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Diffusion decision models (DDMs) are immensely successful mod-
els for decision making under uncertainty and time pressure. In the
context of perceptual decision making, these models typically start
with two input units, organized in a neuron–antineuron pair. In con-
trast, in the brain, sensory inputs are encoded through the activity of
large neuronal populations. Moreover, while DDMs are wired by
hand, the nervous system must learn the weights of the network
through trial and error. There is currently no normative theory of
learning in DDMs and therefore no theory of how decision makers
could learn to make optimal decisions in this context. Here, we derive
such a rule for learning a near-optimal linear combination of DDM
inputs based on trial-by-trial feedback. The rule is Bayesian in the
sense that it learns not only the mean of the weights but also the
uncertainty around this mean in the form of a covariance matrix. In
this rule, the rate of learning is proportional (respectively, inversely
proportional) to confidence for incorrect (respectively, correct) deci-
sions. Furthermore, we show that, in volatile environments, the rule
predicts a bias toward repeating the same choice after correct deci-
sions, with a bias strength that is modulated by the previous choice’s
difficulty. Finally, we extend our learning rule to cases for which one
of the choices is more likely a priori, which provides insights into how
such biases modulate the mechanisms leading to optimal decisions in
diffusion models.
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Decisions are a ubiquitous component of everyday behavior.
To be efficient, they require handling the uncertainty arising

from the noisy and ambiguous information that the environment
provides (1). This is reflected in the trade-off between speed and
accuracy of decisions. Fast choices rely on little information and
may therefore sacrifice accuracy. In contrast, slow choices pro-
vide more opportunity to accumulate evidence and thus may be
more likely to be correct, but are more costly in terms of at-
tention or effort and lost time and opportunity. Therefore, effi-
cient decisions require not only a mechanism to accumulate
evidence but also one to trigger a choice once enough evidence
has been collected. Drift-diffusion models (or diffusion decision
models) (DDMs) are a widely used model family (2) that pro-
vides both mechanisms. Not only do DDMs yield surprisingly
good fits to human and animal behavior (3–5), but they are also
known to achieve a Bayes-optimal decision strategy under a wide
range of circumstances (4, 6–10).
DDMs assume a particle that drifts and diffuses until it reaches

one of two boundaries, each triggering a different choice (Fig. 1A).
The particle’s drift reflects the net surplus of evidence toward one of
two choices. This is exemplified by the random-dot motion task, in
which the motion direction and coherence set the drift sign and
magnitude. The particle’s stochastic diffusion reflects the un-
certainty in the momentary evidence and is responsible for the
variability in decision times and choices widely observed in human
and animal decisions (3, 5). A standard assumption underlying
DDMs is that the noisy momentary evidence that is accumulated
over time is one-dimensional—an abstraction of the momentary
decision-related evidence of some stimulus. In reality, however,
evidence would usually be distributed across a larger number of
inputs, such as a neural population in the brain, rather than indi-
vidual neurons (or neuron/antineuron pairs; Fig. 1A). Furthermore,

the brain would not know a priori how this distributed encoding
provides information about the correctness of either choice. As a
consequence, it needs to learn how to interpret neural population
activity from the success and failure of previous choices. How such
an interpretation can be efficiently learned over time, both nor-
matively and mechanistically, is the focus of this work.
The multiple existing computational models for how humans

and animals might learn to improve their decisions from feed-
back (e.g., refs. 11–14) do not address the question we are ask-
ing, as they all assume that all evidence for each choice is
provided at once, without considering the temporal aspect of
evidence accumulation. This is akin to fixed-duration experi-
ments, in which the evidence accumulation time is determined by
the environment rather than the decision maker. We, instead,
address a more general and natural case in which decision times
are under the decision maker’s control. In this setting, commonly
studied using “reaction time” paradigms, the temporal accumu-
lation of evidence needs to be treated explicitly, and—as we will
show—the time it took to accumulate this evidence impacts how
the decision strategy is updated after feedback. Some models for
both choice and reaction times have addressed the presence of
high-dimensional inputs (e.g., refs. 15–17). However, they usually
assumed as many choices as inputs, were mechanistic rather than
normative, and did not consider how interpreting the input could
be learned. We furthermore extend on previous work by con-
sidering the effect of a priori biases toward believing that one
option is more correct than the other, and how such biases can
be learned. This yields a theoretical understanding of how choice
biases impact optimal decision making in diffusion models.
Furthermore, it clarifies of how different implementations of this
bias result in different diffusion model implementations, like the
one proposed by Hanks et al. (18).
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Results
Bayes-Optimal Decision Making with Diffusion Models. A standard
way (8, 10, 19) to interpret diffusion models as mechanistic
implementations of Bayes-optimal decision making is to assume
that, in each trial, an unobservable latent state μ (called “drift
rate” in diffusion models) is drawn from a prior distribution,
μ∼Nð0, σ2μÞ, with zero mean and variance σ2μ. The decision
maker’s aim is to infer whether this latent state is positive or
negative (e.g., rightward vs. leftward motion in the random-dot
motion task), irrespective of its magnitude (e.g., the dot co-
herence level). The latent state itself is not directly observed but
is indirectly conveyed via a stream of noisy, momentary evidence
values δz1, δz2,:::, that, in each small time step of size δt, provide
independent and identically distributed noisy information about
μ through δzijμ∼Nðμδt, δtÞ. Here, we have chosen a unit variance,
scaled by δt. Any rescaling of this variance by an additional pa-
rameter would result in a global rescaling of the evidence that

can be factored out (4, 8, 20), thus making such a rescaling
unnecessary.
Having after some time t≡ nδt observed n pieces of such evi-

dence, δz1 : n, the decision maker’s posterior belief about μ,
pðμjδz1 : nÞ, turns out to be fully determined by the accumulated

evidence, zðtÞ= Pn
i= 1

δzi, and time t (Materials and Methods). Then,

the posterior belief about μ being positive (e.g., leftward motion)
results in the following (8):

pðμ≥ 0jzðtÞ, tÞ=
Z∞
0

pðμ j δz1 : nÞdμ=Φ

0
B@ zðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

t+ σ−2μ

q
1
CA, [1]

where Φð · Þ is the cumulative function of a standard Gaussian.
The opposite belief about μ being negative is simply
pðμ< 0j z ðtÞ, tÞ= 1− pðμ≥ 0j z ðtÞ, tÞ (see Fig. 3A). The accumu-
lated evidence follows a diffusion process, zðtÞj μ ∼Nðμt, tÞ, and
thus can be interpreted as the location of a drifting and dif-
fusing particle with drift μ and unit diffusion variance (Fig.
1A). By Eq. 1, the posterior belief about μ≥ 0 is >1=2 for
positive zðtÞ, and <1=2 for negative zðtÞ. To make Bayes-
optimal decisions, Bayesian decision theory (21) requires that these
decisions are chosen to maximize the expected associated reward
(or, more formally, to minimize the expected loss). Assuming
equally rewarding correct choices, this implies choosing the option
that is considered more likely correct. Given the above posterior
belief, this makes y= signðzðtÞÞ∈ f−1,1g the Bayes-optimal choice,
which can be implemented mechanistically by (possibly time-
varying) boundaries ±θðtÞ on zðtÞ, associated with the two choices.
At these boundaries, the posterior belief about having made the
correct choice, or decision confidence (22), is then given by Eq. 1
with zðtÞ replaced by θðtÞ. The sufficient statistics, zðtÞ and t, of this
posterior remain unchanged by the introduction of such decision
boundaries, such that Eq. 1 remains valid even in the presence of
these boundaries (8). Thus, under the above assumptions of prior
and evidence, diffusion models implement the Bayes-optimal de-
cision strategy (see Fig. 3B).
Note that jμj (i.e., the momentary evidence’s signal-to-noise

ratio) controls the amount of information provided about the
sign of μ, and thus the difficulty of individual decisions. Thus, the
used prior μ∼Nð0, σ2μÞ, which has more mass on small jμj, reflects
that the difficulty of decisions varies across trials and that harder
decisions are more frequent than easier ones. The prior width, σ2μ
determines the spread of μ values across trials, and therefore the
overall difficulty of the task (larger σ2μ = overall easier task). We
chose a Gaussian prior for mathematical convenience, and also
because hard trials are more frequent than easy ones in many
experiments (e.g., ref. 20), even though they do not commonly
use Gaussian priors. In general, the important assumption is that
the difficulty varies across trials, but not exactly how it does so,
which is to say that the shape of the prior distribution is not
critical (8). Different prior choice will not qualitatively change
our results but would make it hard or impossible to derive in-
terpretable closed-form expressions. Model predictions would
change qualitatively if we assume the difficulty to be fixed, or
known a priori (8), but we will not consider this case, as it rarely
if ever occurs in the real world.

Using High-Dimensional Diffusion Model Inputs. To extend diffusion
models to multidimensional momentary evidence, we assume it
to be given the k-dimensional vector δxi. This evidence might
represent inputs from multiple sensors, or the (abstract) activity
of a neuronal population (Fig. 1B). As the activity of neurons in a
population that encodes limited information about the latent
state μ is likely correlated across neurons (23, 24), we chose the
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Fig. 1. Learning the input weights from feedback in diffusion models. In
diffusion models, the input(s) provide at each point in time noisy evidence
about the world’s true state, here given by the drift μ. The decision maker
accumulates this evidence over time (e.g., black example traces) to form a
belief about μ. Bayes-optimal decisions choose according to the sign of the
accumulated evidence, justifying the two decision boundaries that trigger
opposing choices. (A) In standard diffusion models, the momentary evidence
either arises directly from noisy samples of μ, or, as illustrated here, from a
neuron/antineuron pair that codes for opposing directions of evidence. The
illustrated example assumes a random-dot task, in which the decision maker
needs to identify whether most of the dots that compose the stimulus are
moving either to the left or to the right. The two neurons (or neural pools)
are assumed to extract motion energy of this stimulus toward the right (Top)
and left (Bottom), such that their difference forms the momentary evidence
toward rightward motion. A decision is made once the accumulated mo-
mentary evidence reaches one of two decision boundaries, triggering op-
posing choices. (B) Our setup differs from that in A in that we assume the
input information δxðtÞ to be encoded in a larger neural population whose
activity is linearly combined with weights w to yield the one-dimensional
momentary evidence, and that the decision maker aims to learn these
weights from feedback about the correctness of her choices. (C) Decision con-
fidence (i.e., the belief that the made choice was correct) in this kind of diffusion
model drops as a function of time (horizontal axis) and with increased un-
certainty about the input weights (different shades of blue). (D) For near-optimal
learning, the learning rate (the term ξw in Eq. 6) is modulated by decision con-
fidence (Top Left). High-confidence decisions lead to little learning if correct
(green, Right), and strong learning if incorrect (red, Left). Low-confidence deci-
sions result in a moderate confidence-related learning rate term (Top and Cen-
ter). The learning rate in 1,000 simulated trials (Bottom) shows that the overall
learning rate preserves this trend, with an additional suppression of learning for
low-confidence decisions. Other learning heuristics (e.g., the delta rule, Right) do
not modulate their learning by confidence.
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momentary evidence statistics to also feature such correlations
(Materials and Methods). In general, we choose these statistics such
that wTδxi = δzi, where the vector w denotes the k input weights (for
now assumed known). Defining the high-dimensional accumulated

evidence by xðtÞ= Pn
i= 1

δxi, this implies zðtÞ=wTxðtÞ, such that it is

again Bayes-optimal to trigger decisions as soon as wTxðtÞ equals
one of two decision boundaries ±θðtÞ. Furthermore, the posterior
belief about μ≥ 0 is, similar to Eq. 1, given by the following:

pðμ≥ 0 jw, xðtÞ, tÞ=Φ
�
wT~xðtÞ

�
, [2]

where we have defined the time-attenuated accumulated evi-
dence ~xðtÞ= xðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ σ−2μ

q
. As a consequence, the decision-

confidence for either choice, is, as before, given by Eq. 2, with
wT~xðtÞ replaced by θðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ σ−2μ

q
. For time-independent decision

bounds, θðtÞ= θ, this confidence decreases over time (Fig. 1C),
reflecting the uncertainty about μ, and that late choices are likely
due to a low μ, which is associated with a hard trial, and thus low
decision confidence. This counterintuitive drop in confidence
with time has been previously described for diffusion models
with one-dimensional inputs (8, 25) and is a consequence of a
trial difficulty that varies across trials. Specifically, it arises from
a mixture of easy trials associated with large jμj that lead to rapid,
high-confidence choices, and hard trials associated with small jμj
that lead to slow, low-confidence choices. Therefore, it does not
depend on our choice of Gaussian prior but is present for any
choice of symmetric prior over μ (SI Appendix). The confidence
remains constant over time only when the difficulty is fixed
across trials (i.e., μ∈ f−μ0, μ0g for some fixed μ0).

