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In multialternative risky choice, we are often faced with the
opportunity to allocate our limited information-gathering capacity
between several options before receiving feedback. In such cases,
we face a natural trade-off between breadth—spreading our capacity
across many options—and depth—gaining more information
about a smaller number of options. Despite its broad relevance
to daily life, including in many naturalistic foraging situations,
the optimal strategy in the breadth–depth trade-off has not been
delineated. Here, we formalize the breadth–depth dilemma
through a finite-sample capacity model. We find that, if capacity
is small (∼10 samples), it is optimal to draw one sample per al-
ternative, favoring breadth. However, for larger capacities, a
sharp transition is observed, and it becomes best to deeply sample
a very small fraction of alternatives, which roughly decreases with
the square root of capacity. Thus, ignoring most options, evenwhen
capacity is large enough to shallowly sample all of them, is a signa-
ture of optimal behavior. Our results also provide a rich casuistic for
metareasoning in multialternative decisions with bounded capacity
using close-to-optimal heuristics.

decision making | risky choice | bounded rationality |
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The breadth–depth (BD) dilemma is a ubiquitous problem in
decision making. Consider the example of going to graduate

school, where one can enroll in many courses in many topics. Let
us assume that the goal is to determine the single area of re-
search that is most likely to result in an important discovery. One
cannot know, even in a few weeks of enrollment, whether a
course is the most exciting one. Should I enroll in few courses in
many topics—breadth search—at the risk of not learning enough
about any topic to tell which one is the best? Or should I enroll in
many courses in very few topics—depth search—at the risk of
not even taking the course with the really exciting topic for the
future? One crucial element of this type of decision is that the
resources (time, in this case) need to be allocated in advance,
before feedback is received (before classes start). Also, once
decided, the strategy cannot be changed on the fly, as doing so
would be very costly.
The BD dilemma is important in tree search algorithms (1, 2)

and in optimizing menu designs (3). It is also one faced by hu-
mans and other foragers in many situations, such as when we
plan, schedule, or invest with finite resources while lacking im-
mediate feedback. Furthermore, it is a dilemma that a large
number of distributed decision-making systems have to tackle.
These include, for example, ant scouts searching for a new col-
ony settlement (4), stock market investors, or soldiers in an army
during battle. Evidence suggests that distributed processing with
limited resources is also a valid model of brain computations (5,
6). In face of this, it is remarkable that the bulk of research on
the BD has been in fields outside of psychology and neuroscience
(e.g., refs. 7–9). We believe that one reason for this is the lack of

models and formal tools for thinking about the BD dilemma and
separating it from other dilemmas.
Many features of the BD dilemma warrant its study in isola-

tion. First, BD decisions are about how to divide finite resources,
with the possibility of oversampling specific options and ignoring
others, e.g., one can select several courses on the same topic
while ignoring other topics. Second, the BD dilemma is about
making strategic decisions, that is, decisions that need to be
planned in advance and cannot be changed on the fly once ini-
tiated, e.g., it is very costly to change courses once they have
started, at least during the first semester. Finally, BD decisions
need to be made before the relevant feedback is received, e.g.,
enrollment happens before courses start, and thus before
knowing the true relevance of the courses and topics. One can
easily imagine replacing courses by ant scouts or neurons, and
topics by potential new settlements or sensory functions, and so
on, in the above example to reveal new relevant BD dilemmas
pertaining to distributed decision making or brain anatomy,
respectively.
The identifying features of the BD dilemma are distinct from

those of the well-known exploitation–exploration (EE) dilemma
(10–14) and its associated formalization in multiarmed bandits
(15–17). Specifically, whereas in the EE dilemma samples are

Significance

From choosing among the many courses offered in graduate
school to dividing budget into research programs, the
breadth–depth is a commonplace dilemma that arises when
finite resources (e.g., time, money, cognitive capabilities) need
to be allocated among a large range of alternatives. For such
problems, decision makers need to trade off breadth—
allocating little capacity to each of many alternatives—and
depth—focusing capacity on a few options. We found that
little available capacity (less than 10 samples for search) pro-
motes allocating resources broadly, and thus breadth search is
favored. Increased capacity results in an abrupt transition to-
ward favoring a balance between breadth and depth. We fi-
nally describe a rich casuistic and heuristics for metareasoning
with finite resources.

Author contributions: R.M.-B., J.R.-R., J.D., and B.Y.H. designed research; R.M.-B. and
J.R.-R. performed research; R.M.-B. and J.R.-R. analyzed data; and R.M.-B., J.R.-R., J.D.,
and B.Y.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. M.W. is a guest editor invited by the
Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: ruben.moreno@upf.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2004929117/-/DCSupplemental.

First published August 5, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.2004929117 PNAS | August 18, 2020 | vol. 117 | no. 33 | 19799–19808

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
N
EU

RO
SC

IE
N
CE

D
ow

nl
oa

de
d 

at
 H

ar
va

rd
 L

ib
ra

ry
 o

n 
A

ug
us

t 2
3,

 2
02

0 

https://orcid.org/0000-0002-3505-3319
https://orcid.org/0000-0002-7846-0408
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2004929117&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ruben.moreno@upf.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004929117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004929117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2004929117


allocated sequentially, one by one, to gather information and
reward after each sample, in the BD dilemma multiple samples
can be allocated in parallel at once to multiple options (possibly
allocating multiple samples to some) without immediate feed-
back to gather information and maximize future reward. It is
worth pointing out that EE and BD are not mutually exclusive
aspects of decision making, and therefore they are expected to
appear hand-in-hand in many realistic situations.
Past work in multialternative choice has revealed that humans

appear to carefully trade off the benefits of examining many
options broadly and examining a smaller number of options
deeply. For example, when faced with a large number of options,
we often focus—even if arbitrarily—on a subset of them (18–21)
with the presumable benefit that we can more precisely evaluate
them. Likewise, we may consider all options, but arbitrarily reject
value-relevant dimensions (22, 23), as if contemplating them all
is too costly. Option narrowing appears to be a very general
pattern, one that is shared with both human and nonhuman
animals, despite the fact that rejecting options can reduce ex-
perienced utility (18, 21). It is often proposed that such heuristics
reflect bounded rationality (24), which is likely correct in prin-
ciple, but the exact processes underlying that boundedness re-
main to be identified. Why do we so often consider a very small
number of options when considering more would a priori im-
prove our choice? One possibility is that this pattern reflects an
evolved response to an empirical fact: that when capacity is
constrained, optimal search favors consideration of a small
number of options.
Because cognitive capacity is limited in many ways, the BD

dilemma has direct relevance to many aspects of cognition as
well. For example, executive control is thought to be limited in
capacity, such that control needs to be allocated strategically
(25–28). Likewise, attentional focus and working memory ca-
pacity are limited, such that, during search, we often foveate only
a single target or hold a few items in memory (29). Although the
effective numbers are low, each contemplated option is encoded
with great detail (30–32). Furthermore, it seems clear that rec-
ollection of information from memory can be thought of as a
search-like process (33–35). That is, to retrieve a memory we
must attend to a recollection processes, with its associated lim-
ited capacity. Thus memory-guided decisions presumably involve
BD trade-offs too.
Although the relevance of the BD dilemma is clear, tractable

models are lacking, and thus, optimal strategies for BD decisions
are largely unknown. Here, we develop and solve a model for
multialternative decision making endowed with the prototypical
ingredients of the BD dilemma. Our model consists of a reward-
optimizing yet bounded decision maker (24, 36, 37) confronted
with multiple alternatives with unknown subjective values. The
first critical element of the model is “finite-sample capacity,”
which enforces a trade-off between sampling many options with
few samples each (breadth) and sampling few options with many
samples each (depth). The second critical element is that sam-
ples need to be allocated across alternatives before sampling
starts and, thus, before feedback is available. This strategic de-
cision with the finite-sample capacity constraint implies a met-
areasoning problem (37, 38) where deliberation about the
multiple possible allocations of resources (meta-actions) need to
be made in advance to optimize expected utility of a future
choice.
Despite the simplicity of the model, it features nontrivial be-

haviors, which are characterized analytically. When capacity is
low (less than 4 to 10 samples can be probed), it is best to sample
as many alternatives as possible, but only once each; that is,
breadth search is favored. At larger capacities, there is a quali-
tative and sharp change of behavior (a “phase transition”) and
the optimal number of sampled alternatives roughly grows with
the square root of sample capacity (“square root sampling law”),

balancing breadth and depth. Therefore, in the high-capacity
regime, it is best to ignore the vast majority of potentially ac-
cessible options. We considered globally optimal allocations in
comparison to even allocation of samples across sampled alter-
natives and found that the square root sampling law, obtained for
the latter, provides a close-to-optimal heuristic that is simpler to
implement. We also study limit cases where the above rules
break down, as well as generalizations to dynamic allocation of
finite resources with feedback that illustrate the generality of the
results. Our results are also robust to strong variations of the
environments where the probability of finding good options
widely varies.

