relevant

evidence. For example, consider driving on the highway while

running late for a job interview. Driving too fast would result in a

very high cost if hit by another car. Driving too slowly, on the other

hand, could result in losing the job. Thus, a good policy to follow is

to accumulate evidence about the surrounding traffic to minimize

the expected personal cost of an accident, evaluated based on ones

certainty, while balancing the loss of time to accumulate this

evidence. In general, decision certainty plays an essential role in

value-based decisions, and is thus an essential component of every-

day decision making. There exists a large body of evidence that

humans and animals encode such information, which allows them

to feature a belief, or confidence, about the correctness of their

decisions (a process sometimes referred to as meta-cognition) [1–

10]. It is important to mention that in this paper it is not claimed

that belief is explicit, conscious or readily accessible for verbal

report. Rather, belief can be implicitly coded (e.g., a function of

several variables of the decision process), unconscious in many cases

and difficult - if not impossible - to access verbally.

Nevertheless, for the decision maker, such belief is important as

predicting the decision’s outcome and monitoring her task

performance are only effective if this belief is correctly reflected

in the decision maker’s performance. The relation between belief

and performance is also essential for an experimenter who wants

to assess the decision maker’s belief to gain insight into her

decision making strategy [5,8] by, for example, using the decision

maker’s performance as a proxy for her belief [11]. In both cases,

belief and performance are assumed to be closely related or

equivalent.

Assuming that the decision maker holds the correct model of the

world, it is intuitive that her belief should equal her performance

[12]. For instance, if a subject is correct 80% of the time across

trials of a particular experimental condition, it seems logical to

conclude that, on any given trial, the subjects should believe that

her chances of being correct is 80%. Indeed, some previous studies

on decision making have implicitly assumed these measures to be

similar [5,8] or even exchangeable [11]. Surprisingly, however, we

show that belief equals performance only for a very narrow family

of tasks and decision strategies. So, if a subject has the correct

model of the world, how is it possible that her belief does not

correspond to her performance in most realistic conditions? And if
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that is the case, how can subjects trust their belief to monitor their

performance in order to improve it in any given task?

The theory that we outline below reveals (i) the correct variables

that a decision maker should monitor during a task, (ii) the

conditions under which an experimenter (that is, and external

observer controlling some variables of the task at hand) can

measure belief at each trial or on average, and (iii) the correct

performance measures to be used to estimate the decision maker’s

belief without bias and with the least possible variance. Our theory

is based on a normative view of the decision-making process, in

which the decision maker utilizes the correct model of the world to

infer optimal decisions given all available evidence. To this

respect, our approach differs from comparable, but heuristic

explanations for human and animal confidence judgments [8,13–

15] that might employ comparable mechanisms but do not have

the same ideological underpinning. As such, our theory provides

an upper bound on the relation between belief and performance.

Despite this, we demonstrate some significant deterioration of this

relation, which can, due to deviations from the normative ideal,

only worsen in practice. Based on these findings, we point out

some pitfalls in previous neuroscience work, we provide a new

hypothesis for the origin of the hard-easy effect, and we present a

different perspective on models of confidence miscalibration [16–

18].

We first introduce the general formalism, based upon which we

define belief and performance. This is followed by discussing their

relation and showing that they are rarely equivalent. We then

focus on the more specific case of diffusion and race decision

making models, and demonstrate how our general findings apply

to these two model types. After that, we discuss the consequences

of these findings to both the decision-maker and the experimenter

observing this decision-maker, focusing on the relation between

the psychometric curve and the decision maker’s belief, and the

hard-easy effect in human confidence judgments. At last, we put

our findings into the more general context of previous work.

Results

Formalism
In general, we consider K-alternative forced choice (K-AFC)

tasks (K§2) with a sequence of independent trials, in each of

which an experimenter determines the hidden state z[Z of the

world, and the aim of the decision maker is to identify this state

based on limited information (Fig. 1). At the beginning of each

trial, the experimenter draws the hidden state z from the prior

probability distribution p(z). This state can take one of K values

out of the set Z~f1, . . . ,Kg. Consider, for example, an

orientation categorization task, in which a displayed orientation

is generated stochastically from one of two categories, and the

decision maker’s task is to identify this category upon observing the

orientation. In this example, we would have K~2, such that the

generative category z can take values out of the set Z~f1,2g.
Furthermore, if each category is a-priory equally likely, we would

have p(z~1)~p(z~2)~
1

2
.

The decision maker does not have direct access to the hidden

state z, but instead observes some x[X (for example, the displayed

orientation) that is stochastically related to z by the generative

model p(xjz) (how the experimenter generates orientations for

each category). Based on the observation x, which might represent

sensory input (the image of the displayed orientation on a screen)

or neural activity (the firing rate of orientation-selective neurons in

area V1), the decision maker commits to the choice d~d(x) by

utilizing the deterministic decision function d : X?Z (we will

write d(x) whenever we need to be explicit about its relation to x).

Thus, we assume that all stochasticity from the decision maker’s

choices has its origin in the stochasticity of how observations are

generated from the hidden state (but see Generalizations). In that

sense, what we called observation is similar to the decision variable in

Signal Detection Theory [19], and our decision function d is a

generalized version of the threshold that the decision variable is

compared to. In addition to a deterministic decision function, we

assume that the decision maker knows (for example, through

experience) both the prior p(z) and the generative model p(xjz),
such that she could, for example, employ the decision function

d(x)~argmaxzp(xjz)p(z) that maximizes her posterior belief

p(zjx). In our orientation categorization example, this would

correspond to choosing always the category that was the most

likely to have generated the observed orientation. While this might

be a sensible function to use in general, our exposition is also valid

for any other arbitrary choice of the decision function.

We will consider situations in which the experimenter has no or

only limited access to the observation x as perceived by the

decision maker. For example, x might represent the decision

maker’s neural activity in response to the displayed orientation,

and the experimenter only observes the decision maker’s choices,

as determined by d . One could also imagine that the experimenter

only has control over the generative category, is unable to observe

the stimulus orientations in individual trials. In both cases, the

experimenter cannot know x with certainty as many different

values of xcould lead to the same decision d xð Þ. More specifically,

we will differentiate between two cases: (i) the experimenter has no

access to x and only observed the decision maker’s choices, d , or

(ii) the experimenter has partial knowledge of x (to be defined

more precisely later).

To illustrate our task setup further, consider a simple 2-AFC, in

which the experimenter chooses at each trial the hidden state

z[f1,2g according to p(z~1)~pz and p(z~2)~1{pz (Fig. 1a).

Based on this, one of two 3-sided coins (one fair, one biased) is

chosen to generate the possible set of observations x[f1,2,3g,
either from coin 1 by p(xjz~1), or from coin 2 by p(xjz~2)(see

Fig. 1a for generative probabilities, parameterized by

px~p(x~2jz~1);
1

3
vpxƒ

2

3
). The decision maker observes the

outcome of this coin flip, but does not know which coin was used

to generate it. Assuming pz~
1

2
and

1

3
vpxƒ

2

3
, it is easy to show

that the optimal strategy is to pick coin 1 (d~1) if x[f1,2g, and

coin 2 (d~2) otherwise (Fig. 1b, this corresponds to the maximum

a-posterior estimate of the coin state; with pz~
1

2
, x~1 does not

reveal anything about the hidden state, such that d~1 was chosen

arbitrarily in this case). The experimenter, in contrast, only

observes this decision, d(x), but not the outcome x of the coin flip.

This abstract task contains all the essential ingredients of our

framework and will be used throughout the text to illustrate

important concepts.

Relating Belief and Performance
To relate the belief of the decision maker to the performance

observed by the experimenter, let us first define what exactly we

mean by these measures. The ‘belief’ refers to the decision maker’s

belief at decision time of choosing the correct option [20]. Thus,

given observation x and potential choice d~k, this belief is the

probability
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p z~kjx,d~kð Þ, ð1Þ

Here, we explicitly condition on the decision d(x)~k to make

clear that we only consider observations x that lead to decision k.

This conditioning is only hypothetical (‘‘what is my belief if I were

to choose d~k’’), such that the belief can be computed before a

choice is performed. For the same reason, our analysis is easily

generalized to the belief of un-chosen options, but to simplify

exposition we restrict ourselves to the option that is finally chosen.

In either case, the belief is a subjective probability, and available to

the decision maker in every single trial.

The experimenter measures the decision maker’s performance

by the fraction of times that the correct choice was made. Thus,

for a given hidden state z~k, and assuming no knowledge of x,

the experimenter measures the probability that the decision maker

chose d~k, that is

p(d~kjz~k): ð2Þ

This performance measure is standard in the psychophysics and

perceptual decision making literature [5,8,21]. It is a frequentist

probability estimated by averaging over many trials in which z~k,

that is, trials in which the stimulus is maintained constant. This is,

for instance, the measure that is plotted in psychometric curves for

2-alternative forced choice (2-AFC) task.

Given these definitions, we want to address how performance

measured by the experimenter (Eq. (2)) relates to the decision

maker’s belief (Eq. (1)). As an intermediate step, we will first

explore the condition under which performance equals belief

p z~kjd~kð Þ averaged over observations x, given by

p z~kjd~kð Þ~
ð

p z~kjx,d~kð Þp xjd~kð Þdx, ð3Þ

where the integral is over the full support of p(xjd~k), that is, all

possible values of x that lead to choice d~k. A joint probability

decomposition of p(d~k,z~k) reveals that

p(d~kjz~k)p(z~k)~p(z~kjd~k)p(d~k), ð4Þ

where p(z~k) and p(d~k) are the fractions of trials that the

hidden state was k, and k was chosen, respectively. This equality

shows that the performance is only equal to the average belief, that

is

p(d~kjz~k)~p(z~kjd~k), ð5Þ

if p(z~k)~p(d~k). In other words, Eq. (5) is only true when the

frequency of choosing k equals that of it being the correct choice.