Using Feedback to Find the Posterior Weights. So far, we have as-
sumed the decision maker knows the linear input weights w to
make Bayes-optimal choices. If they were not known, how could
they be learned? Traditionally, learning has been considered an
optimization problem, in which the decision maker tunes some
decision-making parameters (here, the input weights w) to
maximize their performance. Here, we will instead consider it as
an inference problem in which the decision maker aims to
identify the decision-making parameters that are most compat-
ible with the provided observations. These two views are not
necessarily incompatible. For example, minimizing the mean
squared error of a linear model (an optimization problem) yields
the same solution as sequential Bayesian linear regression (an
inference problem) (26). In fact, as we show in SI Appendix, our
learning problem can also be formulated as an optimization
problem. Nonetheless, we here take the learning-by-inference
route, as it provides a statistical interpretation of the involved
quantities, which provides additional insights. Specifically, we
focus on learning the weights while keeping the diffusion model
boundaries fixed. The decision maker’s reward rate (i.e., average
number of correct choices per unit time), which we use as our
performance measure, depends on both weights and the chosen
decision boundaries. However, to isolate the problem of weight
learning, we fix the boundaries such that a particular set of op-
timal weights wp maximize this reward rate. The aim of weight
learning is to find these weights. Weight learning is a problem
that needs to be solved even if the decision boundaries are op-
timized at the same time. We have addressed how to best tune
these boundaries elsewhere (8, 27).
To see how learning can be treated as inference, consider the

following scenario. Before having observed any evidence, the
decision maker has some belief, pðwÞ, about the input weights,
either as a prior or formed through previous experience. They
now observe new evidence, δx1, δx2, . . . and use the mean of the
belief over weights, <w> (or any other statistics), to combine this

evidence and to trigger a choice y once the combined evidence
reaches one of the decision boundaries. Upon this choice, they
receive feedback yp about which choice was the correct one.
Then, the best way to update the belief about w in light of this
feedback is by Bayes’ rule:

pðwjxðtÞ, t, ypÞ∝ pðypjw, xðtÞ, tÞpðwÞ, [3]

where we have replaced the stream of evidence δx1, δx2, . . . by
the previously established sufficient statistics xðtÞ and t.
The likelihood pðypjw, xðtÞ, tÞ expresses for any hypothetical

weight vector w the probability that the observed evidence makes
yp the correct choice. To find its functional form, consider that,
for a known weight vector, we have shown that pðμ≥ 0jw, xðtÞ, tÞ,
given by Eq. 2, expresses the probability that y= 1 (associated
with μ≥ 0) is the correct choice. Therefore, 1− pðμ≥ 0jw, xðtÞ, tÞ
corresponds to the probability that y=−1 (associated with μ< 0)
is the correct choice. Therefore, it can act as the above likelihood
function, which, by Eq. 2, is given by pðypjw, xðtÞ, tÞ=ΦðypwT~xðtÞÞ,
where we have used 1−ΦðaÞ=Φð−aÞ. In summary, the decision
maker’s belief is optimally updated after each choice by the
following:

pðwjxðtÞ, t, ypÞ∝Φ
�
ypwT~xðtÞ

�
pðwÞ. [4]

This update equation only requires knowing the accumulated
evidence xðtÞ, decision time t, and feedback yp, but is independent
of the chosen option y, and how the decision maker came to this
choice. As a matter of fact, the decision maker could make
random choices, irrespective of the accumulated evidence, and
still learn w according to the above update equation, as long as
they keep track of xðtÞ and t, and acknowledge the feedback yp.
Therefore, learning and decision making are not necessarily cou-
pled. Nonetheless, we assume for all simulations that decision
makers perform decisions by using the mean estimate <w>, which is
an intuitively sensible choice if the decision maker’s aim is to max-
imize their reward rate (SI Appendix).
As in Eq. 4, the likelihood parameters, w, are linear within a

cumulative Gaussian function, such problems are known as
“probit regression” and do not have a closed-form expression for
the posterior. We could proceed by sampling from the posterior
by Markov chain Monte Carlo methods, but that would not
provide much insight into the different factors that modulate
learning the posterior weights. Instead, we proceed by deriving a
closed-form approximation to this posterior to provide such in-
sight, as well as a potential mechanistic implementation.

Confidence Controls the Learning Rate. To find an approximation
to the posterior in Eq. 4, let us assume the prior to be given by
the Gaussian distribution, pðwÞ=Nðw j μw,ΣwÞ, with mean μw and
covariance Σw, which is the maximum entropy distribution that
specifies the mean and covariance (28). First, we investigated
how knowing w with limited certainty, as specified by Σw, impacts
the decision confidence. Marginalizing over all possible w values
(Materials and Methods) resulted in the choice confidence to be
given by the following:

pðy j xðtÞ, tÞ=Φ

0
B@ yμTw~xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+~xTΣw~x
p

1
CA. [5]

Compared to Eq. 2, the choice confidence is additionally atten-
uated by Σw. Specifically, higher weight uncertainty (i.e., an over-
all larger covariance Σw) results in a lower decision confidence,
as one would intuitively expect (Fig. 1C).

24874 | www.pnas.org/cgi/doi/10.1073/pnas.1906787116 Drugowitsch et al.
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Next, we found a closed-form approximation to the posterior
(Eq. 4). For repeated learning across consecutive decisions, the
posterior over the weights after the previous decision becomes
the prior for the new decision. Unfortunately, a direct applica-
tion of this principle would lead to a posterior that changes its
functional form after each update, making it intractable. We
instead used assumed density filtering (ADF) (26, 29) that posits
a fixed functional form qðwjyp, xðtÞ, tÞ=Nðwjμpw,Σp

wÞ of the pos-
terior density—in our case, Gaussian for consistency with the
prior—and then finds the posterior parameters μpw and Σp

w that
make this approximate posterior best match the “true” posterior
pðw j yp, xðtÞ, tÞ (Eq. 4). Performing this match by minimizing the
Kullback–Leiber divergence KLðpkqÞ results in the posterior
mean (30, 31):

μpw = μw +
ξwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+~xTΣw~x
p ypΣw~x, [6]

and a similar expression for the posterior covariance (Materials
and Methods). Choosing KLðpkqÞ to measure the distance be-
tween p and q is to some degree arbitrary, but has beneficial
properties, such as that it causes the first two moments of q to
match those of p (SI Appendix). In Eq. 6, the factor ξw modulates
how strongly this mean is updated toward ypΣw~x, and turns out to
be a monotonically decreasing function of decision confidence
(Fig. 1D, Top; see Materials and Methods for mathematical ex-
pression). For incorrect choices, for which the decision confi-
dence is pðypjxðtÞ, tÞ< 1=2, ξw is largest for choices made with
high confidence, promoting significant weight adjustments. For
low-confidence choices, it only promotes moderate adjustments,
notably irrespective of whether the choice was correct or incor-
rect. High-confidence, correct choices yield a low ξw, and thus an
intuitively minor strategy update. The update of the posterior
covariance follows a similar confidence-weighted learning rate
modulation (SI Appendix, Fig. S1, and Materials and Methods).
Decision confidence is not the only factor that impacts the

learning rate in Eq. 6. For instance, ~x shrinks for longer, less
confidence choices (because it is inversely proportional to time)
and results in overall less learning. Less certain weights, associ-
ated with larger magnitudes of Σw, have a similar effect. To in-
vestigate the overall impact of all of these factors combined on
the learning rate, we simulated a long sequence of consecutive
choices and plotted the learning rate for a random subset of
these trials against the decision confidence (Fig. 1 D, Bottom).
This plot revealed a slight down-weighting of the learning rate
for low-confidence choices when compared to ξw, but left the
overall dependency on ξw otherwise unchanged.

Performance Comparison to Optimal Inference and to Simpler
Heuristics. The intuitions provided by near-optimal ADF learning
are only informative if its approximations do not cause a sig-
nificant performance drop. We quantified this drop by compar-
ing ADF performance to that of the Bayes-optimal rule, as found
by Gibbs sampling (Materials and Methods). Gibbs sampling is
biologically implausible as it requires a complete memory of
inputs and feedbacks for past decisions and is intractable for
longer decision sequences, but nonetheless provides an optimal
baseline to compare against. We furthermore tested the per-
formance of two additional approximations. One was an ADF
variant that assumes a diagonal covariance matrix Σw, yielding a
local learning rule that could be implemented by the nervous
system. This variant furthermore reduced the number of pa-
rameters from quadratic to linear in the size of w. The second
was a second-order Taylor expansion of the log-posterior,
resulting in a learning rule similar to ADF, but with a lower
impact of weight uncertainty on the learning rate (Materials
and Methods).

Furthermore, we tested whether simpler learning heuristics
can match ADF performance. We focused on three rules of in-
creasing complexity. The delta rule, which can be considered a
variant of temporal-difference learning, or reinforcement learning
(32), updates its weight estimate after the nth decision by the fol-
lowing:

wn+1 =wn +
α

2θð0Þ
�
ypnθðtÞ− xnðtÞTwn

�
xnðtÞ, [7]

where ypn ∈ f−1,1g is the feedback about the correct choice pro-
vided after this decision, and we have chosen to normalize the
learning rate α by the initial bound height θð0Þ to make it less
sensitive to this chosen height. As decisions are triggered at
one of the two boundaries, xnðtÞTwn ∈ f−θðtÞ, θðtÞg, the residual
in brackets is zero for correct choices, and ±2θðtÞ for incorrect
choices. As a result, and in contrast to ADF, weight adjustments
are only performed after incorrect choices, and with a fixed
learning rate α rather than one modulated by confidence (Fig.
1 D, Right). Our simulations revealed that the delta rule exces-
sively and suboptimally decrease in the weight size kwk over time,
leading to unrealistically long reaction times and equally unreal-
istic near-zero weights. To counteract this problem, we designed
a normalized delta rule, that updates the weight estimates as the
delta rule, but thereafter normalizes them by w←wkw*k=kwk to
ensure that its size matches that of the true weights wp. Access to
these true weights, wp, makes it an omniscient learning rule that
cannot be implemented by a decision maker in practice. Last, we
tested a learning rule that performs stochastic gradient ascent on
the feedback log-likelihood:

wn+1 =wn + α∇w log p
�
ypn jwn, xnðtÞ, t

�
=wn + αypnξw~xnðtÞ. [8]

This rule introduces decision confidence weighting through ξw,
but differs from ADF in that it does not take the weight un-
certainty (Σw in ADF) into account, and requires tuning of the
learning rate parameter α.
We evaluated the performance of these learning rules by sim-

ulating weight learning across 1,000 consecutive decisions (called
“trials”; see Materials and Methods for details) in a task in which
use of the optimal weight vector maximizes the reward rate. This
reward rate was the average reward for correct choices minus
some small cost for accumulating evidence over the average time
across consecutive trials and is a measure we would expect rational
decision makers to optimize. For each learning rule, we found its
reward rate relative to random behavior and optimal choices.
Fig. 2A shows this relative reward rate for all learning rules and

different numbers of inputs. As can be seen, the performance of
ADF and the other probabilistic learning rules is indistinguishable
from Bayes-optimal weight learning for all tested numbers of inputs.
Surprisingly, the ADF variant that ignores off-diagonal covariance
entries even outperformed Bayes-optimal learning for a large
number of inputs (Fig. 2A, yellow line for 50 inputs). The reason
that a simpler learning rule could outperform the rule deemed
optimal by Bayesian decision theory is that this simpler rule has less
parameters and a simpler underlying model that was nonetheless
good enough to learn the required weights. Learning fewer pa-
rameters with the same data resulted in initially better parameter
estimates, and better associated performance. Conceptually, this is
similar to a linear model outperforming a quadratic model when
fitting a quadratic function if little data are available, and if the
function is sufficiently close to linear (as illustrated in SI Appendix,
Fig. S2). Once more data are available, the quadratic model will
outperform the linear one. Similarly, the Bayes-optimal learning
rule will outperform the simpler one once more feedback has been
observed. In our simulation, however, this does not occur within the
1,000 simulated trials.
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All other learning heuristics performed significantly worse.
For low-dimensional input, the delta rule initially improved its
reward rate but worsens it again at a later stage across all
learning rates. The normalized delta rule avoided such perfor-
mance drops for low-dimensional input, but both delta rule
variants were unable to cope with high-dimensional inputs. Only
stochastic gradient ascent on the log-likelihood provided a stable
learning heuristic for high-dimensional inputs, but with the
downside of having to choose a learning rate. Small learning
rates lead to slow learning, and an associated slower drop in
angular error. Overall, the probabilistic learning rules signifi-
cantly outperformed all tested heuristic learning rules and
matched (and in one case even exceeded) the weight learning
performance of the Bayes-optimal estimator.