Results
Finite-Sample Capacity Model. We assume that a decision maker
can choose how to allocate a finite resource among options of
unknown status to determine the best option (Fig. 1). The en-
vironment generates a large number of options, each charac-
terized by the probability of delivering a successful outcome. The
success probabilities, unknown to the decision maker, determine
the quality of each of the options, with better options having
higher success probabilities (e.g., options with a higher proba-
bility of delivering a large reward if they are sampled). The goal
of the decision maker is to infer which of the options has the
highest success probability (and, thus, highest expected value).
The success probabilities of the options are generated randomly
from an underlying prior probability distribution, modeled as a
beta distribution with parameters (α, β). We assume that this
distribution is known by the decision maker, due, for example, to
previous experience with the environment. The prior distribution
determines the overall difficulty of finding successful options in
the environment.
The decision maker is endowed with a finite-sample capacity,

C, i.e., a finite number of samples that she can allocate to any
option and to as many options as desired. Within the allowed
flexibility, it is possible that the decision maker decides to
oversample some options by allocating more than one sample to
them, and it is also possible that she decides to ignore some
options by not sampling them at all. Feedback is not provided at
the allocation stage, so this decision is based purely on the
expected quality of options in the environment. After allocation
has been determined, the outcomes of the samples are revealed,
constituting the only feedback that the decision maker receives
about the fitness of her sample allocation. Outcomes for each of
the sampled alternatives are modeled as a Bernoulli variable,
where a successful outcome (corresponding to a large reward)
has probability equal to the success probability of that option
(see below for a generalization in which we consider Gaussian
outcomes). The inferred best alternative is the one with the
largest inferred success probability based on the observed out-
comes from the allocated samples to each of the options (39–41).
Choosing this alternative maximizes expected utility (see below
and SI Appendix).
While making a choice based on the observed outcomes is a

trivial problem, deciding how to allocate samples over the op-
tions to maximize expected future reward is a hard combinatorial
problem. There are many ways a finite number of samples can be
allocated among a very large number of alternatives. At the
breadth extreme, one can split capacity to over as many alter-
natives as possible, sampling each just once. In this case, the
decision maker will likely identify a few promising options, but
will lack the information for choosing well between them. At the
depth extreme, the search could allocate all samples only to a
couple of alternatives. The decision maker’s estimate of the
success probability of those options will be accurate, but that of
the other alternatives will remain unknown. It would seem that
an intermediate strategy is better than either extreme. Specifically,
the optimal allocation of samples should balance the diminishing

19800 | www.pnas.org/cgi/doi/10.1073/pnas.2004929117 Moreno-Bote et al.

D
ow

nl
oa

de
d 

at
 H

ar
va

rd
 L

ib
ra

ry
 o

n 
A

ug
us

t 2
3,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004929117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2004929117


marginal gains of sampling a new alternative and those of drawing
an additional sample from an already sampled alternative.
To formalize the above model, let us assume that the decision

maker can sample and choose from N = C alternatives. That is,
we consider scenarios where the number of alternatives N is as
large as the decision maker’s sampling capacity—if the number
of alternatives is larger than capacity, the only difference is that
there would be a larger number of ignored alternatives. The
allocation of samples over the alternatives is described by the
vector ~L, with components Li representing the number of sam-
ples allocated to alternative i = 1, . . . ,N. The finite-sample ca-
pacity of the decision maker imposes the constraint ∑

i
Li = C.

Upon drawing Li samples from each alternative i, the deci-
sion maker observes the number of successes (1’s), denoted
ni, of each of the Bernoulli variables. The best option is then
the one with the highest posterior mean probability
E(pi|ni, α, β) = (ni + α)=(Li + α + β) after observing these suc-
cesses, such that the utility for a given allocation ~L and associ-
ated outcomes~n becomes U(~n,~L) = max

i
  [ ni + α( )= Li + α + β( )].

Because the number of successes is only revealed after selecting
the sample allocation strategy ~L, the decision maker’s utility for
using that strategy, U(~L), is an average of U(~n,~L) over all pos-
sible outcomes given ~L,

U ~L( ) = ∑
→n

p ~n|~L, α, β( )max
i

ni + α

Li + α + β
, [1]

where p(~n|~L, α, β) is the joint probability distribution of the
outcomes ~n given the allocation ~L and the prior distribu-
tion parameters. As each alternative is sampled indep-
endently, the distribution of success counts factorizes as

p(~n|~L, α, β) = ∏
i
p(ni|Li, α, β), where p(ni|Li, α, β) is a beta-

binomial distribution (42). This distribution specifies the proba-
bility of observing exactly ni successes from a Bernoulli variable
that is drawn Li times, and whose success probability pi follows a
beta distribution with parameters α and β. These two parameters
control the skewness of the distribution: If both parameters are
equal, the distribution is symmetric around one-half, while for α
larger (smaller) than β the distribution is negatively (positively)
skewed.
Finally, the optimal allocation of samples across options ~Lp is

the one that maximizes the decision maker’s expected utility
U(~L) in Eq. 1 over all allocations of samples ~L,

~L
p = argmax

~L
U ~L( ), [2]

with the above finite-sample capacity constraint (see SI Appendix
for details). The optimal expected utility then becomes
Up = max

~L
 U(~L), which involves a double maximization over

the expected success probabilities of the sampled alternatives
and the allocation of samples over the alternatives, effectively
solving the two-stage decision process (i.e., first allocate samples,
then observe outcomes, and then choose) in reverse order
(i.e., first optimize choices given outcomes and allocation, then
optimize allocation).
This maximization allows total flexibility over how many

samples to allocate to each alternative. However, for the sake of
tractability, let us first consider the best even allocation of
samples, that is, a subfamily of allocation strategies where the
same number of samples L are allocated to each of M sampled
alternatives, while the remaining alternatives (C −M) are not
sampled, subject to the standard capacity constraint M × L = C.

Environment

Decision-maker

finite capacity, C
actions

unobservable

allocation

option 1 option 2 option N-1 option N

observable

sampling

sampled not sampled

choice

Fig. 1. Finite-sample capacity model. The environment (Top, green) contains a large number N of options, and choosing any of them might lead to a
successful outcome (e.g., a large vs. a small reward). For each option, the probability of success (blue fraction of red/blue bar) is a priori unknown to the
decision maker and is drawn independently across options from an underlying prior probability distribution, modeled as a beta distribution (top distribution).
The prior distribution defines the overall difficulty of finding successful options in the environment. Options are characterized by the probability of delivering
a successful outcome (e.g., a large reward), and the outcomes are modeled as Bernoulli variables. The decision maker (Bottom, orange) has a finite capacity C,
i.e., a finite number of samples (bar of squares) that can be allocated to any option in any possible way. The decision maker can decide to oversample options
by allocating more than one sample to them (e.g., options on the left), and also ignore some options by not sampling them at all (e.g., rightmost option). All
samples need to be allocated in advance, and allocation cannot be changed thereafter. Therefore, feedback is not provided at this stage. After allocation,
sampling starts (Center, white), in which the decision maker observes a number of successes and failures for each of the sampled options (colored squares;
blue: success, large reward, red: failure, small reward). Once this evidence is collected, the decision maker chooses the option that is deemed to have the
highest probability of success (in this case, option 2; purple box).
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Indeed, finding the optimal even allocation of samples is easier
than finding the globally optimal allocation, which might be
uneven in general (see below). As we show in SI Appendix, a
particularly simple expression for the optimal even sample al-
location, Lp, arises when the prior distribution over success
probabilities is uniform (α = β = 1),

Lp = argmin
L

∑L
s=0(s + 1)M

(L + 1)M(L + 2), [3]

where the right-hand side is related to utility by

U(M = C=L) = 1 − ∑L
s=0(s + 1)M

(L + 1)M(L + 2). [4]

Note that only Mp = C=Lp ≤C alternatives are sampled in the
optimal allocation, while the remaining options are given zero
samples, thus effectively being ignored. The sampled alternatives
can be chosen randomly, as they are indistinguishable before
sampling. Using extreme value theory (SI Appendix), we show
that the optimal number of sampled alternatives Mp and optimal
number of samples per alternative Lp both follow a power law
with exponent 1/2 for large capacity C:

lim
C→∞

Mp =
̅̅̅̅
C

√
, lim

C→∞
Lp =

̅̅̅̅
C

√
, [5]

which corresponds to perfectly balancing breadth and depth.
In the next section, we analyze this case in detail. After that,

we consider optimal even allocations of samples for arbitrary
prior distributions, and finally we provide results for the globally
optimal allocations, not necessarily even.