This is not always the case. For instance, these two probabilities

differ in our 3-sided coin example (Fig. 1a), when choice 1 is

correct with probability p(z~1)~
1

2
and px~

2

3
. In this case, if

subjects pick the most likely choice, they will pick choice 1 with

probability, p(d~1)~
2

3
zpz(px{

1

3
)~

5

6
. Clearly, p(z~1)=

p(d~1), because choice 1 only occurs on 50% of the trials

(p(z~1)~
1

2
), but is picked by the subject over 83% (p(d~1)~

5

6
)

of the time. As a result, the decision maker’s average belief will

differ from the performance measures by the experimenter. In

general, p(z~k)~p(d~k) might hold for symmetric tasks with

uniform priors over hidden states, but is likely to be violated in

tasks that are asymmetric (for example, Fig. 1), or in which some

choices are more likely to be correct on average than others.

To summarize, belief only equals performance when the

frequency of choices matches the frequency of them being correct,

and even then, this belief is the average belief across trials (Eq. (3))

in which a particular choice was made.

Accumulation of evidence over time by diffusion/race
models

Even though the established formalism is already able to

capture simple experimental setups, its applicability is limited to

cases where all the experimenter observes are the decision maker’s

choices, and nothing else (that is, the experimenter does not have

Figure 1. Illustration of framework with a three-sided coin example. (a) In each trial of a sequence, a hidden state z is picked by the
experimenter, based on which the observation x is generated. The decision maker only observes x but not z and chooses option d~d(x) where d(x)
is a deterministic function that maps observations into decisions. In this 2-AFC example there are two possible hidden state, causing x to be sampled
either according to a biased 3-sided coin (z~1), or a fair 3-sided coin (z~2). (b) For the given decision function, which maximizes the number of

correct decisions for pz~
1

2
and

1

3
ƒpxƒ

2

3
, the resulting belief and performance are shown for either choice/hidden state. Belief and performance only

match if p(z~1)~p(d~1), that is, when pz~
2

4{3px

.

doi:10.1371/journal.pone.0096511.g001
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access to x). In general, the experimenter might have access to

further information, such as the reaction time, that reveals

additional details about the decision maker’s state at decision

time. Consider, for instance, a situation where the observation x is

a noisy version of an image drawn by the experimenter. In this

case, clearly, the experimenter will have some, but only partial

information about the decision maker’s observation. A second

important limitation of previous examples is that we have assumed

the observation x to be immediately available, whereas, usually,

the decision maker needs to accumulate evidence over time before

committing to a decision. In this and the next section we extend

the previous formalism to fully accommodate in the theory these

situations. In the following, we focus on diffusion and race models

due to their popularity in cognitive sciences and neuroscience and

their mathematical tractability. Despite this, we want to emphasize

that our general theory on the relation of belief and performance

remains valid even if the particular assumptions underlying these

model choices (such as independent and identically distributed

momentary evidence) are violated.

We start by considering a 2-AFC random dot reaction time task

[22–23]. At each trial, the experimenter chooses the motion

direction (left or right) and coherence (fraction of dots moving

coherently) which is subsequently used to generate the visual

stimulus. The decision maker is told to identify as quickly and as

accurately as possible the motion direction. In this task, the hidden

state z is the motion direction, while the coherence is a nuisance

parameter that does not carry any information about the correct

choice. The momentary evidence about z in a short time window

D follows a Gaussian Dy ~NN mD,Dð Þ with mean mD and variance D.

Its mean rate m is determined by the experimenter, and is positive

for left-ward motion (z~1) and negative for right-ward motion

(z~2), and its magnitude jmj is proportional to the coherence of

the random-dot motion. The decision maker can infer m through

the momentary evidence Dy, which she can accumulate over time

by a bounded drifting and diffusing particle _yy~mzg tð Þ with

y(0)~0, where g(t) is a unit variance Gaussian white noise [24–

27]. In this diffusion model (DM, Fig. 2a), d~1 is chosen if this

particle hits the upper, potentially time-varying boundary at h tð Þ,
that is y(t)~h(t), and d~2 is chosen if it hits the lower boundary

at {h tð Þ. We allow these boundaries to change with time to

demonstrate the generality of our framework. Clearly, all

principles discussed here transfer immediately to the more

standard case of time-invariant boundaries. At the point when

either of the boundaries has been reached, all the information

required to compute the belief about the hidden state z is the

particle location at this time, that is y[ h tð Þ,{h tð Þf g, and the

decision time t (see Methods: 2-AFC decision making with

diffusion models) [5,26]. Thus, we define the observation x~(y,t)
as the pair particle location at decision and decision time, which

are the sufficient statistics of this belief. In such a setup, the

experimenter might be able to observe the time t of this decision,

but not necessarily the true state of the variable y(t). This gives the

experimenter partial knowledge of the state of the DM because

knowing decision time t tells the experimenter that one of the two

bounds has been hit. More formally, knowing the decision time t,
the experimenter can restrict x to the set x[X (t), which denotes

the set of observation vectors x with decision time equal to t which

is simply the set in which the first component of the vector x is

either h tð Þ or {h tð Þ. In fact, the experimenter can also infer

whether the positive or the negative boundary was hit from

observing the response of the subject, although the value of the

boundary itself remains unknown. This partial knowledge can be

exploited by the experimenter to get a better handle on the

decision maker’s belief, as we will describe further below.

The same logic applies to scenarios in which more than two

options are available to choose from. Let us consider a K-AFC task

for Kw2 (Fig. 2b for K~2). In this case, we assume that the

experimenter presents a stimulus that determines K non-negative

drift rates m1, . . . ,mK . The hidden state is determined by the largest

of these rates, such that z~k if and only if all races m=k feature a

lower drift rate than race k, that is, Vm=k : mmvmk. The decision

maker observes k races, given by the drifting/diffusing particle

_yyk~mkzgk tð Þ starting at yk(0)~0, towards a potentially time-

varying boundary h tð Þ starting at h 0ð Þw0. A decision strategy that

maximizes the posterior belief under certain circumstances is to

choose d~k if race k is the first to reach this boundary (see

Methods: K-AFC decision making with race models). That is,

d~k if and only if yk tð Þ~h tð Þ, where t is the first time at which

either race has reach the boundary. Independent of the used

decision strategy, it can be shown that the sufficient statistics that

completely determine the decision maker’s posterior belief about

the hidden state are time t and the particle locations y1, . . . ,yK at

this time (see Methods: K-AFC decision making with race models)

[27]. Thus, we define an observation in the race model setup to be

these statistics at decision time t, that is x~ y1, . . . ,yK ,tð Þ, where

decision d(x)~k corresponds to yk tð Þ~h tð Þ and yj tð Þvh tð Þ for

all j=k. The experimenter can again observes both the chosen

option and the time of this choice, and so has partial access to the

decision maker’s observation x by x[X tð Þ, where X tð Þ denotes all

possible race states that result in a decision at time t (which are all

the vectors x in which one of the first K components is equal to

h tð Þ). These examples illustrate that, despite our conceptually

simple task formulation, we are able to capture a wide range of

possible tasks and decision mechanisms that include non-uniform

priors, and decisions that require the accumulation of evidence

whose reliability might vary across trials.

Relating belief and performance for partial knowledge of
the observation

In the preceding cases, the experimenter has partial knowledge

of the observation through observing the decision time. Here we

describe how this information is used to refine the previously

established relation between belief and performance. In general,

we assume that partial knowledge of x can be expressed by x[X ,

which indicates that the experimenter knows that the observation

has some features shared by all observations in X (like, as the

previous cases, the decision time), but does not know the

observation x itself. As a consequence, the performance as

measured by the experimenter is given by

p d~kjz~k,x[Xð Þ, ð6Þ

where, when compared to Eq. (2), we additionally condition on

x[X . Hence, we assume that the experimenter evaluates the

performance by binning trials byX . Setting X~X (where X is the

set of all values that x can take) recovers the original case in which

the experimenter was unable to observe x, demonstrating that the

partial information case strictly generalizes the original case.

To relate belief and performance if partial knowledge is

available, we again decompose the joint probability

p(d~k,z~kjx[X ) to get

p d~kDz~k,x[Xð Þp z~kDx[Xð Þ

~p z~kDd~k,x[Xð Þp d~kDx[Xð Þ:
ð7Þ

Thus, as before, performance only equals the average belief if
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p(z~kjx[X )~p(d~kjx[X ), that is, if the fraction of choosing k
in trials in which x[X equals the fraction of this choice being

correct in such trials. Furthermore, the belief on the right-hand

side of Eq. (7) is

p(z~kjd~k,x[X )~

ð
p(z~kjx,d~k)p(xjd~k,x[X )dx, ð8Þ

which is the trial-by-trial belief averaged over trials in which k was

chosen and x[X holds. The integral is over the full support of

p(xjd~k,x[X ), which is the subset of X that leads to choice

d~k. Thus the same restrictions apply to the relation between

belief and performance as when the experimenter does not know

x, only that now they relate to the subgroup of trials in which x[X .

Belief and Performance for Diffusion and Race Models
Returning to the example of the diffusion model, the decision

maker’s belief when choosing option 1 at time t is

p(z~1jx,d~1)~p(mw0jy(t)~h,t) (where observation x is de-

fined as x~(y,t)) the performance measured by the experimenter

is p(d~1jz~1,x[X (t))~p(yw0jm§0,x[X (t)). Here x[X (t)
denotes that the experimenter knows that a decision has been

made at time t, and yw0 implies – without specifying the height of

the boundary – that option 1 has been chosen. We furthermore

assume a symmetric prior on the drift rates, that is,

Vm : p(m)~p({m). This implies for any decision time t a uniform

prior on hidden states, p z~1jx[X tð Þð Þ~p z~2jx[X tð Þð Þ~1

2
, and

an equal probability of choosing either option, p(d~1jx[X (t))~

p(d~2jx[X (t))~
1

2
, such that the probability of choosing either

option equals to it being correct, that is p(z~kjx[X (t))~
p(d~kjx[X (t)). Under these conditions we have previously

established [26] that performance equals average belief, such that

p(yw0jm§0,x[X (t))~p(m§0jy~h(t),t) ð9Þ

Thus, the decision maker’s belief when choosing option 1 at time t
equals her probability of making a correct choice at this time

(Fig. 3a). It has not been shown before, however, that as soon as we

start introducing asymmetry into the task by, for example, a non-

uniform prior, this relationship will break down (Fig. 3b).