Tracking Nonstationary Input Weights. So far, we have tested how
well our weight learning rule is able to learn the true, underlying
weights from binary feedback about the correctness of the de-
cision maker’s choices. For this, we assumed that the true
weights remained constant across decisions. What would happen
if these weights change slowly over time? Such a scenario could
occur if, for example, the world around us changes slowly, or if
the neural representation of this world changes slowly through
neural plasticity or similar. In this case, the true weights would
become a moving target that we would never be able to learn
perfectly. Instead, we would after some initial transient expect to
reach steady-state performance that remains roughly constant
across consecutive decisions. We compared this steady-state
performance of Bayes-optimal learning (now implemented by a
particle filter) to that of the probabilistic and heuristic learning
rules introduced in the previous section. The probabilistic rules
were updated to take into account such a trial-by-trial weight
change, as modeled by a first-order autoregressive process
(Materials and Methods). The heuristic rules remained un-
modified, as their use of a constant learning rate already en-
capsulates the assumption that the true weights change
across decisions.
Fig. 2B illustrates the performance of the different learning

rules. First, it shows that, for low-dimensional inputs the various
probabilistic models yield comparable performances, but for
high-dimensional inputs the approximate probabilistic learning
rules outperform Bayes-optimal learning. In case of the latter,

these approximations were not actually harmful, but instead
beneficial, for the same reason discussed further above. In par-
ticular, the more neurally realistic ADF variant that only tracked
the diagonal of the covariance matrix again outperformed all
other probabilistic models. Second, only the heuristic learning
rule that performed gradient ascent on the log-likelihood
achieved steady-state performance comparable to the approxi-
mate probabilistic rules, and then only for high input di-
mensionality and a specific choice of learning rate. This should
come as no surprise, as its use of the likelihood function intro-
duces more task structure information than the other heuristics
use. The delta rule did not converge and therefore never
achieved steady-state performance. Overall, the ADF variant
that focused only on the diagonal covariance matrix achieved the
best overall performance.

Learning Both Weights and a Latent State Prior Bias. Our learning
rule can be generalized to learn prior biases in addition to the
input weights. The prior we have used so far for the latent var-
iable, μ∼Nð0, σ2μÞ, is unbiased, as both μ≥ 0 and μ< 0 are equally
likely. To introduce a prior bias, we instead used μ∼Nðm, σ2μÞ,
where m controls the bias through P+ ≡ pðμ≥ 0Þ=Φðm=σμÞ. A
positive (or negative) m causes P+ > 1=2 (or <1=2), thus making
y= 1 (or y=−1) the more likely correct choice even before evi-
dence is accumulated. After evidence accumulation, such a prior
results in the posterior:

pðμ≥ 0jw, xðtÞ, tÞ=Φ

0
B@wTxðtÞ+ σ−2μ mffiffiffiffiffiffiffiffiffiffiffiffiffi

t+ σ−2μ

q
1
CA. [9]

Comparing this to the unbiased posterior, Eq. 2, reveals the
additional term σ−2μ m whose relative influence wanes over time.
This additional term has two consequences. First, appending

the elements m and σ−2μ to the vectors w and xðtÞ, respectively,
shows that w and m can be learned jointly by the same learning
rule we have derived before (Materials and Methods). Second, the
term requires us to rethink the association between decision
boundaries and choices. As Fig. 3C illustrates, such a prior
causes a time-invariant shift in the association between the

A B

Fig. 2. Input weight learning and tracking performance of different learning rules. All plots show the relative reward rate (0 = immediate, random choices;
1 = optimal) averaged over 5,000 simulations with different true, underlying weights, and for 2 (Top) and 50 (Bottom) inputs. (A) The relative reward rate for
probabilistic and heuristic learning rules. The probabilistic learning rules include the optimal rule (Gibbs sampling), assumed density filtering (ADF), ADF with
a diagonal covariance matrix (ADF [diag]), and a learning rule based on a second-order Taylor expansion of the log-posterior (Taylor exp.). For both 2 and
50 inputs, all rules perform roughly equally. For the heuristic rules, different color shadings indicate different learning rates. The initial performance shown is
that after the first application of the learning rule, such that initial performances can differ across learning rules. (B) The steady-state performance across
different heuristic rule learning rates. Steady-state performance was measured as an average across 5,000 simulations, averaging over the last 100 of
1,000 simulated trials in which the true weights slowly change across consecutive trials. An optimal relative reward rate of 1 corresponds to knowing the true
weight in each trial, which, due to the changing weight, is not achievable in this setup. The color scheme is the same as in A, but the vertical axis has a
different scale. The delta rule did not converge and was not included in B.
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accumulated evidence, zðtÞ=wTxðtÞ, and the posterior belief of
μ≥ 0 and corresponding decision confidence. This shift makes it
possible to have the same Bayes-optimal choice at both decision
boundaries (Fig. 3C, blue/red decision areas). Hence, we have
lost the mechanistically convenient unique association between
decision boundaries and choices. We recover this association by a
boundary counter shift, such that these boundaries come to lie at
the same decision confidence levels for opposite choices, making
them asymmetric around z= 0. Mathematically, this is equivalent to
shifting the evidence accumulation starting point, ~zð0Þ away from
zero in the opposite direction [Fig. 3C, shift by C1ðP+Þ= σ−2μ m; SI
Appendix]. Therefore, a prior bias is implemented by a bias-
dependent simple shift of the accumulation starting point, leading
to a mechanistically straightforward implementation of Bayes-
optimal decision making with biased priors.
A consequence of the shifted accumulation starting point is

that, for some fixed decision time t, the decision confidence at
both boundaries is the same (Fig. 3 C, Right). This seems at odds
with the intuition that a biased prior ought to bias the decision
confidence in favor of the more likely option. However, this
mechanism does end up assigning higher average confidence to
the more likely option because of reactions times. As the starting
point is now further away from the less likely correct boundary, it
will on average take longer to reach this boundary, which lowers
the decision confidence since confidence decreases with elapsed
time. Therefore, even though the decision confidence at both
boundaries is the same for the given decision time, it will on

average across decision times be lower for the a priori non-
preferred boundary, faithfully implementing this prior (see SI
Appendix for a mathematical demonstration).
Our finding that a simple shift in the accumulation starting

point is the Bayes-optimal strategy appears at odds with previous
work that suggested that the optimal shift of the accumulator
variable zðtÞ varies with time (18). This difference stems from a
different implementation of the bias. While we have chosen an
overall shift in the prior by its mean (Fig. 3C), an alternative
implementation is to multiply pðμ≥ 0Þ by P+, and pðμ< 0Þ by
1−P+ (Fig. 3D), again resulting in P+ = pðμ≥ 0Þ. A consequence
of this difference is that the associated shift of the posterior
belief of μ≥ 0 in the evidence accumulation space becomes
time dependent. Then, the optimal choice at a time-invariant
boundary in that space might change over time (Fig. 3D). Fur-
thermore, undoing this shift to regain a unique association be-
tween boundaries and choices not only requires a shifted
accumulation starting point, but additionally a time-dependent
additive signal [C2ðP+, tÞ in Fig. 3D; SI Appendix], as was pro-
posed in ref. 18. Which of the two approaches is more adequate
depends on how well it matches the prior implicit in the task
design. Our approach has the advantage of a simpler mechanistic
implementation, as well as yielding a simple extension to the
previously derived learning rule. How learning prior biases in the
framework of ref. 18 could be achieved remains unclear (but
see ref. 33).

A B

C

D

Fig. 3. Decision confidence, prior biases, and the relation between decision boundary and choice. (A) For an unbiased prior [i.e., P+ ≡pðμ≥ 0Þ= 1=2], the
decision confidence (color gradient) is symmetric around z= 0 for each fixed time t. The associated posterior belief pðμ≥ 0jzðtÞ, tÞ (numbers above/below
“time” axis label; constant along white lines; ½ along light blue line) promote choosing y = 1 and y =−1 above (blue area in B) and below (red area in B) z= 0.
(B) As a result, different choices are Bayes-optimal at the blue/red decision boundaries, as long as they are separated by z= 0, irrespective of the boundary
separation (solid vs. dashed blue red lines). (C) If the prior is biased by an overall shift, the decision confidence is countershifted by the same constant across all
t. In this case, both decision boundaries might promote the same choice, which can be counteracted by a time-invariant shift of z by C1ðP+Þ. (D) If the prior is
biased by boosting one side while suppressing the other, the decision confidence shift becomes time dependent, such that the optimal choice at a time-
invariant boundary might change over time. Counteracting this effect requires a time-dependent shift of z by C2ðP+, tÞ. In both C and B, we have chosen
P+ = 0.6, for illustration.
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Sequential Choice Dependencies due to Continuous Weight Tracking.
In everyday situations, no two decisions are made under the
exact same circumstances. Nonetheless, we need to be able to
learn from the outcome of past choices to improve future ones.
A common assumption is that past choices become increasingly
less informative about future choices over time. One way to
express this formally is to assume that the world changes slowly over
time—and that our aim is to track these changes. By “slow,” we
mean that we can consider it constant over a single trial but that
it is unstable over the course of an hour-long session. We
implemented this tracking of the moving world, as in Fig. 2B, by
slowly allowing the weights mapping evidence to decisions to
change. With such continuously changing weights, weight
learning never ends. Rather, the input weights are continuously
adjusted to make correct choices more likely in the close future.
After correct choices, this means that weights will be adjusted to
repeat the same choice upon observing a similar input in the
future. After incorrect choices, the aim is to adjust the weights to
perform the opposite choice, instead. Our model predicts that,
after an easy correct choice, in which confidence can be expected
to be high, the weight adjustments are lower than after hard
correct choices (Fig. 1 D, Top, green line). As a consequence, we
would expect the model to be more likely to repeat the same
choices after correct and hard, than after correct and easy trials.
To test this prediction, we relied on the same simulation to

generate Fig. 2B to measure how likely the model repeated the
same choice after correct decisions. Fig. 4A illustrates that this
repetition bias manifests itself in a shift of the psychometric
curve that makes it more likely to repeat the previous choice.
Furthermore, and as predicted, this shift is modulated by the
difficulty of the previous choice and is stronger if the previous
choice was easy (i.e., associated with a large jμj; Fig. 4B).
Therefore, if the decision maker expects to operate in a volatile,
slowly changing world, our model predicts a repetition bias to
repeat the same choices after correct decisions, and that this bias
is stronger if the previous choice was easy.

Unreliable Feedback Reduces Learning. What would occur if choice
feedback is less-than-perfectly reliable? For example, the feed-
back itself might not be completely trustworthy, or hard to in-
terpret. We simulated this situation by assuming that the
feedback is inverted with probability β. Here, β= 0 implies the so
far assumed perfectly reliable feedback, and β= 1=2 makes the
feedback completely uninformative. This change impacts how
decision confidence modulates the learning rate (Fig. 4C) as
follows. First, it reduces the overall magnitude of the correction,
with weaker learning for higher feedback noise. Second, it results

in no learning for highly confident choices that we are told are
incorrect. In this case, one’s decision confidence overrules the
unreliable feedback. This stands in stark contrast to the optimal
learning rule for perfectly reliable feedback, in which case the
strongest change to the current strategy ought to occur.