Sharp Transition of Optimal Sampling Strategy at Low Capacity. We
first analyze the expected utility U(M) as a function of the
number of evenly sampled alternatives M, each sampled L times
(such that M × L = C) (Fig. 2A). At low capacity (C = 4, lighter
gray line), the utility increases monotonically from sampling just
one alternative (M = 1) four times, to sampling four alternatives
(M = 4) one time each. Thus, a pure breadth strategy is favored.
At intermediate capacity (C = 10, medium gray line), the maxi-
mum occurs at an intermediate number of alternatives (specifi-
cally, M = 5), reflecting an increasing emphasis on depth. At
large capacity (C = 100, black line), the maximum expected
utility occurs when sampling few different alternatives (M = 10
sampled alternatives with L = 10 samples each), reflecting a tight
balance between breadth and depth. For such large capacities, a
breadth search that samples most of the alternatives (rightmost
point of the black line) would lead to a reward that approaches 2/
3, which is the lowest expected reward one would obtain if
at least one sampled alternative has a positive outcome (SI
Appendix).
The model displays a sharp transition when capacity crosses

the critical value of 5 (Fig. 2B). Below this critical capacity, the
optimal number of sampled alternatives equals capacity. That is,
one should follow a breadth strategy and distribute one sample
to each alternative. Above 5, the optimal number of sampled
alternatives is much smaller than the capacity, with the tempo-
rary exception of capacity equal to 7. That is, one should balance
the number of sampled alternatives with the depth of sampling
each of them. Specifically, the optimal number of sampled al-
ternatives follows a power law with exponent 1/2 (log-log linear
regression, power = slope = 0.49, 95% CI = [0.48, 0.50]), as
predicted by Eq. 5, which implies that the fraction of sampled
alternatives decreases with the square root of capacity. This
means that breadth and depth are tightly balanced in the optimal
strategy. The sharp transition at around 5 becomes clearer when

plotting the ratio between the optimal number of sampled al-
ternatives and capacity as a function of capacity (Fig. 2C).
In summary, if the capacity of a decision maker increases by

a factor of 100, the decision maker will roughly increase the
number of samples alternatives just by a factor of 10, one
order of magnitude smaller than the capacity increase. Be-
cause the optimal number of sampled alternatives increases
with capacity with an exponent 1/2, we call this the “square
root sampling law.” A remarkable implication of this law is
that the vast majority of potentially accessible alternatives
should be ignored (e.g., for C = 100, C −M = 90 options are
“rationally” ignored).

Generalizing to Variations in Beta Prior Distributions. The above
critical capacity for optimal even sample allocation changes
when, instead of using a uniform prior of success probabilities,
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Fig. 2. Sharp transitions in optimal number of sampled alternatives at low
capacity, and power law behavior at large capacity. (A) Average reward
(points, simulations; lines, theoretical expressions; Eq. 4) as a function of the
number of sampled alternatives M for three different capacities
(C = 4, 10, 100; light, intermediate, and dark lines, respectively) for the flat
environment (uniform prior). The maximum occurs at the large extreme for
low capacity but at a relatively low value for large capacity. Note log hori-
zontal scale. (B) Optimal number of sampled alternatives as a function of
capacity. When capacity is smaller than around 5, a linear trend of unit slope
is observed (dashed green line), but when capacity is above 7, a sublinear
behavior is observed (dashed red line corresponds to the best power law fit,
with exponent close to 1/2). The black line corresponds to analytical pre-
dictions. The jagged nature of this prediction and simulation lines in this and
other panels is due to the discrete values that the optimal M can only take,
not due to numerical undersampling. (C) The sharp transition is clearer when
plotting the optimal number of sampled alternatives to capacity ratio as a
function of capacity. For low capacity, the ratio is 1, but for large capacity
the ratio decreases very rapidly. The last point below which the optimal ratio
is always 1 (critical capacity) corresponds to capacity equal to 5 (indicated
with a vertical red line). (D) Number of sampled alternatives to capacity
ratios for different prior distributions (α = β = 3, bell-shaped, green line;
α = 3, β = 1, negatively skewed prior modeling a “rich” environment, brown
line; α = 1, β = 3, positively skewed distribution modeling looking for a
“needle in a haystack,” that is, a “poor” environment, blue line). Lines
correspond to analytical predictions from SI Appendix, Eq. 9; points corre-
spond to numerical simulations; error bars are smaller than data points in
all panels.
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we allow for variations of the prior distribution (Fig. 2D).
However, the critical capacity consistently lies again at around
low values (∼10) with the specific value depending on the envi-
ronment. By changing the prior’s parameters, we can vary the
difficulty of finding a good extreme alternative, and thus can
compare different scenarios. For the uniform prior that we have
used previously (a “flat” environment), a decision maker is
equally likely to find an alternative with any success probability.
Consider a prior distribution that is concentrated and symmetric
around a success probability of 0.5 (approximately as a Gaussian,
corresponding to the beta prior parameters α = β = 3). In this
environment, unusually good (high success probability) and un-
usually bad (low success probability) options are rarer than
medium ones (Fig. 2D, green line). In this case, the BD trade-off
as a function of C is remarkably similar to the uniform prior case,
with a transition at C = 5.
We also consider a negatively skewed prior distribution

(α = 3, β = 1). This distribution refers to environments with rare
bad options, as, for example, a tree whose fruits are mostly ripe
but that has a few unripe ones. In this “rich” environment, one
can afford sampling a smaller number of options, and as they are
sampled more deeply, it is possible to better detect the really
excellent ones. A sharp transition occurs even in this condition,
exactly when the critical capacity equals 3 (brown line). As
expected in this environment, the decay of the ratio between the
optimal number of sampled alternatives and capacity after this
transition is (slightly) faster than that of the symmetric prior.
Therefore, negative skews engender a modest bias toward depth
over breadth.
Finally, consider the opposite scenario, in which the prior

distribution is concentrated at low success probability values
(α = 1, β = 3, positively skewed beta distribution), which corre-
sponds to looking for a “needle in a haystack” or a “poor” en-
vironment. In this scenario, one ought to sample more
alternatives less deeply to allow for the possibility of finding the
rare good alternatives, and thus breadth should be emphasized
over depth (Fig. 2D, blue line). In this scenario, the sharp
transition occurs at capacities around 10 (blue line).
Despite the large variations of prior distributions, a fast

transition occurs in all conditions at around a small capacity
value, like in the uniform prior case. In addition, a power law
behavior is observed at larger values of capacity regardless of
skew, with exponents close to 1/2 in all cases (uniform prior,
exponent = 0.49; negatively skewed prior, 0.49; positively skewed
prior, 0.64; SEM = 0.01). These behaviors are observed over a
larger range of parameters of the prior distribution (Fig. 3).
One interesting limit scenario arises for strongly positively

skewed prior distributions, e.g., by taking β to infinity while fixing
α = 1. In this limit, the prior mean probability α=(α + β) de-
creases to zero, and the critical capacity rises very steeply to
infinity (Fig. 3A as one moves leftward). Increasing the prior’s
skewness makes finding good options less likely, as most of the
options are very likely to be very bad, akin to an extreme case of
the haystack environment considered before. As expected, this
makes breadth search optimal for increasingly larger values of
capacity, as indicated by the increasing values of critical capacity.
However, for large enough capacities, a transition is still ob-
served above which a roughly balanced mix between breadth and
depth becomes optimal. More precisely, in this regime the op-
timal number of sampled alternatives features a power behavior
with exponents close but above 1/2, indicating a bias toward
breadth (leftmost points in Fig. 3B). When the prior mean
probability exceeds values as low as 0.1, the critical capacity
plateaus to low values below 10, and the exponent drops to
values smaller but close to 1/2, indicating a weak preference
toward depth.
To test how robust the behaviors we explored are, we fur-

thermore considered Gaussian rather than Bernoulli samples (SI

Appendix, Fig. S1). Strikingly, for a large range of the samples’
noisiness, we again observed a sharp transition occurring at low
critical capacities (∼ 10). Below the critical capacity, breadth
search is preferred, while above it a mix between breadth and
depth is optimal, characterized by a power law behavior
(exponent = 0.35, 95%  CI = [0.30, 0.41]). Thus, the resulting
strategy was qualitatively identical, and numerically similar, to
the Bernoulli samples case.