Interestingly, the belief averaged over all decisions made at time

t (Eq. (8)) in this example turns out to be equivalent to the belief

held by the decision maker in each of these trials (Eq. (1)). Indeed,

using our more general notation to express this, we have

p z~kjd xð Þ~k,x[X tð Þð Þ~p z~kjx,d xð Þ~kð Þ: ð10Þ

Thus, if the experimenter bins trials by decision time and

computes the percentage of correct choices in each of these bins

(as in Fig. 3a), this percentage will correlate perfectly with the

decision maker’s trial-by-trial belief at these decision times. In this

model, the perfect correlation arises from to the lack of variability

in decision confidence in this model, a result that will be violated in

most general models (see below).

To understand why this property holds, it is instructive to revisit

Eq. (8), which states that the average belief is the trial-by-trial

belief held by the decision maker averaged over all trials in which

choice d(x)~k was made, and x[X (t) specifies the time of this

choice. For the diffusion model, knowing both choice and decision

time corresponds to knowing which of the two boundaries was

reached, and at which time, thus specifying the observation by

x~ h,tð Þ and x~ {h,tð Þ for d(x)~1 and d(x)~2, respectively.

Therefore, even if the bound height h and thus the exact value of x
is unknown, the experimenter’s knowledge of decision time and

choice restricts x to a single possible value, which results in the

same belief every time this choice is made at this time. In general,

as long as d(x) and x[X restrict x to a single possible observation,

Eq. (10) holds. As a result, the diffusion model has the fortunate

property that the experimenter has access to the trial-by-trial belief

solely by measuring the performance of the decision maker. This

has an important implication: for DMs applied to symmetric 2-

AFC tasks, trial-by-trial belief, and not just averaged belief, equals

performance, which is a very useful property for experimenters

interested in inferring belief from performance [26].

This property is not shared by multiple-race models (Fig. 3c). In

a multiple-race model as described above, the belief of the decision

Figure 2. The diffusion model (DM) and 2-race model. (a) In a DM, a particle drifts and diffuses over time. A decision is performed as soon as
this particle reaches one of the two boundaries. The mean drift rate m, which is unknown to the decision maker, determines which of the two choices
is correct. In this illustration, the drift is towards the upper boundary, corresponding to hidden state z~1, such that d~1 is the correct choice. We
show eight (solid) trajectories leading to the correct choice (d~1) and two (dashed) trajectories leading to the wrong choice (d~2). Our framework
allows for time-varying boundaries, as shown here and used to generate Figs. 3a/b and 4a/b. (b) A race model features K races (here K~2) that
compete against each other in a race towards a boundary of height h. The race that first reaches its associated boundary determines the decision. The
set of all races is described by a drifting/diffusing particle in K-dimensional space. In our illustration this particle drifts towards the upper boundary
(thus z~1) and diffuses in both dimensions. Thus, four (solid) trajectories lead to the correct choice (d~1), and one (dashed) trajectory leads to the
incorrect choice (d~2).
doi:10.1371/journal.pone.0096511.g002
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maker when choosing option 1 at time t is her belief that the drift

of the first race is larger than that of all other races, as given by

p Vm=1 : mmvm1jy1(t)~h,y2(t), . . . ,yK (t),tð Þ, where we implicit-

ly condition on no race having reached the boundary before t. The

performance as measured by the experimenter is the probability

that option 1 was chosen at time t, given that it was correct, as

specified by p Vm=1 : ym(t)vy1(t)jVm=1 : mmvm1,x[X (t)ð Þ,
where Vm=1 : ym tð Þvy1 tð Þ implies that race 1 is the first to

reach the boundary without specifying this boundary’s height, and

x[X (t), where x~ y1 tð Þ, . . . ,yK tð Þ,tð Þ, denotes that some decision

has been made at time t. We furthermore assume that the prior

p m1, . . . ,mKð Þ has the same density for all permutations of the

indices k on the mk’s, such that p(z~kjx[X (t))~

p(d~kjx[X (t))~K{1 for all k. Under these conditions, we can

again relate performance and average belief by

p Vm=1 : ym(t)vy1(t)jVm=1 : mmvm1,x[X (t)ð Þ~

p Vm=1 : mmvm1jy1(t)~h,t,x[X (t)ð Þ
ð11Þ

However, in contrast to the DM, the average belief, on the right-

hand side of Eq. (11) is not equal to the trial-by-trial belief as held

by the decision maker. This discrepancy stems from the decision

maker’s belief not only depending on the state of the winning race,

but also on that of all other races. For example, all races being

close the boundary would induce higher uncertainty about the

correctness of the decision than if there is a clear separation

between the winning and the losing races (see also Eq. (25)). As a

result, this belief varies across trials even if the same decision is

made at the same time. Thus, the experimenter is unable to

determine the decision maker’s trial-by-trial belief by measuring

her performance, but only its average. More formally, the

probability p(xjd(x)~k,x[X (t)) that specifies in Eq. (8) which

trials the belief is averaged over, now has non-zero probability for

multiple values of x. This is because d(x)~k and x[X (t) specify

the winning race and bound-hitting time respectively, but the state

of the losing races are only restricted to be somewhere below the

decision threshold. Thus, these can take any state as long as

d(x)~k and x[X (t) hold. As a result, the average is computed

over all possible states of the losing races that satisfy d(x)~k and

x[X (t), causing the average belief to differ from the decision

maker’s trial-by-trial belief. As we will show later, this is a general

property of all decision making procedures in which the decision

maker’s belief depends on decision variables that are not accessible

to the experimenter.

In the example in Fig. 3c, the Pearson correlation coefficient

between the binned percentage of corrected trials and the decision

maker’s trial-by-trial belief drops from close to one for the diffusion

model to around 0.18 for the 2-race model. With less than 200

trials worth of observations, such a correlation coefficient is not

even considered significantly different from zero at the 0.01 level.

This illustrates that, in practice, such fluctuations can seriously

impair the relation between trial-by-trial belief and actual

performance.

Relevance for Decision Maker
We have established that the decision maker’s performance

equals her belief only in rare cases, even if we assume that the

decision maker holds the correct model of the environment. For

instance, if the probability of the choices is not uniform, or subjects

shows biases or preferences for a particular choice, belief and

performance are not expected to coincide. The equality between

belief and performance depends not only on the decision maker’s

strategy to perform the decision (that is, the used decision model,

e.g. with biases or not), but also on the task that the decision maker

has to solve (e.g. with or without non-uniform priors on the correct

choices). The dissociation between belief and performance in most

natural conditions therefore seems to violate the very assumption

that the subjects have a correct model of the world since her own

belief does not predict performance.

Yet, let us reconsider the quantity that the decision maker

should monitor to feature efficient behavior. A belief (e.g. 0.8) is a

useful quantity only to the extent that it predicts the percentage of

time (e.g. 80%) the subject will be correct every time she observes x

and decision k was taken, which is simply the quantity

p(z~kjd~k,x). This is the same quantity we have defined as

the ‘belief’ of the subject in equation (1). To compute this quantity,

the subject needs to use Bayes rule, which relies on knowledge of

the true generative model p(xjz) and prior p(z). When this is the

case, the belief computed by the subject will be exactly equal to

Figure 3. Relationship between belief and performance in diffusion models (DMs) and race models. (a) In a DM with uniform priors,
p(z~1)~0:5, and symmetric boundaries, belief (data points) and performance (line) are equivalent. In the DM used to generate this figure, the
boundaries collapse over time, causing a drop in belief/performance with time. If the boundaries were time-invariant instead, both belief and
performance would be independent of time. (b) In the same DM with the same symmetric boundaries, but a non-uniform prior of p(z~1)~0:65, this
equivalence fails to hold. It appears as if the decision maker were overconfident in her choices. (c) Simulations for a 2-race model with uniform priors,
in which the winning race determines the choice, feature a strong fluctuation of the trial-by-trial belief around the decision maker’s performance. It
appears as if the decision maker features a belief that is idiosyncratic, fluctuating very strongly at each trial, although on average it equals her
performance. In all panels the performance (with 95% CI) is estimated in bins of 250 ms, each containing data from 500 trials. The performance is
measured as a fraction of trials in which option 1 was chosen when this choice was correct. For each of these bins, 10 examples (50 for the 2-race
model) for the trial-by-trial belief when choosing option 1 are shown. This trial-by-trial belief is assumed to be either reported by the decision maker,
or to be estimated from neural population activity. Details of how the models were simulated are in Methods: Generating Figures 3 and 4.
doi:10.1371/journal.pone.0096511.g003
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p(z~kjd~k,x), that is, equal to the percentage of time she will be

correct whenever she observes x and made decision k. Therefore,

although we have gained crucial insights into the decision process

with the study of the relationship between performance and belief,

the quantity we have called performance, p d~kjz~kð Þ, which is

commonly measured by experimentalists, is not directly relevant to

the decision maker’s self-monitoring of her efficiency.

We can gain further insight into the sufficiency of monitoring

ones belief by reconsidering the relationship we use to establish the

equivalence between belief and performance. If we sum both sides

of Eq. (7) over all k, we trivially find

X
k

p z~kjd~k,x[Xð Þp d~kjx[Xð Þ~

X
k

p d~kjz~k,x[Xð Þp z~kjx[Xð Þ,
ð12Þ

showing that the average belief over all choices on the left-hand

side equals the average performance over all hidden states on the

right-hand side, even when p(d~kjx[X )=p(z~kjx[X ), that is,

even if the decision-maker does not perform frequency matching.

Thus, as soon as we stop conditioning on choice or hidden state,

we regain equality under all conditions. The inequality due to

conditioning arose from considering a different set of trials for

belief than for performance by conditioning on information

unavailable to the decision maker (that is, the hidden state).

Regaining equality once we consider the same set of trials confirms

that monitoring ones belief will indeed provide a correct picture of

ones behavioral efficiency, but only on average.