Discussion
Diffusion models are applicable to model decisions that require
some accumulation of evidence over time, which is almost always
the case in natural decisions. We extended previous work on the
normative foundations of these models to more realistic situa-
tions in which the sensory evidence is encoded by a population of
neurons, as opposed to just two neurons, as has been typically
assumed in previous studies. We have focused on normative and
mechanistic models for learning the weights from the sensory
neurons to the decision integrator without additionally adjusting
the decision boundaries, as weight learning is a problem that
needs to be solved even if the decision boundaries are optimized
at the same time.
From the Bayesian perspective, weight learning corresponds

to finding the weight posterior given the provided feedback, and
resulted in an approximate learning rule whose learning rate was
strongly modulated by decision confidence. It suppressed learn-
ing after high-confidence correct decisions, supported learning
for uncertain decisions irrespective of their correctness, and
promoted strong change of the combination weights after wrong
decisions that were made with high confidence (Fig. 1D). Evi-
dence for such confidence-based learning has already been
identified in human experiments (34), but not in a task that re-
quired the temporal accumulation of evidence in individual
trials. Indeed, as we have previously suggested (22), such a
modulation by decision confidence should arise in all scenarios
of Bayesian learning in N-AFC tasks in which the decision maker
only receives feedback about the correctness of their choices,
rather than being told which choice would have been correct. In
the 2-AFC task we have considered, being told that one’s choice
was incorrect automatically reveals that the other choice was
correct, making the two cases coincide. Moving from one-
dimensional to higher-dimensional inputs requires performing
the accumulation of evidence for each input dimension sepa-
rately [Fig. 1B; Eqs. 6 and 12 require xðtÞ rather than only
wTxðtÞ], even if triggering choices only requires a linear combi-
nation of xðtÞ. This is because uncertain input weights require
keeping track of how each input dimension contributed to the
particle crossing the decision boundary in order to correctly
improve these weights upon feedback (i.e., proper credit
assignment). The multidimensional evidence accumulation
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Fig. 4. Sequential choice dependencies due to continuous learning, and effects of noisy feedback. Bayes-optimal learning in a slowly changing environment
predicts sequential choice dependencies with the following pattern. (A) After hard, correct choices (low prev. jμj; light colors), the psychometric curve is
shifted toward repeating the same choice (blue/red = choice y = 1=−1). This shift decreases after easier, correct choices (high prev. jμj; dark colors). (B) We
summarize these tuning curve shifts in the repetition bias, which is the probability of repeating the same choice to a μ= 0 stimulus (example green arrow for
μ=−0.38 in A). After correct/incorrect choices (green/red curve), this leads to a win–stay/lose–switch strategy. Only the win–stay strategy is shown in A. (C) If
choice feedback is noisy (inverted with probability β), the learning rate becomes overall lower. In particular for high-confidence choices with “incorrect”
feedback, the learning rate becomes zero, as the learners trust their choice more than the feedback.
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predicted by our work arises naturally if inputs encode full dis-
tributions across the task-relevant variables, such as in linear
probabilistic population codes (35) that trigger decisions by
bounding the pooled activity of all units that represent the ac-
cumulated evidence (36).
Continual weight learning predicts sequential choice de-

pendencies that make the repetition of a previous, correct choice
more likely, in particular if this choice was difficult (Fig. 4). Thus,
based on assuming a volatile environment that promotes a con-
tinual adjustment of the decision-making strategy, we provide a
rational explanation for sequential choice dependencies that are
frequently observed in both humans and animals (e.g., refs. 37 and
38). In rodents making decisions in response to olfactory cues, we
have furthermore confirmed that these sequential dependencies are
modulated by choice difficulty, and that the exact pattern of this
modulation depends on the stimulus statistics, as predicted by our
theory (39) (but consistency with ref. 40 is unclear).
Last, we have clarified how prior biases ought to impact Bayes-

optimal decision making in diffusion models. Extending the work
of Hanks et al. (18), we have demonstrated that the exact
mechanisms to handle these biases depend on the specifics of
how these biases are introduced through the task design. Specifi-
cally, we have suggested a variant that simplifies these mech-
anisms and the learning of this bias. This variant predicts that
the evidence accumulation offset, that has previously been sug-
gested to be time-dependent, to become independent of time, and
it would be interesting to see whether the lateral intraparietal
cortex activity of monkeys performing the random-dot motion
task, as recorded by Hanks et al. (but see ref. 41), would change
accordingly.

Materials and Methods
We here provide an outline of the framework and its results. Detailed der-
ivations are provided in SI Appendix.

Bayesian Decision Making with One and Multidimensional Diffusion Models.
We assume the latent state to be drawn from μ∼Nðm, σ2μÞ, and the mo-

mentary evidence in each time step δt to provide information about this
latent state by δzi jμ∼Nðμδt, δtÞ. The aim is to infer the sign of μ, and choose
y = 1 if μ≥ 0, and y =−1 otherwise. After having observed this evidence for
some time t ≡nδt, the posterior μ given all observed evidence δz1 :n is by
Bayes’ rule given by the following:

pðμ jδ z1 :nÞ∝N
�
μ jm, σ2μ

�
∏
n

i=1
Nðδzi j μδt, δtÞ∝N

 
μ j σ

−2
μ m+ zðtÞ
σ−2μ + t

,
1

σ−2μ + t

!
. [11]

In the above, all proportionalities are with respect to μ, and we have defined
zðtÞ=Pn

i=1δzi and have used t =
Pn

i=1δt. How to find the posterior belief for
μ’s sign with m= 0 is described around Eq. 1.

We extend diffusion models to multidimensional inputs with momentary
evidence δx i j μ,w ∼Nððaμ+bÞδt,ΣδtÞ, with a, b, and Σ chosen such that
wTxðtÞjμ= zðtÞjμ∼Nðμt, tÞ, as before. The posterior over μ and μ≥ 0 is the
same as for the one-dimensional case, with zðtÞ replaced bywTxðtÞ. Defining
~xðtÞ= xðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ−2μ + t

q
, we find pðμ≥ 0jw, xðtÞ, tÞ=ΦðwT ~xðtÞÞ. As y = 1 and

y =−1 correspond to μ≥ 0 and μ< 0, and y = 1 is only chosen if
pðμ≥ 0jw, xðtÞ, tÞ≥ 1=2, the decision confidence for m= 0 at some boundary

wTxðtÞ=±θðtÞ is given by ΦðθðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ−2μ + t

q
Þ. If input weights are unknown,

and the decision maker holds belief w ∼Nðμw ,Σw Þ about these weights, the
decision confidence needs to additionally account for weight uncertainty by
marginalizing over w, resulting in Eq. 5.

Probabilistic and Heuristic Learning Rules. We find the approximate posterior

qðwÞ=Nðwjμ*w ,Σ*w Þ that approximates the target posterior p Eq. 4 by ADF.

This requires minimizing the Kullback–Leiber divergence KLðpjqÞ (26, 29),
resulting in Eq. 6 for the posterior mean, and the following:

Σ*w =Σw + ξcovðγÞ
��

Σ−1
w + ~x~xT

�−1
−Σw

�
, [12]

with learning rate modulators ξw ðγÞ=Nðγj0,1Þ=ΦðγÞ and ξcovðγÞ= ξw ðγÞ2 +
ξw ðγÞγ, and where we have defined γ ≡ y*μTw ~x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ~xTΣw ~x

q
, which is mono-

tonic in the decision confidence (Eq. 5). Noisy choice feedback (Fig. 4C)
changes the likelihood to assume reversed feedback with probability β, and
follow the same procedure as above to derive the posterior moments (SI
Appendix). The ADF variant that only tracks the diagonal covariance ele-
ments assumes Σw to be diagonal, and only computes the diagonal elements

of Σ*w. A second-order Taylor expansion of the log of Eq. 4 leads to update
equations similar to Eqs. 6 and 12, but without the normalization by weight
uncertainty (see SI Appendix for details). All heuristic learning rules are
described in the main text.

We modeled nonstationary input weights by wnjwn−1 ∼NðAwn−1 +b,ΣdÞ
after a decision in trial n− 1. This weight transition is taken into account by
the probabilistic learning rules by setting the parameter priors to

μw,n =Aμ*w,n−1 +b and Σw,n =AΣ*w,n−1A
T +Σd. For stationary weights, we have

A= I, b= 0, and Σd = 0.
Bayes-optimal weight inference was for stationary weights performed by

Gibbs sampling for probit models, and for nonstationary weights by particle
filtering (SI Appendix).

Simulation Details. We used parameters a=w=kwk2 and b= 0 for the mo-
mentary evidence δx. Its covariance Σwas generated to feature eigenvalues

that drop exponentially from σ2x = 2=kwk2 to zero until it reaches a constant

σ20 = 0.001=kwk2 noise baseline, as qualitatively observed in neural pop-
ulations. It additionally contains an eigenvector w with eigenvalue set to
guarantee wTΣw = 1, limiting the information that δx provides about μ. For
nonstationary weights, all momentary evidence parameters are adjusted
after each weight change (SI Appendix). The diffusion model bounds ±θ
were time-invariant and tuned to maximize the reward rate when using the
correct weights. The reward rate is given by ðpðcorrectÞ− caccumtÞ=ðtiti + tÞ,
where averages were across trials, and we used evidence accumulation cost
caccum = 0.01 and intertrial interval titi = 2s. We used σ2μ = 32 to draw μ in each

trial, and drew w from w ∼Nð1, IÞ before each trial sequence. For non-
stationary weights, we resampled weights after each trial according to

wnjwn−1 ∼Nðλwn−1 + ð1− λÞ, σ2d IÞ, with decay factor λ= 1− 0.01 and σ2d = 1− λ2

to achieve steady-state mean 1 and identity covariance.
To compare the weight learning performance of ADF to alternative

models (Fig. 2A), we simulated 1,000 learning trials 5,000 times, and
reported the reward rate per trial averaged across these 5,000 repetitions.
To assess steady-state performance (Fig. 2B), we performed the same pro-
cedure with nonstationary weights and reported reward rate averaged over
the last 100 trials, and over 5,000 repetitions. The same 100 trials were used
to compute the sequential choice dependencies in Fig. 4 A and B. To simu-
late decision making with diffusion models and uncertain weights, we used
the current mean estimate <w> of the input weights to linearly combine
the momentary evidence. The probabilistic learning rules were all in-
dependent of the specific choice of this estimate. The learning rate in Fig.
1D shows the prefactor to y*Σw ~x in Eq. 6 over decision confidence for a
subsample of the last 10,000 trials of a single 15,000 trial simulation with
nonstationary weights. For the Gibbs sampler, we drew 10 burn-in sam-
ples, followed by 200 samples in each trial. For the particle filter, we
simulated 1,000 particles.
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Supporting Information Text

We here provide a self-consistent and extended derivation of all the results provided in the main text. We will use standard
font for scalars, lower-case bold symbols for vectors, and upper-case bold symbols for matrices. All vectors are column vectors,
unless transposed. x ∼ N

(
µ, σ2) denotes that x is a normal random variable with mean µ and variance σ2.

Optimal decision making with high-dimensional momentary evidence

One-dimensional momentary evidence. Within each individual trial, we assume the latent state µ to be drawn from µ ∼
N
(
m,σ2

µ

)
. m = 0 corresponds to the case of an unbiased prior for which p(µ ≥ 0) = p(µ < 0). In each small time step n

of size δt from trial-onset at t = 0 (i.e., n = 1), the decision maker observes the momentary evidence δzn|µ ∼ N (µδt, δt)
that provides noisy information about the value of µ. The decision-maker’s aim is to infer the sign of µ from the sequence
δz1, δz2, . . . of momentary evidence, to make choice y = 1 (for µ ≥ 0) or y = −1 (for µ < 0).

For Bayes-optimal choices, we find the posterior p (µ ≥ 0|δz1, δz2, . . . ) in two steps. First, for N pieces (i.e., t = Nδt seconds)
of accumulated evidence, the posterior µ is give by Bayes’ rule,

p (µ|δz1:N ) ∝ p (µ)
N∏
n=1

p (δzn|µ) ∝ e
−µ

2
2

(
1
σ2
µ

)
+µ
(
m

σ2
µ

+z
)
∝ N

(
µ|
σ−2
µ m+ z

σ−2
µ + t

,
1

σ−2
µ + t

)
, [1]

where all proportionalities are with respect to µ, and the second proportionality results from substituting the respective normal
distributions, and defining t =

∑
n
δt and z(t) =

∑
n
δzn. This shows that the sufficient statistics of the posterior are z(t) and

t. For the second step we integrate this posterior over the non-negative half-line to find

p(µ ≥ 0|z, t) =
∫ ∞

0
p(µ|z, t)dµ = Φ

(
σ−2
µ m+ z√
σ−2
µ + t

)
, [2]

where Φ (·) is the normal cumulative function. This posterior is more certain (i.e., closer to zero or one) for larger |σ−2
µ m+ z|

and smaller times t.
Using the correspondence between µ ≥ 0 (and µ < 0) and y = 1 (and y = −1), the fact that 1 − Φ(a) = Φ(−a), and

p (µ < 0|z, t) = 1− p (µ ≥ 0|z, t), the more generic posterior over y is given by

p(y|z, t) = Φ

(
y
σ−2
µ m+ z√
σ−2
µ + t

)
. [3]

This posterior captures both y = 1 and y = −1. If y is the made decision, then the expression is the belief that this decision
was correct, and hence the decision confidence (1).