Optimal Choice Sets and Sample Allocations. So far, we have fo-
cused on optimal even sample allocation. Let us now consider
the payoffs for decision makers willing to consider all possible
allocation strategies. The number of all possible allocations
equals the number of partitions of integers in number theory,
which grows exponentially with the square root of capacity (43).
This makes finding the globally optimal sample allocation a
problem that is intractable in general. For small capacity values
C≤ 7 and uniform prior distributions, we compute the exact
optimal sample allocation by exhaustive search and rely on a
stochastic hill climbing method for larger capacities and other
priors. The latter finds a local maximum for the utility, which is
likely to be a global maximum, as we found it to coincide with the
one provided by exhaustive search for small capacities C≤ 7, and
the optimal utility did not significantly change across different
initializations and random seeds for larger capacity values.
Globally optimal sample allocation (which defines optimal

choice sets) for a uniform prior beta distribution tends to sample
all or most of the alternatives when the capacity is small, but as
capacity increases the number of sampled alternatives decrease
(Fig. 4, Left). For instance, for capacity equal to 5 samples, the
optimal sample allocation is (2, 1, 1, 1, 0). In general, in optimal
allocations, the decision maker adopts a local balance between
oversampling a few alternatives and sparsely sampling others—a
local compromise between breadth and depth—even though all
options are initially indistinguishable. This further level of spe-
cialization and distinction between alternatives might be able to
better break ties between similar alternatives when compared to
an even sampling strategy.
We also studied optimal sample allocation for positively and

negatively skewed prior distributions. In a rich environment
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Fig. 3. Sharp transitions at relatively low-capacity values and close to
square root sampling behavior for large capacity are observed for a broad
range of parameters of the prior distribution. (A) Critical capacity decreases
very steeply to low values (∼10) as a function of the prior mean probability
α=(α + β). (B) Exponents decrease as a function of the prior mean probability
and cluster around 1/2. The exponents are obtained from log-log linear re-
gression fits of the optimal number of alternatives samples vs. capacity
(M∝Cexponent) for C values ranging from 1,000 to 2,000 in steps of 1. Shaded
areas correspond to 95% CIs. In both panels, points are obtained by theo-
retical predictions from SI Appendix, Eq. 9. For prior mean probabilities
smaller than or equal to 1/2, we fix α = 1 while β varies from 1 to 20 in steps
of 1, and for values larger than 1/2, we fix β = 1 while α varies from 1 to 20.
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(center panel), the optimal sample allocation is uneven for ca-
pacities as low as C = 3. In contrast, in a poor environment
(right), the optimal sample allocation remains even up to ca-
pacity C = 5, which was not the case for the flat environment
(compare with left panel). For higher capacities, decision makers
in rich environments ought to sample less broadly but more
deeply. For instance, for capacity C = 20, only around 5 alter-
natives are sampled, while the remaining 15 potentially accessi-
ble alternatives are neglected. In the poor environment, in
contrast, about half of the alternatives are sampled, but not very
deeply (only a maximum of 3 samples are allocated to the most
sampled alternatives).

Even Sample Allocation Is Close to Optimal. Three principles stand
out. First, globally optimal sample allocation almost never co-
incides with optimal even allocation. Second, at low capacity
optimal allocation favors breadth, while at large capacity a BD
balance is preferred (Fig. 5A). Third, a fast transition is observed
between the two regimes happening at a relatively small capacity
value. The last two features are shared by the optimal even al-
locations as well (cf. Fig. 2C).
Optimal even and globally optimal sample allocations share

some important features, but are they equally good in terms of
average reward obtained? We compared the average reward

from globally optimal and even optimal sample allocations. For
comparison, we always used even sampling based on a uniform
prior over each alternatives’ success probabilities, that is, we
sample M = C alternatives with one sample each if capacity is
C≤ 7 and M = ̅̅̅̅

C
√

alternatives with L = ̅̅̅̅
C

√
samples each if

capacity is larger (square root sampling law; see SI Appendix for
details). This heuristic produced comparable performances to
the optimal ones (Fig. 5B). The worst-case scenario occurred in
the poor environment (blue line) when capacity is close to 10,
which led to a drop in reward by close to 10%, but the maximum
discrepancy value was even smaller for the flat and rich envi-
ronments. Indeed, for the flat environment, the maximum drop
in reward was only around 5%.
For large capacity C> 100, the square root sampling law

produced results that were very close to the performance of the
optimal solutions (as found by stochastic hill climbing). There-
fore, the gain of globally optimal sample allocation over optimal
even sampling at low capacity, and over the square root sampling
law for high capacity, is at most marginal.
We also compared the merits of the square root sampling law

to other sensible heuristics: pure breadth, pure depth, random
sampling of options, and a triangular approximation. Pure
breadth search allocates just one sample per alterative, such that
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the number of sampled alternatives equals capacity. The pure
depth heuristic randomly chooses two alternatives that are each
allocated half of the sampling capacity. Random search ran-
domly assigns each of the C samples to any alternative with re-
placement. A final heuristic, called “triangular,” is inspired by
the seemingly isosceles right triangle shape of the optimal allo-
cations (Fig. 4). It splits capacity by sampling the first alternative

with ⌊2 ̅̅̅̅
C

√ − 1⌋ samples and any further alternative with one

sample less than the previous one until capacity is exhausted (⌊x⌋
is the floor function). All heuristics finally choose the alternative
with the highest posterior mean probability. While the loss rel-
ative to optimal allocation is smallest for triangular allocation,
the square root sampling law performs similarly, and much better
than random, pure breadth and pure depth heuristics (Fig. 5C).

Dynamic Allocation of Capacity. Thus far, we have considered
“static” allocations whereby no feedback is provided before all
samples are allocated. In a less rigid “dynamic” sample alloca-
tion strategy, some basic form of interim feedback might be
available, based upon which further alternatives can be sampled.
To model such a scenario, assume that the capacity can be di-
vided into a sequence of a maximum of C waves k = 1, . . . ,C,
such that in each wave a number of alternatives Mk, no larger
than in the previous wave, is sampled just once. The number of
alternatives sampled at each wave can be chosen freely, but has
to be allocated before sampling starts, that is, the decision maker
has to determine the policy at the start knowing she will receive
feedback in the future. However, to dynamically react to past
sampling outcomes, the kth wave allocates its Mk samples to only
those Mk alternatives with the largest number of successes so far
(with random allocation in case of ties). This implies that, in
wave k + 1, one can only sample a subset of the alternatives
sampled in wave k. Once sampling has been completed across all
waves, the alternative with the highest posterior mean probability
is chosen among the M1 sampled alternatives in the first wave.
We restricted the final choice to this initial set of alternatives
sampled in the first wave to handle the unlikely case that the
lastly sampled alternatives turned out to be worse than (our a
priori belief about) the initially sampled ones. In that case, the
dynamic strategy could lead to worse performance than the static
one. We call the above flexible allocation of the predefined
sample waves dynamic sample allocations. As for static alloca-
tions, we find the best-performing M1,M2, . . .sequence by sto-
chastic hill climbing.
Optimal dynamic sample allocations share many features with

optimal static sample allocations (Fig. 6). At low capacity, pure
breadth search is again optimal. That is, it is best to allocate all
samples in the first wave, assigning just one sample per alter-
native (Fig. 6A). For capacities larger than the critical capacity
C = 3, it is best to mix breadth with depth search, and for very
large capacity most accessible alternatives are again ignored. The
optimal dynamic and static sample allocations have, however,
important differences (Fig. 6B and cf. Fig. 4). Specifically, the
initial wave tends to sample many alternatives to identify good
ones, and follow-up waves narrow down the search to the po-
tentially best ones. This results in broader sample allocations
(Fig. 6C) that, overall, sample more alternatives than for static
allocations (cf. Fig. 4). Finally, we test how the static square root
sampling law performs against the optimal dynamic allocations,
finding that the former is worse by less than 9% for all capacity
values (Fig. 6D). We also confirm that static random, pure
breadth, and pure depth strategies are substantially worse than
the square root sampling law, while the triangular strategy is
similar to the simple square root sampling heuristic.