Note however that even when belief and performance are not

equivalent, they are positively and linearly related on average. To see

this, observe that in Eq. (4) both the choice probability p(d~k)
and the prior probability p(z~k) are constant across trials, such

that an increase in the average belief p(z~kjd~k) directly relates

to an increase in performance p(d~kjz~k). This also holds for

the more general case in which we condition on a subset of

observations, as in Eq. (7). As a result, the decision maker can use

the average belief’s gradient to improve her performance even in

cases where these two quantities are not equivalent. Still, one again

should be aware that this linear relationship holds only on average,

such that – depending on how strongly the trial-by-trial belief

fluctuates around the average belief, as shown above – this

relationship might be of limited use.

Relevance to Experimenter
From the experimenter’s perspective, an equality between belief

and performance is important as it would imply that one could use

performance as a surrogate for belief (or average belief). Thus,

experimenters might be tempted to avoid more complex

experimental setups in which these two quantities are not equal,

since it would become unclear how to assess the decision maker’s

belief. Yet, a simple remedy presents itself by considering what

needs to be known to evaluate average belief directly. Average

belief, p z~kjd~k,x[Xð Þ, is the probability that the hidden state

was k when subject chose k and x[X . From a frequentist point of

view, this is the percentage of time the subject made the correct

choice (that is subject chose k when the hidden state was indeed k)

given partial knowledgex[X . Therefore, if we bin all the trials for

which the subject chose k and x[X , the percentage of correct

responses will converge to p z~kjd~k,x[Xð Þ for very large

number of trials. More formally:

p z~kjd~k,x[Xð Þ&
P

n I dn~k,xn[Xð ÞI zn~kð ÞP
n I dn~k,xn[Xð Þ , ð13Þ

where the sums are over all trials, indexed by n, and I (:) is the

identifier function that returns I (A)~1 is the statement A is true,

and I (A)~0 otherwise. This shows that the experimenter can

evaluate the decision maker’s average belief, even when belief and

performance do not correspond to each other, as illustrated in

Fig 4a. However, even then, this average belief might only be

weakly correlated with the decision maker’s trial-by-trial belief (for

example, Fig. 4b), such that this average belief might tell the

experimenter little about the decision maker’s belief in individual

trials.

To summarize, the relevant quantity for estimating belief is not

performance as defined by the psychometric curves, but the

percentage of correct responses conditioned on the subject

response and partial knowledge of x (for example, percentage of

correct response given that the subject chose rightward motion

and the reaction time is between t and t+dt). In a psychometric

curve, the percentage correct is conditioned on the true state of the

world (for example, actual motion was to the right), while we are

now conditioning on the decision maker’s response. Note that this

is the same fix as the one we used in the previous section when we

considered the point of view of the decision maker.

The hard-easy effect in psychometric curves
In general, the relation between belief and performance breaks

down as soon as performance is measured conditional on events

that are fundamentally inaccessible either to the experimenter or

the decision maker, that is, in the case of information asymmetry.

This breakdown could explain a conspicuous result known as the

hard-easy effect: when asked to estimate their confidence in a

judgment, subjects tend to overestimate their confidence on hard

trials and to underestimate their confidence on easy trials [17,28–

29]. To see how such an effect could arise from this breakdown, let

us consider a simple reaction time task, for example the random

dot motion task described before, whose difficulty varies between

trials. We represent this difficulty by, at the beginning of each trial,

Figure 4. Comparing estimated belief with performance and
trial-by-trial belief. (a) A DM with a non-uniform prior of
p(z~1)~0:65 as in Fig. 3b. Trial-by-trial belief differs from performance
because of the asymmetric prior. By contrast, the estimated belief using
Eq. (13) matches the trial-by-trial belief, because the decision maker’s
state is fully observable in a DM. (b) A two race model with uniform
priors as in Fig 3c. This time, the decision maker’s state is not fully
observable because the state of the losing race is unknown to the
experimenter. As a consequence, the belief estimated by Eq. (13) no
longer matches the trial-by-trial belief of the observer but only the
averaged belief, where the average is performed over the state of the
losing race. Details of the model simulations are described in Methods:
Generating Figures 3 and 4.
doi:10.1371/journal.pone.0096511.g004
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drawing m from a point-wise distribution shown in Fig. 5a,

corresponding to a task in which the difficulty is interleaved across

trials and can take one of a fixed number of alternatives. Here, the

sign of m determines the hidden state z, and jmj specifies the trial’s

difficulty (that is, the dot motion’s coherence), with smaller jmj’s
corresponding to harder trials [26]. The range of possible jmj’s
controls the average difficulty of the task. A standard practice in

such setups is to bin trials by their difficulty jmj and plot the

average reaction time and fraction of correct choices for each of

these bins separately (the so-called chronometric and psychometric

curves, respectively). Using standard analytical results for the first-

passage time and choice probability for diffusion models in which

m determines the drift rate (see Methods: Computing belief in a

drift diffusion model with varying difficulty) leads to the

chronometric and psychometric curve shown in Fig. 5b. Here,

we have chosen a diffusion model with time-invariant boundaries,

as the assumption of a trial-by-trial change in task difficulty causes

the belief at the boundary to be time-dependent even when the

boundary is not. Our conclusions do not depend on this choice, as

the same principles apply to the case of time-dependent

boundaries.

Intuitively, one would expect the fraction of correct choices, as

shown by psychometric curve, to be a good predictor of the

decision maker’s belief. However, comparing it to the across-trial

average of the optimally computed belief (Eq. (28), shown in

Fig. 5b) reveals this to be a fallacy. More specifically, the

performance varies widely as a function of difficulty, while the

average belief is only very weakly related to this difficulty. This is

confirmed by a correlation coefficient below 0.35 between the

psychometric curve and the trial-by-trial belief.

As before, the origin of the difference between belief and

performance lies in conditioning the performance measure on an

event that is fundamentally inaccessible to the decision maker, in

this case the trial-by-trial difficulty jmj (although this time we are

assuming that the experimenter knows more than the subject, as

opposed to the converse). In this experiment, the decision maker

does not know this difficulty, which is varied from trial to trial, and

so needs to rely on the prior distribution (Fig. 5a) across trials to

infer her belief. This leads to overconfidence in hard trials, and

underconfidence in easy trials (left-most and right-most point in

Fig. 5b, respectively). Consider, for example, trials in which m~0
(corresponding to 0% coherence in the random dot task), such that

performance is, by definition, at chance. Nonetheless, random

fluctuations in the stimulus cause the decision maker to decide for

one of the two options, at which point her belief about the

decision’s correctness will be above chance. In fact, it can be

shown that a belief of 0.5 will only ever occur for the impossible

case of infinite decision times (Eq (28)). As a consequence, the

decision maker’s belief for trials in which m~0 will be above her

average performance in these trials, which, from the experiment-

er’s point-of-view, leads to overconfidence. A similar argument

explains the underconfidence for trial difficulties in which the

decision maker features close-to-perfect performance. Thus, even

though by Eq. (12) the belief equals performance when averaged

across all difficulties, assessing this equality while conditioning on

trial difficulty makes this equality seem violated. This last point is

particularly important in the light of claims that this hard-easy effect

might be grossly over-estimated due to simply being an artifact of

binning or measuring performance by averaging over binary

choices [16,30]. In our case, it instead stems from conditioning the

decision-makers reported belief and observed performance on

variables that are not readily available to the subject. Although we

have shown this result for a particular example of a diffusion

model with time-independent decision bounds, our results are

generally valid also for diffusion models with time-dependent

bounds and race models. As we shown next, this effect could also

arise even when performance is not conditioned on task difficulty,

but the subjects assume the wrong prior over task difficulty.

Miscalibration due to the mismatch between
experimenter’s and decision-maker’s prior: signatures of
suboptimal priors

Calibration of confidence judgments is usually assessed by the

calibration curve [18,31–33], which results from binning trials by

the reported confidence and then plotting the fraction of correct

trials for each bin. For perfectly calibrated decision makers, the

fraction of correct trials ought to correspond to their confidence, in

which case the calibration curve follows the identity line. If we

perform the same analysis on the simulated behavior conditional

on task difficulty in the example described in the previous section,

we find strong deviations from this identity line that reflect the

corresponding over- and underconfidence for easy and hard trials,

respectively (Fig 5c, dashed/dotted lines; compare belief with

performance in Fig 5b, bottom). In contrast, if we cease to

condition on difficulty and analyze the whole dataset at once, we

find perfect calibration (Fig. 5c, solid line), as predicted by Eq. (12).

This again demonstrates that, as long as the belief is computed

from the correct generative model (that is, in a Bayes-optimal

way), average belief will equal average performance.

If a Bayes-optimal model of decision making produces perfect

calibration, it follows that a calibration mismatch implies that

subjects deviates from Bayes optimality. There are several methods

available for detecting such deviations. For instance, in the decision

variable partition model [32–33]. the experimental data are used to

estimate the function employed by the decision maker to map

internal observations, x, onto belief. This function can then be

compared to the Bayes optimal function to determine whether

subjects are miscalibrated (see Methods: Modeling miscalibrations

by the decision variable partition model). The problem with this

approach is that it does not provide an explanation for why subject

use a suboptimal function, a problem shared by other models

[7,34].

One possibility is that subjects do not know the generative

model perfectly. For example, subjects would be miscalibrated if

they use the wrong prior over task difficulty. This is a very likely

situation as subjects have to learn the distribution of trial

difficulties used by the experimenter, a process that would take

much longer than the duration of the experiments. This effect is

illustrated in Fig. 5d which compares the calibration curves for a

model using the true prior over task difficult and one assuming a

much wider (or much narrower) distribution than the true one. In

this case, the model exhibits clear deviation from perfect

calibration. Therefore, miscalibration could be due in part to

imperfect knowledge of the generative model. This potential

explanation for miscalibration has already been suggested

conceptually in [12], but here we made its statement more

quantitative.

Average versus trial-by-trial belief
One important caveat to the experimenter’s access to the

decision maker’s belief, as for example by utilizing Eq. (13), is that

this belief can only be measured on average rather than trial-by-

trial. This is a result of the experimenter’s inability to observe x in

general, causing an asymmetry in the information held by decision

maker and experimenter. As shown before, the use of DMs in 2-

AFC tasks do not cause such an asymmetry, as at decision time it is

known that the diffusing particle has reached the boundary. In
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race models, in contrast, the state of the losing races is unknown,

such that the belief computed with Eq. (13) does not correspond to

the trial-by-trial belief (Fig. 4b) but only to the belief averaged over

the unobserved state of the loosing races. As already pointed out

above, this causes the trial-by-trial belief to be only weakly

correlated with average performance – a correlation that might

even be missed if the number of observed trials is low.