So far we have assumed a prior over µ with arbitrary mean m. With this prior, the a-priori belief that y = 1 is correct
is given by P+ ≡ p (µ ≥ 0) = Φ (m/σµ). The prior is thus unbiased for m = 0, in which case P+ = 1/2. In this case, the
posterior Eq. [3] prefers y = 1 for all z > 0 and y = −1 for all z < 0. Therefore, we can bound evidence accumulation from
above and below by the (potentially time-dependent) ±θ(t) to make Bayes-optimal choices. In particular, once z reaches θ(t)
(or −θ(t)), it would trigger choice y = 1 (or y = −1). Observing that the unbounded accumulated evidence follows a Wiener
process with drift µ, that is, z(t)|µ ∼ N (µt, t), supports the use of drift-diffusion models for Bayes-optimal decision making.
Biased priors, which we discuss in a later section, require additional attention to achieve Bayes-optimal choices.

High-dimensional momentary evidence. To move to J-dimensional momentary evidence δx while preserving parallels to the
one-dimensional case, we assume that there exist some (for now, known) combination weights w such that δzn = wT δxn. We
achieve this by the generative model,

δx|µ ∼ N ((aµ+ b) δt,Σδt) , [4]

for vectors a and b that satisfy aTw = 1 and bTw = 0, and a covariance matrix Σ for which wTΣw = 1. With these properties
it becomes easy to show that wT δx|µ ∼ N (µδt, δt), as required. We will discuss our specific choices for a, b, and Σ for the
simulations shown in the main text further below.

Using the same steps as before, we find the posterior µ given N steps (i.e., t = Nδt seconds) of momentary evidence to be
given by

p (µ|δx1:N ,w) = N
(
σ−2
µ m+wTx

σ−2
µ + t

,
1

σ−2
µ + t

)
, [5]

where we have defined the accumulated evidence x(t) =
∑

n
δxn. The posterior over µ ≥ 0 is correspondingly given by

p (µ ≥ 0|x, t,w) = Φ

(
σ−2
µ m+wTx√
σ−2
µ + t

)
. [6]
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Both expressions differ from the one-dimensional case by replacing z by wTx. Expressed as a posterior over y, the above turns
into

p (y|x, t,w) = Φ

(
y
σ−2
µ m+wTx√
σ−2
µ + t

)
. [7]

If y is the made decision, the above is again the decision confidence. Note that the unbounded accumulated evidence follows
the multi-dimensional drifting Wiener process, x(t)|µ ∼ N ((aµ+ b) t,Σt), whose w-weighted linear combination reduces to
the same one-dimensional process z(t) = wTx(t) ∼ N (µt, t) as before.

Assuming again an unbiased prior, m = 0, Bayes-optimal decisions are by the same logic as for the one-dimensional case
cast by the boundaries ±θ(t) on wTx. Here, the positive (negative) boundary correspond to choice y = 1 (y = −1). We will
discuss Bayes-optimal choices for biased priors in a later section.

If difficulty |µ| varies across trials, the decision confidence at a constant decision boundary drops over time. As the previous
sections have shown, the decision confidence is the same for one- and high-dimensional momentary evidence as long as the
decision boundary is on z(t) and wTx(t), respectively. Furthermore, for time-invariant decision boundaries, ±θ(t) = ±θ, this
decision confidence drops as a function of time. Here we show that this drop is a general property of symmetric priors over µ
for which the difficulty |µ| can vary across trials, that extends beyond the Gaussian p (µ) we assume in other parts of this
supplement. To show this, let us redefine p (µ) — in this section only — to be (as in (2)) given by

p(µ) =
L∑
i=1

pi
2 (δ(µ− µi) + δ(µ+ µi)) , [8]

which features L point masses at ±µ1,±µ2, . . . ,±µL, each weighted by pi/2, and where we have assumed positive pi that
satisfy

∑
i
pi = 1. Furthermore, without loss of generality, we assume the µi’s to be positive, ordered, and unique, that is

0 < µ1 < µ2 < · · · < µL. Here, we disallow µ1 = 0 for notational convenience, but our argument can be easily extended to
include this possibility. Assuming the same one-dimensional momentary evidence as before, δzn|µ ∼ N (µδt, δt), it follows from
Bayes’ rule that

p (µ = µi|z, t) = pie
− t2µ

2
i+zµi∑

j
pje
− t2µ

2
j (ezµj + e−zµj )

. [9]

Therefore, the belief that µ ≥ 0 (y = 1) at the upper boundary z = θ is given by

p (y = 1|z = θ, t) =
∑
i

p (µ = µi|z = θ, t) =
∑

i
pie
− t2µ

2
i+θµi∑

j
pje
− t2µ

2
j
(
eθµj + e−θµj

) . [10]

For our symmetric prior, this belief at the upper boundary equals the decision confidence at both boundaries. Therefore, we
will use it as a proxy for decision confidence.

In what follows, we will show that this belief is a mixture of two components. The first is the belief that µ = µi given some
fixed difficulty, µ ∈ {−µi, µi}, and the second is the probability that this is indeed the current difficulty. The first part turns
out to be independent of time, whereas the second changes. In particular, as we will show, the probability that the difficulty is
high (i.e., that |µ| is small) increases over time, resulting in a re-weighting of the per-difficulty beliefs. This re-weighting causes
the overall belief to drop, as we argue in the main text.

Mathematically, this mixture can be written as

p (y = 1|z = θ, t) =
∑
i

p (µ = µi|z = θ, t) =
∑
i

p (µ = µi|z = θ, t, µ = ±µi) p (µ = ±µi|z = θ, t) . [11]

In the right-most sum, the first probability is the per-difficulty belief gi for assumed difficulty µi, and the second is the
probability that µi is indeed the current difficulty. Both follow from [9], and are given by

gi ≡ p (µ = µi|z = θ, t, µ = ±µi) = eθµi

eθµi + e−θµi
= 1

1 + e−2θµi
, [12]

p (µ = ±µi|z = θ, t) =
pie
− t2µ

2
i

(
eθµi + e−θµi

)∑
j
pje
− t2µ

2
j
(
eθµj + e−θµj

) = wi(t)∑
j
wj(t)

, [13]

where we have defined wi(t) = pie
− t2µ

2
i

(
eθµi + e−θµi

)
as the unnormalized, time-dependent, per-difficulty weights. This allows

us to write the overall belief as the weighted mixture

p (y = 1|z = θ, t) =
∑
i

wi(t)∑
j
wj(t)

gi, [14]

which is a weighted mixture of per-difficulty beliefs, gi, in which only the mixture weights are time-dependent. Note that
the per-difficulty beliefs are strictly increasing in µi, such that are also ordered, that is, g1 < g2 < · · · < gL. Furthermore,
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increasing time by δt > 0 results in a drop in unnormalized weights, wi(t+ δt) = ai(δt)wt(t) with ai(δt) = e−
δt
2 µ

2
i ∈ [0, 1]. This

drop is larger for larger µi, that is a1(δt) > a2(δt) > · · · > aL(δt). Therefore, increasing time results in putting proportionally
more weight on per-difficulty beliefs associated with lower µi’s with lower associated gi, such that the overall belief, and equally
the decision confidence, drops.

Once we stop varying the difficulty (i.e., L = 1), the belief reduces to the per-difficulty belief g1, which does not drop over
time. Therefore, the only condition required for the decision confidence to drop at a time-invariant boundary is for the difficulty
|µ| to vary across trials.

Learning the input combination weight w from choice feedback

So far we have assumed w to be known. Here we derive learning rules for w based on feedback on the correctness of a choice.
Specifically, we assume that the decision maker accumulated evidence x for some time t and (potentially, but not necessarily)
made decision y, after which feedback about the correct choice y∗ is provided. Before evidence accumulation we assume the
decision maker to hold belief p(w) about the input combination weights w. Our aim is to find the posterior p(w|x, t, y∗) given
all the available evidence. We focus here on a feedback after a single choice. The same principles apply to choice sequences, by
turning the posterior after a choice into the prior for the subsequent choice.

The desired posterior can be found by Bayes’ rule

p (w|x, t, y∗) ∝ p (y∗|x, t,w) p(w), [15]

where the likelihood p (y∗|x, t,w) is conditional on all observed quantities, x and t, and some hypothetical weights w, and
specifies the probability that y∗ is the correct choice given these weights. This likelihood turns out to correspond to the
previously derived decision-making posterior, Eq. [7], which is a normal cumulative function with argument linear in w. In
general, problems with such a likelihood function structure are known as Probit regression. Such problems don’t yield solutions
for which the posterior has the same functional form as the prior — which is a desirable property to support efficient Bayesian
input weight learning across longer sequences of choices, and to gain insight into the learning rule. Therefore, we derive below
different approximations to such Bayes-optimal learning.

All of the below assumes an unbiased prior over µ by fixing m to m = 0. We can extend the below rules to also learn the
prior bias m by extending the accumulated evidence vector x by one element fixed to σ−2

µ , and the weight vector w by one
element containing m. Learning this extended weight vector then correspond to simultaneously learning the input weight and
the prior bias.

The marginal decision confidence. Before deriving approximate weight learning rules, let us consider the consequences of
uncertain weights on the decision confidence p(y|x, t) with these weights marginalized out. To do so, we assume our prior
weight belief to be normal, w ∼ N (µw,Σw) with mean µw and covariance Σw. Then, we find this marginal decision confidence
by first finding the marginal posterior over µ, which is given by

p(µ|x, t) =
∫
p(µ|x, t,w)p(w)dw = N

(
µTwx

σ−2
µ + t

,
1

σ−2
µ + t

+ xTΣwx(
σ−2
µ + t

)2
)
, [16]

were we have used Eq. [5] with m = 0. We find the marginal decision confidence p(y|x, t) by integrating the above over the
non-negative halfline, which results after some simplification in

p(y|x, t) = Φ

(
y

µTwx√
σ−2
µ + t+ xTΣwx

)
= Φ

(
y

µTwx̃√
1 + x̃TΣwx̃

)
, [17]

where we have defined x̃ ≡ x/
√
σ−2
µ + t for the second equality. Comparing this expression to Eq. [7] reveals the additional

term xTΣwx that lowers the overall posterior confidence (i.e., moving it towards 1/2) due to uncertainty in w. If y is the
made choice, the above is the decision confidence that takes into account weight uncertainty.

Weight learning by Assumed Density Filtering. Assumed Density Filtering (ADF; (3–6)) approximates the posterior by assuming
a particular functional form of the approximate posterior q(w|x, t, y∗) and finding the parameters of this functional form by
minimizing the Kullback-Leiber divergence KL (p (w|x, t, y∗) ‖q (w|x, t, y∗)) between the true posterior and its approximation.
To minimize this divergence we again assume a normally distributed prior w ∼ N (µw,Σw) with mean µw and covariance Σw.
To support sequential choices, we assume the approximate posterior to also be normal, q (w|x, t, y∗) = N (w|µ∗wΣ∗w), with
updated moments µ∗w and Σ∗w.