Discussion
We delineate a formal mathematical framework for thinking
about a commonplace decision-making problem. The BD
dilemma occurs when a decision maker is faced with a large set
of possible alternatives, can query multiple alternatives simul-
taneously with arbitrary intensities, and has overall a limited
search capacity. In such situations, the decision maker will often
have to balance between allocating search capacity to more
(breadth) or to fewer (depth) alternatives. We develop and use a
finite-sample capacity model to analyze optimal allocation of
samples as a function of capacity. The model displays a sharp
transition of behavior at a critical capacity corresponding to just
a small set of available samples (∼10). Below this capacity, the
optimal strategy is to allocate one sample per alternative to ac-
cess as many alternatives as possible (i.e., breadth is favored).
Above this capacity, BD balance is emphasized, and the square
root sampling law, a close-to-optimal heuristic, applies. That is,
capacity should be split into a number of alternatives equal to the
square root of the capacity. This heuristic provides average re-
wards that are close to those from the optimal allocation of
samples. As it is easy to implement, it can become a general rule
of thumb for strategic allocation of resources in multialternative
choices. The same results roughly apply to a wide variety of
environments, including flat, rich, and poor ones, characterized
by very different difficulties of finding good alternatives.
Despite the billions of neurons in the brain, our processing

capacity seems quite limited. This strict limit applies to attention,
where it is sometimes called the attentional bottleneck (44–46),
including spatial attention, where the limit is best characterized
(47), over working memory (29, 31, 32, 48–50), to executive
control (28, 51, 52), and to motor preparation (53). These nar-
row limits, which often number only a handful of items (although
see ref. 32), suggest some sort of bottleneck. However, another
interpretation is that capacity is much larger than it appears, and
instead, observed capacity reflects the strategic allocation of
resources according to the compromises that our model iden-
tifies as optimal. The square root sampling law, in other words,
suggests that the apparently narrow bandwidth of cognition may
reflect the optimal allocation across very few alternatives of a
relatively large capacity.
This is particularly likely to be true for economic choice. We

are especially interested in the apparent strict capacity limits of
prospective evaluation (54–58). Indeed, the failures of choice
with choices sets over a few items are striking and have been a
major part of the heuristic literature (59, 60). These strict limits
are ostensibly difficult to explain. They do not appear to derive,
for example, from the basic computational or biophysical prop-
erties of the nervous system, as is evident from the fact that our
visual systems are an exception to the general pattern and can
process much information in parallel. Nor do these limits appear
to relate to any desire to reduce the extent of computation, as
large numbers of brain regions coordinate to implement these
cognitive processes (61–64). Our results presented above offer
an appealing explanation for this problem: Economic choice can
be construed as BD search problems, and even when capacity is
large, the optimal strategy is to focus on a very small region of
the search space. Thus, our results can also help to understand
why many cognitive systems operate in a regime of low sampling
size, thus resolving the paradox of why low breadth sampling and
large brain resources can coexist.
We believe that these results are particularly relevant to be-

havioral economics. Research has shown that consumers often
consider just a small number of brands from where to purchase a
specific product out of the many brands that exist in the market
(65, 66). The prevailing notion is that decision makers hold a
consideration choice set from where to make a final choice
rather than contemplating all possibilities. Several reasons for
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this behavior have been provided. First, choice overload has
been shown to produce suboptimal choices in certain conditions
(60, 67). Second, selecting a small number of options from where
to choose can be actually optimal if there is uncertainty about the
value of the options and there is cost for exploring and sampling
further options (68–70). Estimating the overall benefits of con-
sidering larger sets has to be balanced with the associated cost of
exploring further options.
This research has provided a relevant line of thought for un-

derstanding low sampling behavior within the context of boun-
ded rationality by formally assuming the presence of linear costs
of time for searching for new options. Time costs come in their
models at the expense of unknown parameters, which often are
difficult to fit (68, 69). Furthermore, linear time costs always
permit unlimited number of sampled options, as they do not
impose a strict limit in the number of options that can be sam-
pled. In our approach, in contrast, allocating finite resources
imposes a strict limit to the number of options that can be
sampled and, as resources are limited, there is a trade-off be-
tween sampling more options with less resources or sampling
fewer options with more resources, directly addressing the BD
dilemma. This difference could be the main reason why the
consideration set literature has not reported sharp transitions of
behavior as a function of model parameters (costs) nor power
sampling laws, which are the main features of our finite-sample
capacity model.
A number of extensions would be required to fully address

more realistic problems associated to the BD dilemma. So far,
we have considered a two-stage decision process, where the first
metareasoning decision is about optimally distributing limited
sampling capacity. We have also considered a sequential prob-
lem where some basic form of feedback can be used, but the
allocation strategy needs to be chosen before the gathering of
information and remains fixed thereafter. By construction, these
optimal dynamic allocations at large capacity sample more
deeply those alternatives that have largest values, in line with
experimental work (55, 71). Perhaps a more relevant observation
is that the depth of processing of the best alternatives increases
with capacity and that more samples are allocated to the top
alternatives than for optimal static sample allocations (cf. Fig. 6).
Furthermore, if capacity increases, relatively more samples are
allocated to the most-sampled than the second-most–sampled
alternative. Both predictions are currently untested.
It would be interesting to extend these results to truly se-

quential processes where the decision of how many samples to
allocate per wave is flexible and depends on intermediate feed-
back. An advantage of this more general setup (72) is that a full-
fledged interaction between the BD and EE dilemmas could be
studied. In particular, a relevant direction is relating our square
root sampling law with Hick’s law (73) for multialternative
choices. The two approaches touch different aspects of multi-
alternative decision making: While Hick’s law refers to the
problem of how long options should be sampled in a multi-
alternative setting, it does so by sampling all available options;
the square root sampling law, by contrast, applies to situations
where there are many alternatives and a large fraction of them
are to be ignored due to limited capacity, directly facing the BD
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Fig. 6. Optimal dynamic sample allocations display a sharp transition at low
capacity, distribute samples unevenly across alternatives, and ignore a vast
number of alternatives at high capacity. (A) Fraction of sampled alternatives
(compared to the maximum number of potentially accessible alternatives,
equal to C) as a function of capacity C for the flat environment (uniform
prior). The fraction is 1 for small-capacity values and decays rapidly to zero at
large capacity. (B) Optimal sample waves, indicating the number of samples
allocated in each wave. The number of samples allocated in each wave lies
between 1 and C, and they sum up to the total available capacity C. The
maximum allowed number of waves is C. (C) Optimal dynamic sample allo-
cations and choice sets after the whole capacity has been allocated through

the sample waves. The alternatives with largest number of successes are
allocated a higher number of samples compared to static allocations (cf.
Fig. 4). Many alternatives are given just one sample, typically arising from
the first wave, which produces broader sample allocations compared to
static allocations. (D) Percentage loss in averaged reward by using triangular
(gray), square root sampling law (black), random (orange), pure breadth
(red), and pure depth (pink) static heuristics compared to optimal dynamic
allocation.
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dilemma. It will be interesting to integrate the two sets of results
within a general framework of multialternative sequential sam-
pling (74–76) under limited resources.
A second possible extension of our work is reconsidering the

nature of capacity. For instance, “rate distortion theory” defines
a natural capacity constraint over the mutual information be-
tween the inputs and the outputs in a system (77, 78). This ca-
pacity constraint might more naturally enforce a finite capacity
than fixing the total number of samples that a system can draw
from (externally or internally). A third relevant direction would
be extending our study to cases where the capacity is continuous
rather than discrete, and to cases where the observations are
continuous variables. Showing that Gaussian rather than Ber-
noulli outcomes yield qualitatively similar strategies is a first step
in this direction. Although it remains a topic for future research,
we do not expect qualitative differences in behavior in other
continuous settings, as for large capacity the continuous limit
approximation applies, and for low capacities the optimality of
low number of sampled alternatives is expected.
While we do not know of direct tests of BD capacities in hu-

mans, indirect measurements suggest that the square root sam-
pling law can be at work in some realistic conditions, such as
chess. It has been argued that chess players can image around
100 moves before deciding their next move (79). Assuming that
their capacity is 100, then the square root sampling law would
predict that players should sample 10 immediate moves followed
by around 10 continuations. Indeed, estimates indicate that chess
players mentally contemplate roughly between 6 and 12 imme-
diate moves followed by their continuations (79) before capacity
is exhausted due to time pressure. Although decisions in trees
like this surely involve other types of search heuristics beyond
balancing breadth and depth, the quantitative similarity between
predictions and observations is intriguing.
Finally, our work potentially opens ways to understand confir-

mation biases. Confirmation biases happen when people extensively

sample too few alternatives, thus effectively seeking information
for the same source. We have demonstrated that oversampling
some alternatives and completely ignoring others is optimal in
certain conditions. It remains to be seen, however, whether this is
actually the optimal strategy under more general conditions or
whether the oversampling strategy induces severely harmful biases
in certain niches.
It is important to note that we have described the phenome-

nology of the BD dilemma in conditions where all alternatives
are, a priori, equally good. Thus, ignoring a large fraction of
options and the associated square root sampling law can only be
the worst-case scenario, in the sense that if there are biases or
knowledge that a subset of alternatives is initially better than the
rest, then fewer number of alternatives should be sampled. This
consideration reassures us in the conclusion that the number of
alternatives that ought to be sampled is much smaller than
sampling capacity, an observation that might turn out to be of
general validity in both decision-making setups as well as in
terms of brain organization for cognition.