The same issues come up when considering the Sequential

Probability Ratio Test (SPRT) [35–36] and its multi-hypothesis

(that is, Kw2) variants (MSPRTs) [37–40]. The SPRT, which has

been shown to yield the optimal speed/accuracy trade-off for 2-

AFC tasks with a single known task difficulty [36], is based on

accumulating the relative evidence for one option over the other

up to a time-invariant boundary, at which a decision is made. This

boundary specifies the belief at decision time, such that the same

belief is held every time a decision is made. In other words, the

average belief at the boundary is equivalent to the trial-by-trial

belief, similar to the DM. The MSPRTs, on the other hand, only

feature an optimal speed/accuracy trade-off in some asymptotic

sense. They exist in several variants that are all based on

continuously updating the posterior belief of all options but differ

in how they specify the decision bounds. Variants that commit to a

decision as soon as the highest posterior belief across options has

reached a pre-set threshold [37–38,40] will feature the same belief

across all trials, just as the DM. In contrast, if their decision

threshold becomes a function of the beliefs for various options [39–

40], their belief in the correctness of the chosen option might vary

across trials, as in race models.

In general, the trial-by-trial belief differs from the average belief

as soon as the minimal sufficient statistics of the decision maker’s

belief fluctuate at decision time, even if the experimenter bins trials

according to all available information, such as choice and decision

time (for a more formal statement see Methods: Equivalence of

average and trial-by-trial belief). For DMs, the sufficient statistics

are fully determined by the aforementioned measures, but for race

models these measures are not sufficiently restrictive. It might

seem that this is due to the larger number of possible choices for

the race model. However, it is erroneous to attribute the difference

between DMs and race models solely to the number of choices.

Consider, for example, an orientation categorization task in which

the observed orientation is a noisy instantiation of the orientation

associated with one of the K generative categories. In this case, the

Figure 5. Mismatch between average belief and performance when conditioning on task difficulty: the hard-easy effect and
miscalibration. We simulated a task with varying difficulty given by a diffusion model with a drift rate whose magnitude and sign varied across
trials, while being constant within each trial. (a) The top graph shows the across-trials point-wise prior on the drift rate used in the simulation that
roughly approximates a zero-mean Gaussian (dashed line). We computed the decision maker’s belief by either using this point-wise prior directly, or
by assuming it to follow a too-wide zero-mean Gaussian (dotted line). The bottom graph shows that the point-wise prior corresponds to the 10th,
20th, …, 90th percentile of the Gaussian it approximates. (b) The decision maker’s chronometric (top) and psychometric (bottom) function over task
difficulty (magnitude of m) for non-negative drift rates. Correct choices here correspond to hitting the upper bound of the diffusion model if the drift
rate is positive, and the lower bound otherwise. The bottom graph also shows the decision maker’s average belief over m for both correct and error
trials (dots exactly one top of each other, as confidence for correct and error trials is identical) based on the correct, point-wise prior (squares, +/2
2SD) and on the incorrect Gaussian prior (crosses). In both cases, the mismatch between average belief and performance when conditioning on task
difficulty is clearly visible. (c) The calibration curves, showing the probability of performing correct choices as a function of the decision maker’s belief.
When binning trials by difficulty (that is, drift rate magnitude), this choice probability is constant while the decision maker’s belief varies across trials.
This results in flat calibration curves (dashed/dotted lines), caricaturizing the frequently observed hard-easy effect. Once we stop conditioning on task
difficulty, the calibration curve reveals perfect calibration (solid line). (d) Calibration curves for a mismatch between the actual distribution of task
difficulties and that assumed by the decision maker to compute her belief. We consider the case in which the decision maker’s distribution is too
narrow (that is, has too small standard deviation; dotted line) or too wide (too large standard deviation; solid line). Both cases feature a clear
miscalibration of the decision maker’s belief.
doi:10.1371/journal.pone.0096511.g005
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minimal sufficient statistics is the perceived orientation, which can

be represented by a scalar value. Even if we increase the number

of possible categories and with it the number of possible options to

choose from, the dimensionality of the minimal sufficient statistics

remains unchanged (see Methods: Minimal sufficient statistics in

an orientation categorization task). Rather, what matters is the

number of independent sources that ambiguously generate the

observations. While in diffusion models, only a single such source

exists, a race model with K races assumes K such sources. In the

categorization task, in contrast, the sole source of information is

the observed orientation, which does not depend on the number of

possible choices. Thus, if the experimenter aims at estimating the

decision maker’s trial-by-trial belief, it is important to design

experiments that control and restrict number and nature of these

sources.

Generalizations
Our findings are robust to changes in the details of the

framework. One could, for example, imagine that the decision is

stochastically rather than deterministically based on x through

p(djx). Furthermore, we could assume that the experimenter has

partial knowledge of x through a two-step generative model, p(~xxjz)
(for example, a generated image) and p(xj~xx) (for example, the

neural response to that image), where the experimenter observes ~xx
and the decision maker makes a decision based on x. While either

of these modifications changes the details of the formulation, belief

still only corresponds to performance if task and prior are

symmetric, and is in most cases only measurable by the

experimenter on average.

Extending the framework to value-based decision making might

be possible, and is mandatory for a complete theory of belief and

its relation to choice. However, assigning different values to

different choices introduces ambiguity about which decisions

ought to be considered correct and which are incorrect. Thus,

several definitions of belief and performance might be possible.

For this reason, we restricted our exposition to the case in which a

clear definition of ‘‘correct’’ and ‘‘incorrect’’ exists.

Discussion

We have described how the performance of a decision maker

(defined as the fraction of correct responses given the world’s true

state) relates to its belief of having made the correct decision, and

the relevance of this relation for both the decision maker’s self-

monitoring and an experimenter interested in the decision maker’s

belief. Specifically, we have shown that performance only equals

belief in cases where these measures are conditioned on quantities

that are known to both the experimenter and the decision maker.

This equality starts breaking down in case of information

asymmetry between decision maker and experimenter. One such

asymmetry occurs if the experimenter conditions performance on

the true state of the world, which is unknown to the decision

maker. In this case performance only equals belief for symmetric

tasks, in which the probability of choosing a particular option

equals the probability of this choice to be correct. Even then, the

equality only holds for the average belief across many trials, while

the decision maker’s belief per trial might fluctuate around this

average. This is the result of another information asymmetry, in

which the experimenter is unable to access the decision maker’s

internal state at decision time, and so has to average over it.

Furthermore, we have discussed that the decision maker can

evaluate how well she performs the task even if her belief does not

equal her performance. This is because the relevant quantity for

self-monitoring is belief, computed as the expectation that the

decision maker was correct given her response, rather than

performance, computed as the fraction of times a decision maker

was correct given the state of the world predetermined by the

experimenter. Also, the experimenter does not need to measure

performance to assess the decision maker’s belief, as the latter is

directly measurable at least on average as the fraction of times that

the decision maker was correct given her choice, assuming that the

decision maker has the correct model of the task. Similarly to the

relation between belief and performance, however, this belief can

in most cases only be computed on average, around which the

decision maker’s trial-by-trial belief fluctuates.

To relate belief and performance, we have assumed the decision

maker to have fully learned the generative model of the task. In

other words, the decision maker is able to infer optimally the

posterior distribution over each of the choices being correct. While

this might be a valid assumption in well-trained, low-level tasks,

such as detecting a flash of light in an otherwise dark room, it is

most certainly violated in more complex, high-level, decision

making [41–42]. As we have seen, partial learning of the

generative model of the task could lead to a mismatch between

belief and performance, and could explain in particular the hard-

easy effect (i.e. overconfidence for near-chance performance,

underconfidence for high performance). This effect might arise in

particular from assuming that the prior distribution over task

difficulty is wider than it really is.

We have also seen that, even for rational decision-makers with a

perfect knowledge of the task, the hard-easy effect arises naturally

if the experimenter conditions performance and belief on trial

difficulty when plotting the psychometric curve: as shown in

Fig. 5b, rational decision-makers will seem underconfident in easy

trials, and overconfident in difficult trials. We have identified this

mismatch to result from the experimenter conditioning on

variables of the task (as trial difficulty jmj in diffusion models)

that are fundamentally inaccessible to the decision maker, who

instead can only rely on her prior over trial difficulties. Thus, the

mismatch emerges again due to an information asymmetry

between decision maker and experimenter.

Therefore, the hard-easy effect could be due to either subjects

using the wrong generative model, or the experimenter assuming

more knowledge than is available to the subject. Our proposal

differs from a related one in [18] where the hard-easy effect is

explained by subjects assuming a single, certain, but biased task

difficulty. We, in contrast, assume that the subject’s uncertainty

about this task difficulty is to blame.