To find these updated moments, we use the fact that the KL-divergence is in our case minimized by matching the moments
of the Gaussian sufficient statistics w and wwT (7). For the source distribution, p (w|x, t, y∗), these moments can be found by
the gradients of the log-normalizing constant of this source distribution, ∇ log p(y∗|x, t) (7, 8), where we will use the already
derived marginal likelihood p(y|x, t) in Eq. [17]. Using these principles, the updated moments of the approximate posterior can
be found by

µ∗w = µw + Σw∇µw log p(y∗|x, t), [18]

Σ∗w = Σw −Σw

(
∇µw log p(y∗|x, t) (∇µw log p(y∗|x, t))T − 2∇Σw log p(y∗|x, t)

)
Σw. [19]
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The required gradients are given by

∇µw log p(y∗|x, t) = ξw(γ)y∗ x̃√
1 + x̃TΣwx̃

, [20]

∇Σw log p(y∗|x, t) = −ξw(γ)y∗ µTwx̃

2 (1 + x̃TΣwx̃)3/2 x̃x̃
T , [21]

[22]

where ξw(γ) is given by

ξw(γ) = ∂

∂γ
log Φ(γ) = N (γ|0, 1)

Φ(γ) , [23]

and we have defined γ as

γ ≡ y∗ µTwx̃√
1 + x̃TΣwx̃

. [24]

Overall, this leads to the moments update equations,

µ∗w = µw + y∗
ξw(γ)√

1 + x̃TΣwx̃
Σwx̃, [25]

Σ∗w = Σw + ξcov(γ)
((

Σ−1
w + x̃x̃T

)−1 −Σw

)
, [26]

where the covariance learning rate is given by

ξcov(γ) = ξw(γ)2 + ξw(γ)γ. [27]

As illustrated in Fig. S1, both mean and covariance updates are modulated by the marginal decision confidence in the
feedback, y∗, given by Eq. [17]. To see how ξw and ξcov are a function of the marginal decision confidence about the actual
choice y (rather than the feedback y∗) let us first focus on correct choices. For correct choices, y = y∗, such that the marginal
decision confidence about y equals that of y∗, that is, p(y|x, t) = p(y∗|x, t). Furthermore, by the definition of p(y∗|x, t), it can
be written as p(y∗|x, t) = Φ(γ) (where γ is defined in Eq. [24]). This function is strictly increasing in γ, such that small/large
γ’s corresponds to low/high confidence. Therefore, as ξw(γ) and ξcov(γ) are functions of only γ, they are in turn functions of
the marginal decision confidence p(y|x, t).

For incorrect choices we have y 6= y∗, such that p(y|x, t) = 1 − p(y∗|x, t) = 1 − Φ(γ), which is strictly decreasing in γ.
Therefore, we can again assign a unique decision confidence p(y|x, t) to each γ, such that ξw(γ) and ξcov(γ) are again functions
of the decision confidence about the made decision y.

Assumed Density Filtering with a diagonal covariance matrix. The above update equations require tracking of the full covariance
matrix, making these updates scale badly with the size of the input space, J , and require non-local interactions. To find
alternative, local update equations, we here assume that both the prior covariance, as well as the approximate posterior
covariance are given by diagonal matrices, given by Σw = diag

(
σ2
w,1, . . . , σ

2
w,k

)
and Σ∗w = diag

(
σ2∗
w,1, . . . , σ

2∗
w,k

)
. Following the

same derivation as before, this leads to the update equations

µ∗w,i = µw,i + y∗
ξw(γ)√

1 +
∑

j
σ2
w,j x̃

2
j

σ2
w,ix̃i, [28]

σ2∗
w,i = σ2

w,i − ξcov(γ)
σ4
w,ix̃i√

1 +
∑

j
σ2
w,j x̃

2
j

[29]

where µw,i and µ∗w,i are the ith element of µw and µ∗w, respectively, and γ is given by

γ = y∗
µTwx̃√

1 +
∑

j
σ2
w,j x̃

2
j

. [30]

Thus, other than a global divisive normalization and the marginal decision confidence-related term γ, all updates are local.
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Approximating the weight posterior by a second-order Taylor series. A simpler alternative to ADF that also yields a normally
distributed approximate posterior is to approximate the true log-posterior, log p(w|x, t, y∗) by a second-order Taylor series in
w around w = µw. The relevant terms in this log-posterior are

log p(w|x, t, y∗) = Φ
(
y∗wT x̃

)
− 1

2w
TΣ−1

w w +wTΣ−1
w µw + const. [31]

The required gradient and Hessian are

∇w log p(w|x, t, y∗)
∣∣
w=µw

= ξw(γ)y∗x̃, [32]

∇∇w log p(w|x, t, y∗)
∣∣
w=µw

= −Σ−1
w − ξcov(γ)x̃x̃T , [33]

where ξw(·) and ξcov(·) are defined as for ADF, but γ changes to γ = y∗µTwx̃. Using the above to find the second-order Taylor
series and reading off the resulting posterior moments yields the moment updates

µ∗w = µw + y∗ξw(γ)Σ∗wx̃, [34]

Σ∗w =
(
Σ−1
w + ξcov(γ)x̃x̃T

)−1
. [35]

These have a similar form as for ADF, Eqs. [25] and [26], with the main difference that they are missing the normalization by√
1 + x̃TΣwx̃. Given that this normalization modulates the moment update strength by the weight uncertainty, this implies

that the update equations based on the second-order Taylor series will be less influenced by this uncertainty.

Assumed density filtering with noisy feedback. So far we have assumed the feedback y∗ to always be correct. We will now
consider how ADF changes when the feedback itself is noisy. In particular, we assume that feedback is inverted with probability
β, such that the weight likelihood given feedback y∗ becomes

p(y∗|x, t,w) = βΦ
(
−y∗wT x̃

)
+ (1− β)Φ

(
y∗wT x̃

)
= β + (1− 2β)Φ

(
y∗wT x̃

)
. [36]

In this case, the marginal decision confidence about feedback y∗ becomes

p(y∗|x, t, β) = β + (1− 2β)Φ
(
y∗

µTwx̃√
1 + x̃TΣwx̃

)
. [37]

The gradients of the log marginal decision confidence thus become

∇µw log p(y∗|x, t, β) = ξβ,w(γ)y∗ x̃√
1 + x̃TΣwx̃

, [38]

∇Σw log p(y∗|x, t, β) = −ξβ,w(γ)y∗ µTwx̃

2 (1 + x̃TΣwx̃)3/2 x̃x̃
T [39]

with ξβ,w(γ) given by

ξβ,w(γ) = ∂

∂γ
log (β + (1− 2β)Φ(γ)) = (1− 2β)N (γ|0, 1)

β + (1− 2β)Φ(γ) [40]

and where γ is, as for vanilla ADF, given by Eq. [24]. Using again Eqs. [18] and [19] results in the update equations

µ∗w = µw + y∗
ξβ,w(γ)√

1 + x̃TΣwx̃
Σwx̃, [41]

Σ∗w = Σw + ξβ,cov(γ)
((

Σ−1
w + x̃x̃T

)−1 −Σw

)
, [42]

with covariance learning rate
ξβ,cov(γ) = ξβ,w(γ)2 + ξβ,w(γ)γ. [43]

This illustrates that the only impact of noisy feedback is on the update strength modulators, ξβ,w(·) and ξβ,cov. As shown in
Fig. S1, these modulators become smaller for larger feedback noise. For high-confidence choices that the feedback flags as
incorrect, ξβ,cov even becomes negative, indicating that uncertainty in w increases. This increase arises from approximate
inference, as additional information in strictly Bayes-optimal inference should not increase uncertainty, even if this information
is (knowingly) noisy.
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Alternative learning heuristics. Let us now discuss alternative heuristics that do not track a belief over w, but instead update a
point estimate. The first alternative is the delta rule that performs stochastic gradient descent on the sum of squared distances
between the chosen decision boundary and the correct decision boundary. For the current choice, this squared distance is(
wTx(t)− y∗θ(t)

)2, where wTx(t) ∈ {−θ(t), θ(t)} at decision time t equals the chosen bound, and y∗θ(t) ∈ {−θ(t), θ(t)} is
the boundary that would have led to the correct choice. Thus, the delta rule update is given by

w∗ = w + α

2θ(0)
(
y∗θ(t)−wTx

)
x, [44]

where we have chosen to normalize the learning α by 2θ(0) to make the update magnitude less dependent of the bound height.
The residual in the above is either zero or ±2θ(t), such that the learning rule only makes adjustments to the weight estimate in
case of incorrect choices.

The delta rule aims to minimize the probability that incorrect choices are made. In diffusion models this can be achieved
by accumulating more evidence before reaching the decision boundary. This, in turn, can be accomplished by reducing the
overall magnitude of w. In particular for small learning rates, this is exactly what the delta rule does, leading to progressively
smaller ‖w‖, and weight learning that does not converge in expectation. To work around this degeneracy, we introduced the
normalized delta rule. This rule performs the update exactly like the standard delta rule, but subsequently adjusts the weight
magnitude to match that of the true weights. It therefore needs access to the true weight’s magnitude in each trial, making it a
rule that has access to an oracle that other rules don’t. Thus, it uses strictly more information than other rules, which needs to
be kept in mind when comparing its performance to that of other rules.

As a last heuristic we considered performing stochastic gradient ascent on the log-likelihood of the feedback, log p (y∗|x,w, t) =
log Φ

(
y∗wT x̃

)
. Taking the gradient of this log-likelihood results in the learning rule

w∗ = w − αy∗ξw
(
y∗wT x̃

)
x̃, [45]

where ξw(·) is defined as for ADF. Due to the inclusion of ξw(·), this rule modulates the update strength by decision confidence,
unlike the normalized delta rule above. It differs from probabilistic learning rules in that it uses a fixed learning rate α, instead
of a learning rate modulation by a current estimate of the certainty about w.

Tracking non-stationary combination weights

So far we have assumed the true weights, underlying the generation of the momentary evidences, δx, to be stationary, allowing
us to use a sequence x’s, t’s, and y∗’s to learn successively better posteriors over w. In the ideal case (i.e., if we wouldn’t use
approximate inference), this would — after enough observations — lead to a very good approximation of the true w. We now
change this setup to assume that the true weights change slightly across successive trials, and the learner’s task is to track these
changes as well as possible. This implies that, as the weights are now a moving target, they can never be learned perfectly.

We model the non-stationary of the weights by a first-order autoregressive process. That is, we assume that the true weights
wn in trial n depend on the true weights wn−1 in trial n by

wn|wn−1 ∼ N (Awn−1 + b,Σd) , [46]

where A, b and Σd are parameters of the process.
Let us now consider a probabilistic learner that maintains belief wn ∼ N (µw,n,Σw,n) before observing x, t, and y∗ in the

nth trial. Despite the successive weight change across trials, the learner would first follow its standard learning rule (discussed
above different approximations) to compute posterior parameters µ∗w,n and Σ∗w,n. This is followed by taking account of the
weight change by updating its parameters according to

µw,n+1 = Aµ∗w,n + b, Σw,n+1 = AΣ∗w,nAT + Σd. [47]

These weights then act as a starting point, i.e., prior, for learning in the next trial. No other changes to the learning rules are
required to take the non-stationarity of the combination weights into account.

Sampling the Bayes-optimal posterior

Finding a tractable closed-form expression for the Bayes-optimal posterior over w is unfortunately impossible. However, we
can approximate this posterior to almost arbitrary precision by drawing samples from this posterior. We will first discuss such
sampling for stationary combination weights, in which case we can use Gibbs sampling.

Gibbs sampling for stationary weights. For Gibbs sampling, we assume prior w ∼ N (µ0,Σ0), and observations xn, tn, and
y∗n in the nth trial. The aim is to, after N trials, draw samples from p (w|x1:N , t1:N , y

∗
1:N ). With the per-trial likelihood

p (y∗n|xn, tn,w) = Φ
(
y∗nw

T x̃n
)
, this posterior is given by

p (w|x1:N , t1:N , y
∗
1:N ) ∝ N (w|µ0,Σ0)

N∏
n=1

Φ
(
y∗nw

T x̃n
)
. [48]
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The covariance of this posterior is given by

Σw =

(
Σ−1

0 +
N∑
n=1

x̃nx̃
T
n

)−1

[49]

which can be efficiently updated with each successive trial by the Sherman-Morrison update. To sample from the posterior w,
we introduce the auxiliary variables an ∼ N

(
y∗nw

T x̃n, 1
)
for each n, such that an ≥ 0 for a choice consistent with y∗n. Thus,

for a fixed w, we can draw an according to

an|x̃n,w, y∗n ∼ N≥0
(
y∗nw

T x̃n, 1
)
, [50]

where N≥0 denotes a draw from a truncated normal distribution, guaranteeing an ≥ 0. With these samples, the posterior w is
given by

w|x1:N , t1:N , y
∗
1:N , a1:N ∼ N

(
Σw

(
Σ−1

0 µ0 +
N∑
n=1

y∗nx̃nan

)
,Σw

)
. [51]

Overall, Gibbs sampling consists in alternating between sampling a1:N and w until a sufficient number of w-samples are drawn.