Methods
A detailed description of the finite-capacity model, a derivation of Eqs. 1–5,
and a description of the numerical methods used to generate the figures can
be found in SI Appendix.

Data Availability. The data that support the findings of this study, as well as
the codes used for analysis and to generate figures, are publicly available in
GitHub at https://github.com/rmorenobote/breadth-depth-dilemma.
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1 Finite capacity model

We consider a two-stage decision process in a multi-alternative decision-making

problem modeled as a partially observable Markov decision process. There are

N alternatives, defined each by a Bernoulli random processes, whose trial by

trial (t = 1, ...) outcomes follow sti ∼ Bern (pi), s
t
i ∈ {0, 1} = {failure, success},

i = 1, ..., N . The outcomes are independently distributed for all trials t and

across alternatives. The values of the success probabilities are unknown to the

decision-maker, and follow a prior distribution pi ∼ Beta(α, β) i.i.d. for all

alternatives, with known hyperparameters (α, β). Allowed actions follow a two-

stage decision process. In the first stage, the decision-maker can draw a total

of C = N samples at once, namely, a one-go decision is considered [1, 2, 3]. We

consider the case where the total number of alternatives N exhausts sampling

capacity C, but the results are equivalent if the number of alternatives is larger

than capacity, with the addition of more rejected or non-sampled alternatives.

The action space is AL = {~L : Li ≥ 0 ∀i,
∑
i Li = C}, where ~L = (L1, ..., LN ) is

the number of samples drawn from each of the alternatives, with the constraint∑
i Li = C (we often refer to the vector ~L as sample allocation). Note that

the decision-maker can decide to sample the same alternative several times (i.e.,

1
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Li > 1 for some i), and also decide not to sample from several alternatives (i.e.,

Li = 0 for other i). In general, M ≤ C = N alternatives are sampled. If just a

few alternatives are sampled (M ∼ 1), many samples can be allocated to each.

If C alternatives are sampled, only one sample could be allocated to each of

them. Outcomes of the samples from the sampled alternatives are revealed all at

once, not sequentially. In the second stage of the decision-making process, after

outcomes are observed, the decision-maker should decide what alternative to

choose. We initially assume that it is possible to choose only among the sampled

alternatives. Thus, the action space in the second stage is defined by the set

AC = {c : Lc > 0} of size M , ordered as {c1, ..., cM}. The sufficient statistics of

the outcomes of the Bernoulli processes to infer the success probabilities are the

counts of successes for each of the M sampled alternatives, ~n = (nc1 , ..., ncM ),

with nj =
∑Lcj

t=1 s
t
cj , and thus the decision of what option to choose should be a

function of those counts and on the sample allocation vector ~L, which together

constitute the information state of the decision process. The counts, conditioned

on the success probabilities, follow ni ∼ Bin(pi, Li). Note that the dimension

of the vector ~n depends on the number of sampled alternatives (those satisfying

Li > 0) and thus the consideration set changes size depending on the first stage

decision.

We define the utility of a choice i ∈ AC as the hidden value of the suc-

cess probability of the corresponding Bernoulli variable, Ui = pi. We assume

that the decision-maker maximizes expected utility. This involves determining

the optimal allocation of samples ~L∗ to be used in the first stage followed by

defining an optimal decision rule that selects one of the sampled alternatives

based on ~n. A decision rules maps an observation ~n, given the allocation vector

~L, into an element of the action space AC. By considering all possible deci-

sion rules, δ = {δ(~n, ~L) : (~n, ~L) → AC}, we show in Sec. (5) that the optimal

2



decision rule, δ∗(~n, ~L), is the one that selects always, for any sample alloca-

tion ~L, the alternative with the maximum posterior mean success probability

E(pi|ni, Li) = ni+α
Li+α+β

, i ∈ AC , or chooses any of the maximum ones if there are

ties. Therefore, the expected utility for a given sample allocation ~L following

the optimal decision rule is

U(~L) =
∑
~n

p
(
~n|~L, α, β

)
max
i∈AC

(
ni + α

Li + α+ β

)
, (1)

where the joint posterior over ~n factorizes into beta-binomial distributions as

p
(
~n|~L, α, β

)
=
∏
i∈AC

Bb(ni|Li, α, β). Then, the optimal sample allocation ~L∗

equals

~L∗ = arg max
~L∈AL

U(~L) = max
~L∈AL

∑
~n

p
(
~n|~L, α, β

)
max
i∈AC

(
ni + α

Li + α+ β

)
, (2)

and the corresponding maximum expected utility becomes

U∗ = max
~L∈AL

U(~L). (3)

Finding the optimal solution in Eq. (2) is hard because of the large number

of sample allocations that it is possible to form out of C samples. The number

of unique partitions of C samples equals the number of integer partitions of C

(not to be confused with the Bell number), for which we are not aware of simple

exact expressions. We should only consider unique partitions because all the

alternatives are initially (before sampling) indistinguishable. Therefore, without

loss of generality, we can always assume that we sample the alternatives by using

the sample allocation ~L ∈ AL where we impose the additional constraint that

Li ≥ Li+1 for i = 1, ..., N−1. That is, we sample the first alternative with more

3



or the same number of samples as the second alternative, the second alternative

with more or the same number of samples as the third one, and so forth. We

describe a stochastic hill climbing algorithm bellow in Sec. (4) to find the

optimal sample allocation exactly for small capacity C and approximately for

large capacity. To find useful analytical expressions for Eqs. (2, 3), we restrict

ourselves further by first looking for optimal even sample allocations, that is,

allocation of samples across M ≤ C options with the same number of samples L

per alternative. Optimal even sample allocation across alternatives is discussed

in Sec. (2).

2 Analytical expressions for optimal even sam-

ple allocation

Because the space of actions AL = {~L : Li ≥ 0 ∀i,
∑
i Li = C} is very large,

we restrict ourselves to a subset of possible actions, consisting in dividing the

capacity C into M alternatives equally sampled with L samples each. Without

loss of generality, we assume that we sample the first M alternatives and we

ignore the rest of C −M alternatives. Even splitting of the capacity is only

possible if C = M × L holds exactly, so we will only examine the pairs (M,L)

that satisfy that condition. The advantage of working in this subset of actions

is that it is possible to obtain useful, exact analytical expression that will re-

veal non-trivial properties of the decision process. Methods for finding globally

optimal sample allocation strategies are provided in Sec. (4). In the main re-

sults we also show that optimal sample allocations are not greatly better than

the optimal even ones, so that even sample allocation is close-to-optimal. For

an even capacity split, the optimal L∗ under the constraint C = ML can be

obtained by specializing Eq. (2) to this case as

4



L∗ = arg max
L

∑
~n

M∏
j=1

p (nj |L,α, β) max
i

(
ni + α

L+ α+ β

)
, (4)

where i ∈ {1, ...,M} and p (nj |L,α, β) = Bb(nj |L,α, β). Naturally, the optimal

number of alternatives to be sampled is M∗ = C/L∗

A particularly simple expression results from the case α = β = 1, correspond-

ing to a uniform prior over the success probabilities of the Bernoulli variables.