For all of the above we want to emphasize that most of the

literature on the calibration of confidence judgments is based on

explicit, e.g. verbal, reporting of this confidence [17–18,31,43]

which could also contribute to miscalibration of confidence. There

is indeed clear evidence for the existence and use of uncertainty

information about task-relevant variables in multisensory infor-

mation [3,44], post-decision wagering [5], and related paradigms

[20]. However, it is less clear if this information is accurately

accessible for explicit reporting, or if this reporting is not part of

the normal decision-making repertoire, but instead needs to be

learned as a separate task, thus justifying models with a confidence

judgment process that is at least to some degree separate from that

leading to decisions [15,45–46]. Either option might introduce

additional biases [16,30], such that it remains to be seen if the

observed deviations from perfect is a property of the underlying

inference process leading to the decision maker’s belief, as we have

suggested, or simply a property of the mapping of confidence onto

explicit reports. In light of this, it seems advisable to assess this

belief more directly by behavioral measures rather than by explicit

reports.
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Having identified some of the possible fallacies that can occur

when relating belief and performance, we can revisit previously

mentioned illustrative work on the decision maker’s belief. In [5],

for example, it at first appears as if the authors wrongly condition

on the task difficulty (in their case, coherence of the motion

stimulus) when relating belief and performance (for example, their

Fig. 4). However, as they compute the model’s belief explicitly

under the assumption of an unknown task difficulty, their

performance predictions for different difficulties and its relation

to the observed performance for these difficulties are in fact

correct. The work in [8], in contrast, attempts to establish a direct

relationship between the psychometric curve, conditional on task

difficulty (the odor mixture ratio in their Fig 1c/d), and the

decision maker’s belief, as encoded by neurons in the orbifrontal

cortex (their Fig. 2). As we have seen previously, this is the kind of

situation in which belief and performance are not equal because

performance is conditioned on task difficulty while task difficulty is

unknown to the subject. This mismatch necessarily leads to

miscalibration as illustrated in Fig 5b. Fortunately, the qualitative

results of this particular study did not rely on a perfect match

between belief and performance, but merely on a significant

correlation between these two measures, which is likely to be true

in their task, even if this correlation might be weak. A similar

problem occurs in [11], where the decision maker’s confidence is

directly derived from the psychometric curve (their Fig. 2a), again

conditional on task difficulty (the width of the line that needs to be

compared to a memorized reference), and is subsequently used as

a parametric regressor in the analysis of functional magnet

resonance imaging data. As we have demonstrated, there is no

guarantee of a strong correlation between the psychometric curve

and the decision maker’s confidence, as for example demonstrated

by a correlation coefficient below 0.35 between trial-by-trial belief

and performance in Fig. 5b. Therefore, with this type of

experiments. regressing performance against voxel activation only

provides a weak test of whether an area is involved in encoding

confidence. It is preferable to use instead a task in which the

correlation between belief and performance is stronger, such as 2-

AFC task in which subject knows the difficulty of the trial. Overall,

these three examples demonstrate that the problems we have

identified when relating belief and performance are not just

obscure theoretical constructs, but occur in recent work in the

neuroscience literature and have consequences for experimental

design.

From the point-of-view of designing decision making models,

our findings about the relation between belief and performance

illustrate that models that aim to explain how humans and animals

perform perceptual decision making should mostly focus on the

encoded belief rather than on their performance. As long as they

implement the correct generative model for the task, this belief will

lead to the correct assessment of the model’s task performance. For

example, in both diffusion and race models, significant emphasis is

put on expressions that describe the choice probability given some

value of the hidden state, that is, the predicted performance [47].

Instead, one should focus on the belief, which is the relevant

quantity for the decision maker. A further advantage of this

change of focus is that belief can be expressed analytically even for

complex time-changing boundaries and arbitrary priors (see

Methods: 2-AFC decision making with diffusion models), where

no expressions for performance are known [27]. This simplifies the

experimental validation of such models, as has been previously

demonstrated in [26].

A further contribution of our work is to show that the decision

maker’s belief can in most cases only be measured on average,

across many trials in which the decision maker’s trial-by-trial belief

might differ. The form of the average depends on one hand on the

decision strategy of the decision maker (for example, diffusion

model vs. race model) and on the other hand on the task setup.

Being able to only control the latter, experimenters should thus

attempt to avoid tasks in which measuring the decision maker’s

belief is important and trial-by-trial fluctuations around the

measurable average can cause this measure to be only very

weakly correlated to the belief in individual trials. This is, as we

have established, to be expected in tasks with high-dimensional

sufficient statistics of the decision maker’s belief. Alternatively, the

experimenter needs to commit to collecting data for a large

number of trials to achieve a robust estimate of the decision

maker’s average belief despite strong trial-by-trial fluctuations

around this average. A promising venue of research that would

alleviate the problems of estimating belief from behavioral

measurements is gathering more specific information about the

decision maker’s state by multiunit electrophysiological recordings

of neural population activity.

Materials and Methods

Decision-making framework
Here, we provide a brief description of the decision-making

framework. For a more comprehensive discussion of its compo-

nents, see Results. We assume that on each trial, the experimenter

chooses a hidden state z[Z (e.g. the global direction of motion of a

set of dots) according to the prior p(z). The aim of the decision

maker is to identify this hidden state by means of an observation x
(e.g. the motion energy in the display over a short time bin, or the

neural activity in area MT) that relates to z by the generative

model p(xjz), which is assumed to be known by the decision

maker. In the following we show how both diffusion and race

models can be described in this framework. Specifically, we derive

the observation x as the sufficient statistics of the posterior p(zjx),
and show that the decision time allows the experimenter to gain

some limited information about x without knowing its exact value.

2-AFC decision making with diffusion models
In a diffusion model (DM), evidence about the hidden state z is

provided in each of a sequence of small time steps of size D

independently by the Gaussian momentary evidence Dy ~NN mD,Dð Þ
with mean mD and variance D. The mean rate m is non-negative,

m§0, for z~1 and negative, mv0, for z~2. Its magnitude jmj is a

nuisance parameter that is uninformative about the hidden state,

but determines the difficulty of the task.

We define the observation space X by the sufficient statistics of

the posterior belief given some sequence Dy0, . . . ,DyN of

momentary evidences from time 0 to t (such that N~
t

D
) as

follows. By Bayes’ rule, and by the independence of the

momentary evidences across time, the posterior m is given by

p mDDy0, . . . ,DyNð Þ!p(m)P
N

n~0 p DynDmð Þ

~p(m)P
N

n~0 N DynDmD,Dð Þ

~p(m)e
m
PN
n~0

Dyn{1
2

m2
PN

n~0

D 1ffiffiffiffiffiffiffiffiffi
2pD
p (Nz1)

e
{ 1

2D

PN
n~0

Dy2
n

0
B@

1
CA

!p(m)e
ym{t

2
m2

,

ð14Þ

where all proportionalities are with respect to m, and where we
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have used t~
PN

n~0 D and y~
PN

n~0 Dyn. In the second-to-last

line, the only dependency on the full trajectory not expressible

through y appears in the term in brackets, which is dropped in the

last line, as it does not contain any m-related terms. Thus, with

D?0, y describes the location of a drifting and diffusing particle,

_yy~mzg(t). Here, g(t) is zero-mean Gaussian white noise with

Sg(t)T~0 and Sg(t)g(t0)T~D(t{t0), where D(:) is the Dirac delta

function. This shows that, independently of the exact form of the

prior p(m), the posterior m only depends on the current time t, and

the location y of the drifting and diffusing particle at that time,

rather than on the whole particle trajectory Dy0, . . . ,DyN .

Furthermore, by our definition, we have z~1 for all non-negative

m, such that

p z~1jDy0, . . . ,DyNð Þ~
ð?

0

p m~m0jy,tð Þdm0~p z~1jy,tð Þ, ð15Þ

which demonstrates that the decision maker’s belief also depends

only on y and t, for all possible priors p(m). This holds even if the

particle drifts in a bounded space with arbitrarily shaped

boundaries [26–27]. Thus, if we assume decisions to be triggered

at the time-varying boundaries h1(t) and h2(t) with h1(t)wh2(t)
for all t§0, and starting at h1(0)w0wh2(0), then we can define

an observation by the belief’s sufficient statistics at one of these

boundaries. As a result, the observation is given by the pair

x~(y,t), where t is the decision time and y[ h1(t),h2(t)f g.
Furthermore, the set of possible observations is X~

(y(t), t) : tw0, y(t)[ h1(t), h2(t)f g, Vsvt : h1(s)wy(s)wh2(s)f g,
where the last condition makes sure that the particle has not

crossed either boundary before t. Knowing the decision time t thus

restricts the set of possible observations to X (t)[
x : x[X ,x~(y,t)f g.

K -AFC decision making with race models
We assume a model with K races, with race k providing

independent information by its associated drifting and diffusing

particle _yyk~mkzgk(t) with non-negative drift rate mk§0, and

starting at yk(0)~0. Here, the gk(t)’s are uncorrelated unit-

variance Gaussian white noises, such that Sgk(t)T~0 and

Sgk(t)gj(t
0)T~D(t{t0)Djk, where D(:) is the Dirac delta function,

and Djk is the Kronecker delta. The hidden state is associated with

the fastest race, such that z~k iff Vm=k : mmvmk. The decision

maker estimates this hidden state by forming a posterior over the

drift rates given the full particle trajectory of all particles. As for the

DM, we find this posterior by discretizing these particle

trajectories into small time steps of size D, such that in the n th

step, particle k provides momentary evidence Dykn&
D{1 yk((nz1)D){yk(nD)ð Þ ~NN mkD,Dð Þ. If we assume to observe

these trajectories from time 0 to t, the posterior over the drift rates

becomes

p m1, . . . ,mK D Dyknf gk~1,...,K
n~0,...,N

� �
!

p m1, . . . ,mKð ÞP
K

k~1
P
N

n~0
p DyknDmkð Þ

~p m1, . . . ,mKð ÞP
K

k~1
P
N

n~0
N DyknDmkD,Dð Þ

!p m1, . . . ,mKð Þe

P
k

ykmk{t
2

P
k

m2
k
,

ð16Þ

with all proportionalities with respect to the drift rates, where

N~
t

D
, and where we have used t~

PN
n~0 D and

yk~
PN

n~0 Dykn. This shows that, as for the DM, this posterior

depends only on time t and the particle locations y1, . . . ,yK at this

time, rather than the whole particle trajectory. From this posterior

we find the hidden state posterior by

p z~kD Dynkf gk~1,...,K
n~0,...,N

� �

~p Vm=k : mmvmk D Dynkf gk~1,...,K
n~0,...,N

� �

~

ð?

0

ð
Vm=k:mmvmk

p m1, . . . ,mK Dy1, . . . ,yK ,tð ÞP
m=k

dmm

2
64

3
75dmk

~p z~kDy1, . . . ,yK ,tð Þ,

ð17Þ

which is again a function of only time and the current particle

locations, thus forming the sufficient statistics of this belief. As

before, the same sufficient statistics apply if the particle space is

arbitrarily bounded.

A decision is made as soon as the first particle reaches a bound.