Particle filtering for non-stationary weights. Once the weights become non-stationary, particle filtering turns out to be a more
efficient approach to posterior sampling. The aim is to approximate the sequential weight update

p (wn|x1:n, t1:n, y
∗
1:n) ∝ p (y∗n|xn, tn,wn)

∫
p (wn|wn−1) p (wn−1|x1:n−1, t1:n−1, y

∗
1:n−1)dwn−1, [52]

by using the particle approximation

p (wn|x1:n, t1:n, y
∗
1:n) ≈ 1

K

K∑
k=1

δ
w

(k)
n
, [53]

consisting of the K particles
{
w

(1)
n , . . . ,w

(K)
n

}
. With this approximation, the above sequential update becomes

p (wn|x1:n, t1:n, t
∗
1:n) ∝∼

∑
k

p (y∗n|xn, tn,wn) p
(
wn|w(k)

n−1

)
. [54]

We can sample from this posterior by an importance sampling re-sampling scheme in three steps. First, we draw K samples
w̃

(k)
n from a Gaussian proposal density

w̃(k)
n ∼ N

(
µw

(
w

(k)
n−1

)
,Σw

(
w

(k)
n−1

))
. [55]

Second, we compute the importance sampling weights,

λ(k)
n =

p
(
y∗n|xn, tn, w̃

(k)
n

)
p
(
w̃

(k)
n |w(k)

n−1

)
N
(
µw

(
w

(k)
n−1

)
,Σw

(
w

(k)
n−1

)) . [56]

Third, we re-sample the w(k)
n ’s from the w̃(k)

n ’s with probabilities proportional to their respective weights, λ(k)
n . To ensure

efficiency of the procedure, the proposal density for each weight should be close to p (y∗n|xn, tn,wn) p (wn|wn−1), appropriately
normalized, which we achieve by computing the proposal moments µw

(
w

(k)
n−1

)
and Σw

(
w

(k)
n−1

)
according to the ADF variant

that assumes non-stationary combination weights.

Relating learning through inference to learning through optimization

In all of the above we have treated learning as an inference problem, where we want to find the posterior weights given all of
the observed evidence. Here, we address the parallels between inference and optimization in two ways. First, we will describe
more general decision theoretical principles that highlight these parallels. Second, we will show explicitly how our learning
problem can be formulated as an optimization problem.
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Decision theoretic perspective. In decision theory, the Bayes-optimal decision rule is the rule that minimizes some expected
loss (9). In our case, we have defined the loss as the negative reward rate, which is the negative average number of correct
decisions per unit time, across a long sequence of such decisions. Furthermore, we have tuned the diffusion model boundaries
such that there exists an optimal set of weights w∗ that maximize the reward rate, and thus minimize the loss. Formally,
the loss function L (w∗,w) returns this loss for a given action w (in our case a particular set of chosen weights) given some
unobserved state of nature, w∗ (in our case the set of weights that maximize the reward rate).

Given observations X (here, all information gathered from past trials), the Bayes-optimal action is the one minimizing the
posterior loss, that is

argmin
w

〈L(w̃,w)〉p(w̃|X) , [57]

where p (w̃|X) are the posterior weights given all past information. If we assume the loss to be approximately quadratic around
w̃, then it is (approximately) minimized by 〈w̃|X〉 (9). This justifies computing the posterior to perform learning through
inference, and the use of the posterior mean for decision-making, as used in the main text.

Using Bayes-optimal decision rules for decision making has several appealing properties. One of particular interest in relation
to learning through optimization is that it is an admissible rule (9, Ch. 4, Th. 9). Here, admissability is a concept from the
frequentist school of decision theory, and specifies a (not necessarily unique) decision rule δ(·) whose associated risk function
R(w∗, δ) is smallest among all possible decision rules and all possible states of nature w∗. Here, the risk function is the expected
loss for a given w∗, with the expectation taken over possible observations X given w∗, that is R(w∗, δ) = 〈L(w∗, δ(X))〉p(X|w∗).
Therefore, the Bayes-optimal decision rule doesn’t only minimize the expected loss under the posterior, but also the expected
loss across different (frequentist) repetitions of the same "experiment", that is, different observations for the same state of
nature w∗, and does so across all possible states of nature. As a consequence, finding the posterior w through inference allows
us to make decisions that (approximately) minimize the loss in multiple senses, which, in our case, maximizes the reward rate.

Explicit learning through optimization. Here we demonstrate for the stationary-weight case that our inference problem can be
formulated as an optimization problem that aims at maximizing performance — here for simplicity measured as the probability
of making correct choices. To do so, assume that, in each trial, the decision maker observes some J-dimensional momentary
evidence δx that relates to the underlying latent state µ by Eq. [4], as before. They accumulate this evidence into x(t), and at
some point (e.g., when a decision boundary is reached) decide according to y = sign

(
wTx(t)

)
, using some decision strategy

weight parameters w. Their aim is to optimize these weight parameters to maximize their probability of making correct choices.
To find the solution to this maximization problem, let us establish which weight parameters maximize the probability of

making correct choices. For this, note that by Eq. [4], the accumulated evidence is distributed as

x(t)|µ∗ ∼ N ((aµ∗ + b) t,Σt) , [58]

where µ∗ is the (unobserved) latent state that determines the correct choice by y∗ = sign (µ∗). As a consequence, wTx(t)/t is
distributed as

wTx(t)
t
|µ∗ ∼ N

(
wTaµ∗ +wT b,

1
t
wTΣw

)
. [59]

Recall that a, b and Σ in Eq. [4] have been defined to satisfy w∗Ta = 1, w∗T b = 0, and w∗TΣw∗ = 1 for some particular w∗.
For these parameters, we thus have w∗Tx(t)/t ∼ N

(
µ∗, t−1), which provides the best estimate of µ∗ (in the mean squared

error sense (9)), that can in turn be used as a basis for decision-making.
To findw∗ from an observed sequence of (x1(t1), t1, y∗1) , (x2(t2), t2, y∗2) , . . . (xN (tN ), tN , y∗N ), we can use maximum likelihood,

which is consistent and asymptotically efficient. For the diffusion model, the likelihood of w for a particular choice y is by Eq. [7]
(using m = 0) given by p (y|x, t,w) = Φ

(
ywT x̃

)
, where x̃ ≡ x/

√
t+ σ−2

µ , as previously defined. Therefore, the maximum
(log-)likelihood estimate for the observed sequence is given by

ŵML = argmax
w

N∑
n=1

log Φ
(
y∗nw

T x̃n
)
. [60]

Finding this estimate is an optimization problem. For a small number of observations N , this optimization problem might be
underdetermined. To avoid instabilities, we can additionally add a regularization term that penalizes too large ‖w‖2, leading to

ŵML,reg = argmax
w

(
−λwTw +

N∑
n=1

log Φ
(
y∗nw

T x̃n
))

, [61]

where λ > 0 is some regularization parameter. Overall, this demonstrates how to formulate our learning problem as a an
optimization problem. We have used this approach to formulate one of our heuristics, resulting in Eq. [45].

To see how this approach relates to learning through inference, compare the expression for ŵML,reg to Eq. [48]. As can be
seen, with prior parameters µ0 = 0 and Σ0 = λ−1I, ŵML,reg finds the maximum of the Bayesian parameter posterior over w,
given by Eq. [48]. In other words, it equals the maximum a-posteriori estimate. However, the optimization approach does not
directly provide an estimate of the uncertainty in ŵML,reg. This makes it hard to form consistent sequential updates, in which
uncertain weights should be updated more strongly than certain weights. More generally, formulating the learning problem as
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an optimization problem reduces our ability to interpret the resulting expressions. For example, we might not have been able
to identify that the learning rate is modulated by decision confidence without the inference formulation. All of these points
made us follow the learning-as-inference route instead.

Implementing prior biases

So far we have assumed P+ ≡ p(µ ≥ 0) = 1/2, making both µ ≥ 0 and µ < 0 equally likely. Let us now consider how to
consistently implement prior biases for which P+ 6= 1/2. To do so, we will restrict our discussion to the one-dimensional
momentary evidence δz. The high-dimensional momentary evidence case follows the same principles, and yields the same
conclusions, but it notationally more burdensome.

With a consistent implementation of a prior bias we mean that we want to be able to choose a pair of arbitrary, potentially
time-changing boundaries∗ ±θ(t), each of which triggers a different Bayes-optimal choice. This requirement turns out to
become critical.

Let us discuss two ways to implement biased priors in turn. The first corresponds to a shift in the mean of p(µ), while the
second modulates the mass of µ ≥ 0 while keeping the shape of p(µ) otherwise unchanged (as in (10)).

Shifting the prior mean. If we assume prior µ ∼ N (m,σµ), then P+ = Φ (m/σµ), such that P+ 6= 1/2 if and only if m 6= 0.
This is the case we have discussed further above (see Sec. "One-dimensional momentary evidence"), where we have found the
posterior

p(µ > 0|z, t) = Φ

(
σ−2
µ m+ z√
σ−2
µ + t

)
. [62]

Thus, the posterior is p(µ ≥ 0|z, t) ≥ 1/2 if and only if σ−2
µ m+ z ≥ 0. This implies that Bayes-optimal decisions are determined

by the sign of σ−2
µ m + z. As a result, we cannot simply bound the accumulated evidence z, as this might not guarantee

a unique association between boundaries and Bayes-optimal choices. For example, consider some negative m < 0 and a
positive z < σ−2

µ |m| that has just reached the upper boundary z = θ(t). At this point we would intuitively make choice y = 1,
corresponding to µ ≥ 0. However, as σ−2

µ m+ z < 0, our expression for the posterior shows that p(µ ≥ 0|z, t) < 1/2, such that
y = −1 would be the Bayes-optimal choice. This shows that bounding z directly can in some cases violate the boundary -
choice correspondence.

We can regain this correspondence by instead bounding z̃(t) = σ−2
µ m+ z(t), which, by definition, starts at z̃(0) = σ−2

µ m.
For this new accumulation variable it is easy to see that p(µ ≥ 0|z̃, t) ≥ 1/2 if and only if z̃ ≥ 0, thus restoring the boundary -
choice correspondence.

Directly modulating p(µ ≥ 0). An alternative approach to introducing a biased prior, which was taken in (10), is to boost one
half of p(µ), while modulating down the other half,

p(µ) = 2N
(
µ|0, σ2

µ

){P+ if µ ≥ 0,
1− P+ otherwise,

[63]

ensuring again p(µ ≥ 0) = P+. This prior, and the corresponding solution, has previously been investigated by (10).
This choice of prior results in the posterior over µ,

p(µ|z, t) ∝ N
(
µ| z

σ−2
µ + t

,
1

σ−2
µ + t

){
P+ if µ ≥ 0,
1− P+ otherwise .

[64]

Adding the normalization constant and integrating the above over all µ ≥ 0 results in the posterior

p (µ ≥ 0|z, t) =
P+Φ

(
z√
σ−2
µ +t

)
P+Φ

(
z√
σ−2
µ +t

)
+ (1− P+)

(
1− Φ

(
z√
σ−2
µ +t

)) . [65]

This posterior is p (µ ≥ 0|z, t) ≥ 1/2, and thus promotes choice y = 1, if

log
Φ
(

z√
σ−2
µ +t

)
1− Φ

(
z√
σ−2
µ +t

) ≥ log 1− P+

P+ , [66]

that is, if the log-odds provided by the accumulated evidence exceeds that of the prior log-odds for µ < 0. For the same
accumulator value z, the evidence log-odds drops to zero over time. As a result, it might be that the Bayes-optimal choice at
the same boundary changes over time, thus violating the boundary - decision correspondence.