This is because p (nj |L, 1, 1) = Bb(nj |L, 1, 1) = 1
L+1 , thus becoming a discrete

uniform distribution over nj ∈ {0, ..., L}, independent of nj . Then, replacing

this expression in Eq. (4), the optimal even sample allocation simplifies to

L∗ = arg max
L

U(L),

U(L) =
1

(L+ 1)M

L∑
n1,...,nM=0

max
i

(
ni + 1

L+ 2

)
(5)

=
1

(L+ 1)M (L+ 2)

(
(L+ 1)M +

L∑
n1,...,nM=0

max(n1, ..., nM )

)

=
1

(L+ 1)M (L+ 2)

(
(L+ 1)M +

L∑
s=0

(
(s+ 1)M − sM

)
s

)
(6)

= 1−
∑L
s=0(s+ 1)M

(L+ 1)M (L+ 2)
, (7)

with M = C/L. Eq. (6) in the derivation results from realizing that the sum

over maxi(ni) contains exactly 1M−0 zeros, 2M−1 ones, 3M−2M twos, etc. The

sum in Eq. (7) is the sum of the M − th powers of the first L+1 integers, and it

can be computed using Faulhaber’s formula. Eq. (7) confirms the intuition that

the expected utility U(L) for any L is smaller than one. Finally, the optimal
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number of evenly allocated samples (over the sampled options) can be written

as

L∗ = arg min
L

∑L
s=0(s+ 1)M

(L+ 1)M (L+ 2)
(8)

It is interesting to examine some limits of Eq. (7) by relaxing the constraint

C = M × L. For large M and L = 1, the expected utility in Eq. (7) becomes

limM→∞ U → 2
3 . This observation is not surprising, as when a very large

number of alternatives is sampled with just one sample, it is very likely that at

least one of them will have a successful outcome. Therefore, the expected utility

of that alternative under the uniform prior will be 2
3 . This limit is visible in the

rightmost point of Fig. 2a. In the opposite scenario, when only one alternative

is sampled, M = 1, then the expected utility is 1
2 for all L. That is, if just one

alternative is sampled, then the expected probability of success of the sampled

alternative is 1
2 , which equals the prior mean. This limit is visible in the leftmost

point of Fig. 2a.

A more general way of performing the integrals involved in Eq. (4) is

by using cumulative distribution function of the beta-binomial distributions,

F (n|L,α, β) =
∑
m≤n Bb(m|L,α, β). By noting that the extreme value distri-

bution has probability mass function FM (n) − FM (n − 1) (where M denotes

exponent and we have dropped conditioning to avoid cluttered notation), we

can write the optimal even sample allocation in Eq. (4) as

L∗ = arg max
L

L∑
n=0

[
FM (n|L,α, β)− FM (n− 1|L,α, β)

]( n+ α

L+ α+ β

)
, (9)

Note that the extreme value distribution FM (nmax) − FM (nmax − 1) is the

6



distribution of nmax = max(n1, ..., nM ) where ~n follows the above factorized

beta-binomial distribution. In other words, the extreme value distribution for

nmax is the probability that no alternative has more than nmax successful sam-

ples (hence the first term FM (nmax)) but removing the cases where there is no

alternative with more than nmax−1 successful samples (hence the second nega-

tive term FM (nmax−1)). For the uniform prior case, α = β = 1, we recover Eq.

(8), for which the cumulative can be exactly computed. For arbitrary values of

α and β, Eq. (9) is solved numerically. These solutions are used in Fig. 2d.

The general Eq. (2) valid for any allocation of samples, and the specific

Eq. (9) valid for even sample allocations, assume that a choice is made from

the sampled alternatives, while non-sampled alternatives are excluded from the

choice set. However, if none of the sampled alternatives turns to be good ones

(e.g., because ni � Li for i ∈ AC), then it would be better to choose randomly

from any of the non-sampled alternatives. This is particularly so if the expected

utility of any of the sampled alternatives, ni+α
Li+α+β

, is smaller than α
α+β , which

is the default expected utility of the non-sampled alternatives given that the

success probabilities are drawn from a B(α, β). It is straightforward to generalize

these results by adding a default alternative, assumed to have utility p0. In this

case, the optimal even allocation of samples obeys

L∗ = arg max
L

L∑
n=0

(
FM (n|L,α, β)− FM (n− 1|L,α, β)

)
max

(
n+ α

L+ α+ β
, p0

)
.

(10)
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3 Asymptotic behavior for large capacity: the

square root sampling law

It is possible to derive an approximation for the limiting behavior of the optimal

number of sampled alternatives M∗ and their associated optimal number of

samples per alternative L∗ by using Eq. (5) for large capacity C in the case of

the uniform prior distribution. For large capacity C, we assume that L∗ grows

to infinity. This assumption is confirmed later, when the asymptotic optimal

L∗ is derived. If L is large, then Eq. (5) can be approximated by

U(L) =
1

(L+ 1)M

L∑
n1,...,nM=0

max
i

(
ni + 1

L+ 2

)
(11)

=
1

(L+ 2)

(
1 +

1

(L+ 1)M

L∑
n1,...,nM=0

max(n1, ..., nM )

)

≈ 1

(L+ 2)

(
1 + L

∫ 1

0

dx1...

∫ 1

0

dxM max(x1, ..., xM )

)
,

where the sum in the second equation has been approximated in the third equa-

tion by an integral in the interval [0, 1]M over a uniform distribution by using

the transformation ni = Lxi for i = 1, ...,M . The continuous approximation is

valid when L is large, as assumed, since then the transformation delivers values

of xi that are dense in the unit interval. The integral can be rewritten as

∫ 1

0

dx1...

∫ 1

0

dxM max(x1, ..., xM ) =

∫ 1

0

dxmaxxmaxf(xmax),

where we have defined the extreme value xmax = max(x1, ..., xM ). The ex-

treme value follows the extreme value distribution f(xmax) = (F (xmax)M )′ =
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MxM−1max , where we have used that F (x) = x is the cumulative of the continuous

uniform distribution in [0, 1]. Therefore,

U(L) ≈ 1

(L+ 2)

(
1 + L

∫ 1

0

dxmaxMxMmax

)
=

1

(L+ 2)

(
1 +

ML

M + 1

)
. (12)

Finally, by maximizing U(L) as a function of L with the constraint C = ML we

obtain the asymptotic optimal number of sampled alternatives M∗ and optimal

number of samples per sampled alternative L∗

lim
C→∞

M∗ =
√
C, lim

C→∞
L∗ =

√
C,

which corresponds to the square root sampling law.

In the above derivation we have assumed that L∗ grows with C. To see that

this corresponds to the only valid assumption to obtain L∗, let us assume now

that L∗ does not grow with C, that is, it is a constant or decreases with C. For

any fixed value L, using Eq. (7) we see that U(L) ≤ 1− 1/(L+ 2). This utility

is smaller than the one obtained by using the square root law, which converges

to 1, as can be easily derived from Eq. (12). Therefore, the square root law

delivers the highest utility.

4 Optimal sample allocation

For low capacity C ≤ 7 we found the globally optimal sample allocation strategy

by exhaustive search over all possible sample allocations. For larger capacity, we

9



searched the optimal sample allocation by using stochastic hill climbing. With

this method, we confirmed that for values up to C ≤ 20 the globally optimal

sample allocations were correct up to a precision in expected utility of 10−4.

We started the algorithm by using even sample allocation using the square

root law heuristic: if C ≤ 7 all options were sampled with one sample, and if

capacity was larger we used the square root law by sampling
√
C alternatives

√
C times each. We considered the possibility that the resulting square root

was not an integer, and thus we allocated the residual number of samples to

a randomly chosen additional alternative; we call this allocation scheme ’even

allocation’. At every iteration, we computed the expected utility of the current

best sample allocation ~L through a Monte Carlo simulation of the Bernoulli

variables and averaging utility over 4× 105 repetitions for C ≤ 20 and 5× 104

for larger capacity values. A perturbed sample allocation was proposed by

randomly selecting two alternatives. One sample was removed from the first

alternative and added to the second one, but only if the first alternative had

already assigned at least one sample. To exploit symmetry, we only consider

changes of one sample from one alternative i to another j > i if Lj−1 ≥ Lj and

Li ≥ Lj . If j < i, there were not restrictions.