If we assume that each race k is upper-bounded independently by

a time-varying boundary hk(t) with hk(0)w0, then the set of

observations that describes the belief’s sufficient statistics and that

correspond to particle k having reached the boundary first at time

t is Xk(t)~ (y1(t), . . . ,yK (t),t) : yk(t)~hk(t),Vm=k : ym(t)vf
hm(t),Vsvt,m : ym(s)vhm(s)g, where the last condition again

makes sure that no race has reached the boundary before t. Thus,

the set of observations that describe that a decision has been made

at time t is X (t)~
SK

k~1 Xk(t), that is, the set in which exactly one

of the particles has reached the boundary at time t. The set of all

possible observations is thus given by X~
S

tw0 X (t). Importantly,

an observation in either X , X (t), or Xk(t) does not only describe

the state of the winning race, but also those of the losing races, as

the belief depends on the state of all races. In Results we assume

the same boundaries hk(t)~h(t) for all k for convenience, but our

formalism is also valid for boundary shapes that differ between

races.

An optimal decision strategy for the race model
Here we show that for a permutation-invariant prior

p(m1, . . . ,mK ) on the drift rates, and the same bound,

Vk : hk(t)~h(t), on all races, a race model that chooses the

option corresponding to the winning race corresponds to choosing

the option that maximizes the posterior belief. The prior needs to

be permutation-invariant in the sense that it needs to be invariant

to swapping the values of any two drift rates. That is

p(M1~m1, . . . ,Mk~mk, . . . ,Mj~mj , . . . ,MK~mK )

~p(M1~m1, . . . ,Mk~mj , . . . ,Mj~mk, . . . MK~mK ),
ð18Þ

needs to hold for any two j,k[f1, . . . ,Kg, where Mk denote the

random variable corresponding to the drift rate of race k. In

general, this can be achieved by defining the prior as a mixture of

(K{1)! components (that is, the number possible swaps), each

swapping two elements of a base distribution over K random

variables. A simpler, special case of this condition is a prior with K
mixture components that, for each component, assumes drift m0
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for all races except one, which instead features a drift of m�wm0.

The latter prior would correspond to the case where only a single

race is informative about the correct option, while all the others

are equally distractive.

To show optimality of choosing the option associated with the

winning race, assume that race k was the first to have reached the

boundary h(t) at time t. We demonstrate that, under these

circumstances, the posterior belief of z~k according to Eq. (17) is

at least as large as for any other z~j where j=k. Choosing some

arbitrary j=k, we define for the observed y1, . . . ,yK ,t,

f (mk ,mj )~e
{t

2
(m2

k
zm2

j
)

ð
Vm=k,j:mmv max (mk ,mj )

p(m1, . . . ,mK )e

P
l=k,j

yl ml {
t
2

m2
l P

m=k,j
dmm, ð19Þ

which, due to the permutation-invariant prior, is a non-negative

symmetric function, that is f (a,b)~f (b,a) and f (a,b)§0. This

allows us to write the beliefs of z~k and z~j by Eqs. (16) and (17)

as

p(z~kjy1, . . . ,yK ,t)!
ð?

0

ðmk

0

eykmkzyj mj f (mk,mj)dmjdmk,

p(z~jjy1, . . . ,yK ,t)!
ð?

0

ðmj

0

eykmkzyjmj f (mj ,mk)dmkdmj :

ð20Þ

Thus, in order to satisfy p(z~kj . . . )§p(z~jj . . . ), we need to

have

ð?

0

ða

0

e
ykazyj b

f (a,b)dbda§

ð?

0

ða

0

e
ykbzyja

f (a,b)dbda, ð21Þ

where we have substituted mk~a and mj~b on the left-hand side,

and mk~b and mj~a on the right-hand side. Due to the non-

negativity of f (a,b) and the strictly increasing and non-negative

exponential, Eq. (21) is satisfied if ykazyjb§ykbzyja for bƒa

(due to the upper limit of the inner integral) and yjvyk (race k is

winner, such that yk~h(t) and yjvh(t)). This is easily shown by

using Dy~yk{yj , such that this inequality can be written as

0§Dy(b{a), which, due to Dyw0 and b{aƒ0, is always

satisfied. As j was arbitrarily chosen, it holds for all j=k, such that

choosing the option corresponding to the winning race guarantees

that no other choice would have led to a higher belief of being

correct.

Equivalence of average and trial-by-trial belief
After observing x in a given trial, the decision maker commits to

decision d~k, where d[Z, and holds belief p(z~kjx,d~k).
Knowing only that x[X , the experimenter can measure the

average belief p(z~kjd~k,x[X ) across multiple trials. As we

discuss in more detail in Results, the relation between the decision

maker’s trial-by-trial belief and the average belief measured by the

experimenter is

p(z~kjd~k,x[X )~
Ð

p(z~kjx,d~k)p(xjd~k,x[X )dx, as giv-

en by Eq. (8). This relation states that the average belief is the trial-

by-trial belief averaged over all trials in which option d(x)~k is

chosen, and in which the observation x conforms to x[X . Clearly,

if the set x[X (t) : d(x)~kf g only holds a single x, such that

p(xjd(x)~k,x[X ) is only non-zero for this one x, then average

belief and trial-by-trial belief are equivalent. Here we consider a

slightly more general condition based on the minimal sufficient

statistics of the trial-by-trial belief.

Intuitively, a necessary and sufficient condition for the

equivalence of average and trial-by-trial belief is that, for all trials

that we average over, the observation x needs to lead to the same

trial-by-trial belief. Thus, while it is permissible for x to vary across

trials, its contribution to the trial-by-trial belief needs to remain

constant. This contribution is formalized as the minimal sufficient

statistic Tz(x) of x with respect to z, such that

p z~kjx,d(x)~kð Þ~p z~kjTz(x),d(x)~kð Þ. If we have two

observations, x1 and x2, for which T(x1)=T(x2), it is by the

definition of minimal sufficient statistics guaranteed that

p z~kjx1,d(x1)~kð Þ=p z~kjx2,d(x2)~kð Þ. In contrast, for two

observations for which Tz(x1)~Tz(x2) we have

p z~kjx1,d(x1)~kð Þ~p z~kjx2,d(x2)~kð Þ even if x1=x2.

Thus, a necessary and sufficient condition for the equivalence of

average and trial-by-trial belief is that for all x[X such that

d(x)~k we need to guarantee that Tz(x) is the same constant.

This condition is sufficient, because if it holds, then

p z~kjx,d(x)~kð Þ will be the same for all trials that we average

over, resulting in an equivalent average belief. It is necessary,

because if Tz(x) differs for at least one x, then we will average over

different trial-by-trial beliefs.

To relate this condition to DMs and race models, let us consider

their minimal sufficient statistics. In the case of diffusion models,

these statistics are particle location and time, Tz(x)~x~(y,t).
Thus, as d(x)~k and x[X (t) imply that a particular boundary

has been reached at a known time, both y and t are guaranteed to

be uniquely determined, such that Tz(x) is constant under these

conditions. As a result, average belief and trial-to-trial belief are

equivalent. In K-race models, on the other hand, the sufficient

statistics are the state of all races and time,

Tz(x)~x~(y1, . . . ,yK ,t). In this case, d(x)~k and x[X (t)
restrict time and the state of the winning race, but not that of

the other races (other than them being below the boundary), such

that Tz(x) can change between trials. As a consequence, the trial-

by-trial belief will fluctuate around the average belief.

Minimal sufficient statistics in an orientation
categorization task

To show that the dimensionality of the minimal sufficient

statistics does not necessarily grow with the number of options

available to the decision maker, consider the following task.

Assume a set of K orientations, m1, . . . ,mK , on a half-circle,

0ƒmkvp, with the kth orientation corresponding to hidden state

z~k. In each trial, the experimenter picks a hidden state z which

is used to generate an oriented stimulus with orientation h by

drawing h*
1

2
VM 2mz,kð Þ from a von Mises distribution with mean

2mz and concentration k. The decision maker perceives this

orientation with some additional sensory noise, such that the

likelihood of the decision maker’s observation x is x
~1

2

1

2
VM 2mz,k0ð Þ

with reduced concentration k0vk, and thus lower precision.

Assuming a uniform prior, p(z)~K{1, and that the decision

maker has learned concentration k0 over past trials, her belief over

the hidden states follows from Bayes’ rule and the definition of the

von Mises distribution, and is given by

p(z~kjx)~
ek0 cos (2(x{mk ))P
m ek0 cos (2(x{mm))

: ð22Þ

ð19Þ
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This shows that, independent of the decision maker’s decision

function d(x), a minimal sufficient statistic of her trial-by-trial

belief is the observation, Tz(x)~x, whose dimensionality is always

one, independent of the number K of possible options to choose

from.

Generating Figures 3 and 4
Here we explain how we simulated the diffusion model (DM)

and 2-race model to generate Figs. 3 and 4. For both model types,

we determined choices and decision times by the decision models,

and computed the reaction times by adding a fixed non-decision

time of 250 ms to each decision time. All simulations were

performed in 1 ms time steps up to a maximum of 2 s, after which

the simulation was aborted.

For the DM, we assumed m~m0 for z~1 and m~{m0 for z~2,

with m0~
1

2
. The upper and lower boundaries were time-varying

and symmetric around zero, defined by h(t)~2:6{1:8tz0:3t2

and {h(t) respectively. We have chosen a time-varying boundary

to have the belief at the boundary to depend on time. If we had

been using a time-invariant boundary instead, this time-depen-

dency of the belief would vanish. Given this setup, we found the

decision maker’s belief when reaching the upper boundary and

thus choosing d~1 by Eq. (14), resulting in

p m~m0Dy(t)~h,tð Þ~ 1

Cm
pze

hm0{t
2
m2

0 ,

p m~{m0Dy(t)~h,tð Þ~ 1

Cm
(1{pz)e

{hm0{t
2

m2
0 ,

ð23Þ

where pz~p(m~m0), and Cm is the normalization constant. We

find Cm by solving p(m~m0jy(t)~h,t)zp(m~{m0jy(t)~h,t)~1,

which, when substituted into Eq. (23) a re-arranging the terms,

results in the final belief

p m~m0jy(t)~h(t),tð Þ~ 1

1ze
{ 2m0h(t)z log

pz

1{pz

� � : ð24Þ

For the uniform prior case in Fig. 3a we generated 10000 trials for

each m~m0 and m~{m0, simulating _yy~mzg(t) in small time

steps until either boundary was reached. We then binned trials by

decision time in bins of 250 ms from 250 ms to 1500 ms. To

compute performance for each bin we randomly picked 500 trials

from this bin in which m~m0, and computed the fraction of times

that the upper boundary was reached. Additionally, we plotted the

belief for 10 randomly chosen trials from this bin in which this

upper boundary was reached.