∗They might even follow different time-courses, without changing any of the discussed concepts. To keep notation simple, we won’t consider this case.
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When compared to the previous section, the way the prior impacts the posterior is more complex. This makes recovering the
boundary - decision correspondence more complex. The aim is to find a C2(P+, t) such that z̃(t) = z(t) +C2(P+, t) determines
Bayes-optimal decisions by its sign alone. This can be achieved by

C2(P+, t) =
√
σ−2
µ + tΦ−1

 P+Φ
(

z√
σ−2
µ +t

)
P+Φ

(
z√
σ−2
µ +t

)
+ (1− P+)Φ

(
−z√
σ−2
µ +t

)
− z(t), [67]

which unfortunately doesn’t yield a closed-form expression. To gain further insight, we approximate the cumulative Gaussian
function by the logistic sigmoid Φ(z) ≈ (1 + exp (−Cσz))−1 with Cσ = π2/6 to have matching slope at z = 0. After some
algebra, this results in

C2(P+, t) ≈
√
σ−2
µ + t

1
Cσ

log P+

1− P+ , [68]

showing that it becomes insufficient to use a shift of the accumulation starting point, as for the previous prior. Instead, we
require both a shifted starting point, as well as an additional shift in the accumulated evidence that varies over time.

The relation between decision confidence and choice accuracy for biased priors. For either choice of the prior, the solutions
that regains the boundary - decision correspondence result in a decision confidence that is the same at both boundaries, as
long as these boundaries are symmetric around zero. For example, for the posterior Eq. [62] this is easy to see by replacing
σ−2
µ m+ z by z̃, and, at the decision by z̃ = ±θ(t), depending on which choice has been made. This is seemingly at odds with

expecting a different choice accuracy at either boundary, imposed by the biased prior.
To show that no overall inconsistency between choice accuracy and choice confidence exists, let us consider the simpler case

of a prior with a single "difficulty" µ0, which is given by

p(µ) = P+

2 δ(µ− µ0) + 1− P+

2 δ(µ+ µ0), [69]

where δ(·) is the Dirac delta function. That is, µ = µ0 with probability P+, and µ = −µ0 with probability 1− P+. With this
prior, it is easy to show that the posterior becomes

p(µ = µ0|z, t) = p(µ ≥ 0|z, t) = 1

1 + e
−2µ0

(
z− 1

2µ0
log P+

1−P+

) . [70]

For symmetric boundaries at ±θ, rather than shifting the accumulation starting point, we can equivalently shift the boundaries
by the same amount to

θ+ = θ − 1
2µ0

log P+

1− P+ , θ− = −θ − 1
2µ0

log P+

1− P+ , [71]

again leading to a constant decision confidence (1 + exp (−2µ0θ))−1 at either boundary.
To show that this decision confidence equals the probability of making the correct choice on average, we find this probability

for each possible latent state value, using known expression for boundary hitting probabilities for diffusion models with
asymmetric boundaries, as given in (11, 12). For µ = µ0, the upper boundary θ+ leads to the correct choice. This boundary is
reached with probability

p
(
z = θ+|z ∈

{
θ+, θ−

}
, µ = µ0

)
=

e2µ0θ − 1−P+

p+

e2µ0θ − e−2µ0θ
, [72]

which is the probability of making correct choices if µ = µ0. Note that, unlike the confidence, this probability is modulated by
P+. In particular, it grows with an increase in P+. In other words, the larger the a-priori probability that the upper boundary
leads to the correct choice, the larger the probability that the decision maker chooses correctly in trials in which the upper
boundary is indeed the correct choice.

For µ = −µ0, the lower boundary θ− leads to correct choices, which happens with probability

p
(
z = θ−|z ∈

{
θ+, θ−

}
, µ = −µ0

)
=

e2µ0θ − P+

1−P+

e2µ0θ − e−2µ0θ
, [73]

where the only difference to the previous expression is the impact of the prior. Specifically, this probability shrinks with an
increasing P+.

The average probability of choosing correctly is a combination of both bound-hitting probabilities, weighted by the latent
state probabilities, which, after some algebra, results in

p(correct) = p
(
z = θ+|z ∈

{
θ+, θ−

}
, µ = µ0

)
p(µ = µ0)+p

(
z = θ−|z ∈

{
θ+, θ−

}
, µ = −µ0

)
p(µ = −µ0) = 1

1 + e−2µ0θ
, [74]

where we have used p(µ = µ0) = P+ and p(µ = −µ0) = 1− P+. This demonstrates that, even though the decision confidence
differs from the probability of making the correct choices for individual choices, it equals the average probability of making
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correct choices. This unintuitive result follows from conditioning the choice probabilities on the latent state, which is unknown
to the decision maker, and thus cannot be reflected in their decision confidence. Once this latent state is marginalized out (by
averaging over it in Eq. [74]), consistency with the decision confidence is restored (13). The same principle applies to the more
complex priors used further above, but for those, it becomes hard to establish the equivalence between choice probability and
decision confidence analytically.

Generating correlated momentary evidence

Recall that, for a given latent state µ, the mutli-dimensional momentary evidence is drawn according to

δx|µ ∼ N ((aµ+ b) δt,Σδt) , [75]

where the parameters a, b and Σ satisfy aTw = 1, bTw = 0, and wTΣw = 1 (see Sec. "High-dimensional momentary
evidence").

We satisfy the requirement on a and b by choosing

a = w

wTw
, b = f0

(
1− 1Tw

wTw
w

)
, [76]

where f0 is a parameter. The expression for b minimizes ‖b− f01‖ under the constraint bTw = 0, effectively introducing an
approximate baseline at f0.

For our choice for the covariance we were guided by observations that the noise covariance spectrum in neural population
recordings has few dominant components, and otherwise rapidly drops towards small values. We achieve this while satisfying
wTΣw = 1 by designing a Σ that has one eigenvector w/‖w‖ with associated eigenvalue 1/wTw, and otherwise the desired
eigenspectrum. To do so, we fill a J × J matrix B (J is the size of δx) with zero mean unit variance Gaussian random numbers,
except for the first row, which we set to w. This is followed by Gram-Schmidt orthonormalization of B, such that the first row
becomes w/‖w‖, while all other rows unit vectors, orthogonal to w. We then choose a diagonal D with the first diagonal
element d11 = 1/wTw, and all other diagonal elements djj = max

{
σ2
xe
−j+1, σ2

0
}
/wTw, with parameters σ2

x and σ2
0 . The final

covariance matrix is then given by Σ = BDBT .
If the weights change across consecutive trials n− 1 and n, the momentary evidence needs to satisfy aTnwn = 1, bTnwn = 0,

and wTnΣnwn in each trial. For an and bn this is easily achieved by re-computing them in each trial according to the above
expressions.

The generation of Σn relies on a stochastic process, such that re-generating a new Σn in each trial might lead Σ· to change
significantly across trials despite only small changes in w·. To avoid this, we instead modify Σn−1 by finding the smallest
rotation U of Σn−1 that satisfies wTnΣnwn = 1. To do so, we aim at finding U that satisfies wn ∝ Uwn−1. This leaves U
underconstraint. To introduce additional constraints, we would like to restrict the rotation imposed by U to the (wn−1,wn)
plane. We express this by using ψ3, . . . ,ψJ that are orthonormal unit vectors that are also orthogonal to wn−1 and wn, which
we can find by Gram-Schmidt orthonormalization. For those vectors, we desire ψn = Uψn. Overall, this leads to the linear
equation

U
( wn−1
‖wn−1‖

wn
‖wn‖ ψ3 . . . ψJ

)
=
(

wn
‖wn‖

w̃
‖w̃‖ ψ3 . . . ψJ

)
, [77]

where w̃ is given by

w̃ = 2w
T
n−1wn

wTnwn
wn −wn−1, [78]

and which we can easily solve for† U . With this rotation matrix, Σn is given by

Σn = wTn−1wn−1

wTnwn
UΣn−1U

T , [79]

where the re-scaling by the fraction ensures the correct scaling of the eigenvalues.

Simulation details

We used parameters σ2
0 = 0.001, σ2

x = 2 and f0 = 0 to generate the momentary evidence δx|µ, as described in the previous
section. At the beginning of each trial sequence we drew the true weights according to w ∼ N (mw,Sw), with unit mean
mw = 1 and identity covariance Sw = I. For that sequence, the diffusion model bounds ±θ were time-invariant, and tuned to
maximize the reward rate if the true weights were used to combined the inputs. We used σ2

µ = 32 to draw µ in each trial. This
µ determined the correct choice by y∗ = 1 if µ ≥ 0, and y∗ = −1 otherwise. The reward rate was given by

RR = p(correct)− caccum 〈t〉
〈t〉+ titi

, [80]

where the average was across trials, and we set the evidence accumulation cost to caccum = 0.01 and the inter-trial interval
to titi = 2s. For non-stationary weights, we re-drew the weights after each choice according to Eq. [46], with A = λI,

†Most likely there exists a closed-form expression for U . We found it by solving the above expression numerically in each trial.
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b = (1− λ)mw, and Σd =
(
1− λ2)Sw, and set the decay factor to λ = 1− 0.01. This yields a weight diffusion that follows a

first-order autoregressive process with steady-state mean mw and covariance Sm.
To compare the weight learning performance of ADF to alternative models, we simulated 1,000 learning trials 5,000 times,

and reported the reward rate per trial averaged across these 5,000 repetitions. To assess steady-state performance, we performed
the same procedure with non-stationary weights, and reported reward rate averaged over the last 100 trials, and over 5,000
repetitions. The sequential choice dependencies in Fig. 4A/B where also computed from these last 100 trials. The learning rate
in Fig. 1D in the main text shows the pre-factor to Σwx̃ in Eq. [41] over decision confidence for a subsample of the last 10,000
trials of a single 15,000 trial simulation with non-stationary weights. For the Gibbs sampler, we drew 10 burn-in samples,
followed by 200 samples in each trial. For the particle filter we simulated 1,000 particles.

We sped up the diffusion model simulations by simulating the diffusion directly in the one-dimensional wTxn(t) space. This
resulted in a one-dimensional diffusion model whose first-passage time distribution is known and can be efficiently drawn from
(14). The final xn (tn) was recovered by drawing it from

xn (tn) ∼ N
(

µntn
w∗Tw∗

w∗,
tn

w∗Tw∗
I
)
, [81]

subject to the constraint wTxn(tn) = ynθ, and where w∗ and w denote the true weights, and the weights used for evidence
accumulation, respectively.
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Fig. S1. Assumed density filtering learning rate modulators for noise-free and noisy feedback y∗. The top panel shows the learning rate modulator ξβ,w(γ) of the mean
update for different levels of feedback noise, β. The bottom panel shows the same for the learning rate modulator ξβ,cov(γ) of the covariance update. In both cases, the
marginal decision confidence associated with the feedback p(y∗|x, t) = Φ(γ) is varied along the horizontal axis. This marginal decision confidence is > 1/2 for correct
(green), and < 1/2 for incorrect (red) choices. β = 0 corresponds to the noise-free case, for which ξw(γ) = ξβ,w(γ) and ξcov(γ) = ξβ,cov(γ).
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Fig. S2. Simpler models can learn more rapidly than more complex models, even if they are unable to provide perfect fits. We show model fits and model error for a linear (blue)
and quadratic (red) model when fitting the target function f(x) = w1 +w2x+w3x

2 for different w3 ’s (red number in the w’s in (a)) for the top, middle, and bottom row. The
quadratic model has the same functional form as f(x) and learns all w. The linear model fixes w3 = 0, and only learns w1 and w2. Both models are fitted to training data
consisting of (xn, f(xn))-pairs, by finding the model weights that minimize the mean squared error between model predictions and given f(xn)’s across all observed xn ’s.
(a) With 104 training examples, both the linear and the quadratic model can fit a linear function (top; model fits and target function plotted on top of each other). As soon as the
target function becomes quadratic (middle & bottom), the linear model fails to perfectly fit this function. (b) The mean squared error, here shown as an average across 500
repetitions across different training sets, drops more rapidly for the linear model than for the quadratic model if the target function is linear (top). This is because the linear model
needs to learn fewer parameters for the same training set size. The error of both models goes to zero once the training set size increases. Even if the target function becomes
quadratic (middle), the linear model can still learn more rapidly than the quadratic model (blue initially drops faster than red), even if it can’t reduce its error to zero (arrow). This
is only possible if the target function is still close-to-linear over the range of interest. Once it becomes too non-linear (bottom), the linear model learns slower than the quadratic
model (arrow), and features a significantly worse asymptotic error. In (b), the mean squared error was in each repetition and for each training set size computed over 1000 new
x’s that were not part of the training set. For all simulations, the x’s were drawn from x ∼ N (0, 1). All learning was performed through optimization, by minimizing the mean
squared error. We could have equally used learning by inference (using Bayesian linear regression with sufficiently uninformative priors), without affecting the results. Therefore,
the shown effects are independent of the chosen learning formalism.
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