With the proposed perturbed sample allocation, we computed the expected

utility using the same Monte Carlo method. If the new expected value was larger

than the previous one, then the proposed perturbed sample allocation became

the current best sample allocation. This process was iterated 2× 104 times for

C ≤ 20 and 3 × 103 for larger capacity values. Because at each iteration we

reevaluate the expected value of the current best sample allocation, we avoid

the possibility of getting stuck in a random fluctuation leading to a spuriously

large expected value. The stochastic hill climbing method found optimal sample

allocations that were identical to those found with the exhaustive search for

10



low capacity C ≤ 7. Although we do not know whether the found optimal

sample allocation corresponds to a global maximum when capacity is larger,

we confirmed that the optimal sample allocations found were stable against

different random number seeds and initial conditions. Figs. 4 and 5 use the

above method. Percentage reward gain in Fig. 5b is computed as 100× (U∗ −

Ueven)/Ueven, where U∗ is the utility estimate of the globally optimal allocation

and Ueven is the estimate of the initial even allocation. Percentage reward

loss in Fig. 5c is computed as 100 × (Uheuristic − U∗)/U∗, where U∗ is the

utility estimate of the globally optimal allocation and Uheuristic is the utility

estimate from triangular, square root sampling law, pure breadth or pure depth

heuristics.

We also employed another version of stochastic hill climbing that avoided

using extensive sampling of the Bernoulli variables to estimate expected utility.

This method was used to confirm robustness of the previous results. We define

the optimal utility as

U∗ = max
~L

∑
~n

p(~n|~L, α, β) max
i

(
ni + α

Li + α+ β

)
. (13)

We thus can design a Markov Chain Monte Carlo method to sample from the

probability distribution

p(~n|~L, α, β) =
∏
j

Bb(nj |~L, α, β)

appearing in the sum of Eq. (13) as follows (these samples can be then used

to approximate the sum). Detailed balance imposes that the probability of

transitioning from a state with ~n to ~n′ is the same as the converse,

P~n,~n′ p(~n|~L, α, β) = P~n′,~n p(~n
′|~L, α, β).
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By proposing a change to a single alternative n′j = nj ± 1, we can get a simple

expression for the acceptance rate r(~n→ ~n′). If n′j = nj +1 the acceptance rate

is

r(~n→ ~n′) = min

(
1,

(nj + α)(Lj − nj)
(Lj − nj + β + 1)(nj + 1)

)
,

while if n′j = nj − 1, it becomes

r(~n→ ~n′) = min

(
1,

(Lj − nj + β)nj
(nj + α− 1)(Lj − nj)

)
,

where we have made use of the Metropolis-Hastings algorithm. These two

changes are proposed with equal probability and randomly across all the op-

tions. Utilities are estimated using 106 samples. The search over ~L is made

using 50× C iterations. Results in Fig. 4 were reproduced by this method.

For the optimal dynamic allocations described in Fig. 6, we employed again

a stochastic hill climbing method identical to the one described at the start of

this section by using the vector of numbers of allocated samples per wave, Mi,

i = 1, 2, ...C, instead of the number of samples per alternative, Li. The method

proceeded by proposing a new vector of waves ~M by adding a sample to a

randomly chosen wave and removing a sample from another randomly chosen

wave. This was done only if the second wave had at least one allocated sample

to it and if the resulting proposed perturbed allocation satisfied the constraint

Mi+1 ≤ Mi for all i. The number of iterations and samples for Monte Carlo

utility estimates are the same as above. Optimal dynamic allocations found are

correct up to a precision of 10−4 in the utility estimates. Very similar results to

those described in Fig. 6 are found when options to be sampled in each wave

are selected based on their current posterior mean probabilities instead of their

current number of total successes. Percentage reward loss of static heuristics

compared to optimal dynamic allocations described in Fig. 6d are computed as
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in Fig. 5c.

5 Consistency

Perhaps intuitively, but wrongly, we might assume that by always opting for the

alternative with larger number of successful outcomes (larger ni in Eq. (2)), this

would result in ’cherry picking’, that is, in selecting a spuriously good option.

This, in turn, would mean that we would obtain a reward that is lower than the

expected utility in Eq. (3). Here we show, however, that the decision rule of

choosing always the alternative with the highest posterior mean is both optimal

and delivers on average a reward that is equal to the expected utility. This is

a well-known result in statistical decision theory [4, 5, 6]. Here we show the

derivation for completeness.

Consider any possible decision rule ~d = δ(~n) that assigns the counts of suc-

cesses for theM sampled alternatives, ~n, to a decision ~d ≡ ~d(~n) = (dc1(~n), ..., dcM (~n)),

encoded as a one-hot vector of length M (i.e., dci = 1 if alternative ci is chosen,

and dci = 0 otherwise; we omit the potential dependence of the decision rule

on ~L to avoid cluttered notation). If the success probabilities of the sampled

alternatives, ~p, are known, then by using the decision rule δ the decision-maker

would have an expected utility

U(~p, ~L, δ) =
∑
~n

∏
i∈AC

Bin(ni|Li, pi) pdi(~n)i ,

where ~L is the allocated number of samples over the alternatives. Note that the

expected utility is an average over the values of the chosen pi given the decision

rule averaged across all possible outcomes given the allocated number of samples

over alternatives. As probabilities are unknown, they are marginalized out with
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their prior beta distributions, resulting in the overall expected utility

U(~L, δ) =
∑
~n

∏
i∈AC

Γ(Li + 1)

Γ(ni + 1)Γ(Li − ni + 1)

Γ(α+ β)

Γ(α)Γ(β)

×Γ(ni + α+ di)Γ(Li − ni + β)

Γ(Li + α+ β + di)
. (14)

We note that for each term in the sum over ~n, there is only one value of i for

which di = 1 in the product, while dj = 0 for j 6= i. The term i in the product

with di = 1 gives an extra factor ni+α
Li+α+β

(by expanding the gamma functions

just one step) that is not present in the product terms with dj = 0. Therefore,

the product is maximized iff di = 1 for the alternative i with maximum ni+α
Li+α+β

(if the maximum is not unique, any alternative with the maximum value will

give exactly the same result). This result proves that the optimal decision rule

δ∗ is the one that chooses always the alternative with the highest posterior

expected utility given ~n.

Now, we can show that for the optimal decision rule δ∗, the expected utility

is the same as that in Eq. (3). We can rewrite Eq. (14) as

U(~L, δ∗) =
∑
~n

max
i∈AC

(
ni + α

L+ α+ β

) ∏
i∈AC

Γ(Li + 1)

Γ(ni + 1)Γ(Li − ni + 1)

Γ(α+ β)

Γ(α)Γ(β)

×Γ(ni + α)Γ(Li − ni + β)

Γ(Li + α+ β)
,

which is identical to the maximum expected utility U(~L) in Eq. (3), that is,

U(~L, δ∗) = U(~L). This shows that ’cherry picking’ is optimal.
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6 Supplementary Figure
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Figure SI 1: Sharp transitions in optimal number of sampled alternatives

at low capacity and power law behavior at high capacity in a breadth-depth

(BD) model with Gaussian outcomes. Each option is modelled as a Gaussian

with known variance σ2 and unknown mean reward µ drawn independently for

each option from a uniform prior over [0, 1]. The goal is to optimize the even

allocation of C independent samples over at most C options to maximize the

posterior mean reward of the best option. The less options samples are allocated

to, the better the estimates of the underlying means of the sampled options. The

optimal even allocations observed qualitatively match those found in Figure
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1 for Bernoulli observations with unknown success probabilities. (a) Average

reward (points and lines, simulations) as a function of the number of sampled

alternatives M for three different capacities (C = 4, 10, 100; light, intermediate

and dark lines respectively) for variance σ2 = 1, comparable to prior’s width.

The maximum occurs at the right extreme for low capacity but at a relatively

low values for large capacities. Note log horizontal scale. (b) Optimal number

of sampled alternatives as a function of capacity. When capacity is smaller

than around 9, a linear trend of unit slope is observed (dashed green line),

but when capacity is above 9, the behavior becomes sublinear (dashed red line

corresponds to the best power law fit, with exponent close to 1/3; power law

fit, exponent = 0.35, 95% CI = [0.30, 0.41]). The transition between these two

regimes is sharp. (c) The sharp transition is clearer when plotting the optimal

number of sampled alternatives to capacity ratio as a function of capacity. For

low capacity, the ratio is one, but for large capacity the ratio decreases very

rapidly. The last point below which the optimal ratio is always one (critical

capacity) corresponds to capacity equal to 9 (indicated by the vertical red line).

(d) Number of sampled alternatives to capacity ratios for different variances

σ2 = 0.1, 1, 10 (blue, black, red lines, respectively), corresponding to reliable,

standard, and unreliable Gaussian samples. All points and lines correspond to

simulations. When samples are reliable (blue line), breadth search is favored,

as can be seen from the increase of the critical capacity and the slower decay

of the optimal ratio M/C. In contrast, when samples are unreliable (red line),

depth search is favored.
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