For the non-uniform prior case in Figs. 3b and 4a we chose

pz~0:65. We then generated 10000 trials with m~m0 and (to

conform to the prior) 5384 trials with m~{m0 by again simulating

_yy~mzg(t) in small time steps. Due to the non-uniform prior, all

trajectories reaching the upper boundary caused choice 1, but only

trajectories that reached the lower boundary below

{h(t)v{2m0 log
pz

1{pz

caused decision 2, and decision 1

otherwise. This strategy arises because the belief at low boundaries

is close to
1

2
. In these cases, the prior might provide more evidence

than the likelihood, which might cause a reversal of the decision if

prior and likelihood provide evidence for opposing options.

Performance and belief were again computed/selected as for the

uniform prior case. We computed the estimated belief in Fig. 3b

by the fraction of correct choices among 500 trials per bin in

which option 1 was chosen.

For the 2-race model in Figs. 3c and 4b we chose

(m1,m2)~(m0,0) for z~1 and (m1,m2)~(0,m0) for z~2, with

m0~
1

2
. We used the boundary h(t)~3{1:8tz0:3t2, that varied

over time but not between races. Given this setup, the decision

maker’s belief when race 1 is the winning race follows from Eq.

(16) and is given by

p m1~m0,m2~0jy1(t)~h(t),y2(t),tð Þ~ 1

1ze{m0(h(t){y2(t))
, ð25Þ

which is a function of both the bound height and the state of the

second race. We simulated 10000 trials for each z[f1,2g in small

time steps, and binned trials by decision time into 250 ms bins

from 250 ms to 1750 ms. Performance, trial-by-trial belief, and

estimated belief were computed and plotted as for the DM.

Computing belief in a drift diffusion model with varying
difficulty (Figure 5)

We generated Fig. 5 by assuming a decision making diffusion

model with diffusion variance s2~1s{1, and time-invariant

bounds at h[f{1,1g. Note that with this choice of diffusion

variance, the drift and s2
m are measured in units of s2. The drift

rate was constant within a trial and was chosen across trials to

roughly follow m*N(0,s2
m) with s2

m~2 (in units of s2). Specifically,

we used a point-wise drift rate prior corresponding to a uniform

distribution over nine different drift rates, where m1 corresponds to

the 10th percentile of N(0,s2
m), m2 corresponding to the 20th

percentile, and so on, up to m9 for the 90th percentile (Fig 5a).

Reaction times and choice probability were computed analytically

using standard results for bounded diffusion models [48–49].

For Fig 5b we computed the decision maker’s belief under two

different assumptions. First, we assumed exact knowledge of the

correct point-wise prior, p(m~mk)~
1

9
for k~1, . . . ,9, for which

the posterior drift rate given that the particle reached the upper or

lower bound y[ h,{hf g at time t follows Eq. (14), and results in

[26]

p m~mkjy,tð Þ~ p m~mkð Þeymk{t
2

m2
k

P
j p m~mj

� �
e

ymj{
t
2

m2
j

: ð26Þ

To find the belief we split the prior mass of m5~0 uniformly

between z~1 and z~2 by replacing it by m5,1 and m5,2 with prior

masses p(m~m5,1)~p(m~m5,2)~
1

18
, and assign all positive drift

rates m6, . . . ,m9 and m5,2 to hidden state z~1, while the remaining

drift rates correspond to hidden state z~2. When hitting the

upper bound and choosing d~1, this results in the belief

g(t):p z~1jd~1,tð Þ~p m[ m5,2,m6, . . . ,m9

� �
jy~h,t

� �
~

1
18

z
P

m[ m6,...,m9f g
e

hm{t
2

m2

1
9
z

P
�mm[ m1,...,m4,m6,...,m9f g

e
h�mm{t

2
�mm2
:

ð27Þ

Due to symmetry of prior and task, the same equation holds for

the belief of z~2 when hitting the lower bound and choosing

Belief/Performance in Perceptual Decision Making

PLOS ONE | www.plosone.org 14 May 2014 | Volume 9 | Issue 5 | e96511



d~2. This is the optimal belief the decision maker can hold in this

task. Second, we computed the belief based on the assumption

that, instead of the correct, point-wise prior, the decision maker

assumes a Gaussian zero-mean prior, p(m)~N mj0,~ss2
m

	 

whose

variance ~ss2
m might differ from s2

m. This allowed us to simulate cases

in which the decision maker uses an incorrect prior. With this

prior, the belief follows again Eqs. (14) and (15), resulting in [26]

~gg(t):p(z~kjd~k,t)~W
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tz~ss{2
m

q
0
B@

1
CA, ð28Þ

where W(a)~
Ð a

{? N(aj0,1)da is the standard cumulative Gauss-

ian. To find the average belief per drift rate, as shown in Fig. 5b,

we numerically computed the reaction time distribution p tjmð Þ for

each m in steps of 1 ms up to t~10s as the solution of a Volterra

integral equation of the second kind [47]. Based on this, we

computed the average belief for both the point-wise and the

Gaussian prior (with sm~5) by numerically evaluating the integral

Sg tð ÞTp tjmð Þ~
Ð 10

0
g tð Þp tjmð Þdt. The standard deviation of the

belief for the point-wise prior was similarly evaluated by numerical

integration based on these reaction-time distributions.

The calibration curves in Fig. 5c were found as follows.

Conditional on the absolute drift rate, the probability of

performing correct choices is given by p x(t)~ð
hjm,tÞ~ 1ze{2mh

� �{1
and is thus independent of the reaction

time [48]. In contrast, the belief (Eq. (27)) depends on the reaction

time, such that, for a fixed drift rate it will vary across trials even if

the probability of choosing the correction option does not. As a

result, the calibration curves conditioned on the drift rate, which

are given by the function Sp x(t)~hjm,tð ÞTp tjg(t)~g�ð Þ of belief g�,

are independent of this belief and thus flat (Fig. 5c). This does not

hold anymore as soon as we consider the average calibration

curve, as given by

Sp x(t)~hDt,mw0ð ÞTp tDg(t)~g�ð Þ

~

ð?

0

p x(t)~hDt,mw0ð Þp tDg(t)~g�ð Þdt:
ð29Þ

In this case, the probability of making a correct choice depends on

the reaction time, as the distribution of these reaction times differs

for different drift rates. This becomes particularly clear when

expanding the choice probability to give

p x(t)~hDt,mw0ð Þ

~
X

m:mw0

p x(t)~hDt,mð Þ p tDmð Þp mDmw0ð ÞP
~mm:~mmw0

p tD~mmð Þp ~mmD~mmw0ð Þ,
ð30Þ

where the fraction inside the sum results from Bayes rule applied

to p mjt,mw0ð Þ. In the above sum, the first term is the known and

time-invariant choice probability for a fixed drift rate. The time-

dependence is introduced in the second term which is proportional

to the probability of reaction time t for drift rate m and hence a

function of both variables. To evaluate Eq. (29) for a given g� we

can utilize the fact that the belief is monotonic in time, such that

p tjg(t)~g�ð Þ is a Dirac-delta function at the t where g(t)~g�.

Thus, Eq. (29) results in Eq. (30) evaluated at this time t, which we

find by using the numerical reaction time distributions for fixed

drift rates while being again careful about splitting the mass of

p m~0ð Þ in half. Evaluated for each valid g� results in the average

calibration curve shown in Fig. 5c. In Results (see Eq. (11)) we

explain why this average curve follows the identity line.

To simulate the calibration curves for subjects using an

incorrect prior p mð Þ, as shown in Fig. 5d, we used the same

procedure as to compute the average calibration curve in Fig. 5c.

However, rather than using the correct point-wise prior to

compute the belief, we assumed the decision maker to utilize a

Gaussian prior with different standard deviations. Furthermore,

we assumed the actual drift rates to follow a Gaussian prior such

that in Eq. (30) the sum turns into an integral that we solved

numerically. Specifically, to simulate a too-wide prior, we assumed

the actual prior to be a zero-mean Gaussian with standard

deviation sm~1, while the decision maker assumed ~ssm~7. For the

too narrow prior we used the actual prior width sm~2 while

setting the assumed prior width to ~ssm~1.

Modeling miscalibrations by the decision variable
partition model

The decision variable partition model [32–33] is a popular

model based on signal detection theory to explain various types of

miscalibration. In this model, the decision maker observes two

random variables, x1 and x2 (for example, two weights that need

to be compared), where one is drawn from the ‘‘correct’’, and the

other from the ‘‘incorrect’’ distribution and the aim of the decision

maker is to identify the one associated with the correct

distribution. We formalize this by p(x1jz~1)~N(x1jm1,s2) and

p(x2jz~1)~N(x2jm2,s2) for z~1, and p(x1jz~2)~N(x1jm2,s2)

and p(x2jz~2)~N(x2jm1,s2) with flipped means for z~2. Then,

it is easy to show that the hidden state posterior upon observing x1

and x2 is given by

p(z~1jx1,x2)~
1

1ze{a(x1{x2)
, ð31Þ

where a~(m1{m2)=s2 determines the difficulty of the task. Thus,

the decision rule that maximizes this posterior is to choose d~1 if

x1wx2 and d~2 otherwise. This leads to the optimal belief

p(z~kjd~k,x1,x2)~
1

1ze{ajx1{x2j
, ð32Þ

which is a monotonically increasing function of jx1{x2j (a larger

difference in perceived weights increases the confidence). Instead

of using the optimal belief according to Eq. (32), the decision

variable partition model proposes to partitioning the space of

jx1{x2j into arbitrarily chosen bins and to assign each of these

bins a different confidence rating. This way it is able to capture

any deviation from perfect calibration, as long as the decision

maker’s performance grows monotonically with belief. Further-

more, it captures the hard-easy effect by leaving the partitioning

unchanged for different task difficulties while the optimal belief

would require adjusting a in Eq. (32) accordingly.
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