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A large family of distributional RL algo-
rithms emerges from a simple modifica-
tion to traditional RL and dramatically
improves performance of artificial agents
on AI benchmark tasks. These algo-
rithms operate using biologically plausi-
ble representations and learning rules.

Dopamine neurons show substantial
diversity in reward prediction error cod-
ing. Distributional RL provides a norma-
tive framework for interpreting such
heterogeneity.
Learning about rewards and punishments is critical for survival. Classical studies
have demonstrated an impressive correspondence between the firing of dopa-
mine neurons in the mammalian midbrain and the reward prediction errors of
reinforcement learning algorithms, which express the difference between actual
reward and predicted mean reward. However, it may be advantageous to learn
not only themean but also the complete distribution of potential rewards. Recent
advances in machine learning have revealed a biologically plausible set of
algorithms for reconstructing this reward distribution from experience. Here,
we review the mathematical foundations of these algorithms as well as initial
evidence for their neurobiological implementation. We conclude by highlighting
outstanding questions regarding the circuit computation and behavioral readout
of these distributional codes.
Emerging evidence suggests that the
combined activity of dopamine neurons
in the VTA encodes not just the mean
but rather the complete distribution of
reward via an expectile code.
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Biological and Artificial Intelligence
The field of artificial intelligence (AI) has recently made rapid progress in algorithms and network
architectures that solve complex tasks [1–4]. These advances in AI raise new questions in neuro-
biology, centered on the relationship between these state-of-the-art in silico learning algorithms
and their biological counterparts in the brain [5]. Here, we discuss a new family of algorithms,
termed distributional reinforcement learning (distributional RL; see Glossary) [6,7]. A recent
study suggests that the brain’s reward system indeed uses distributional RL [8], opening up
opportunities for fruitful interactions between AI and neuroscience.

In this review, we first provide an overview of the basic algorithms of distributional RL and show
how they can be understood from the single, unified perspective of regression. Next, we examine
emerging neurobiological evidence supporting the idea that the brain uses distributional RL.
Finally, we discuss open questions and future challenges of distributional RL in neurobiology.

Development of Distributional Reinforcement Learning in AI
The field of RL studies the algorithms by which an agent (e.g., an animal or computer) learns to
maximize the cumulative reward it receives [9]. One common approach in RL is to predict a quan-
tity called value, defined as the mean discounted sum of rewards starting from that moment and
continuing to the end of the episode under consideration [9]. Predicting values can be challenging
if the number of states is large and the value-function is nonlinear. A recent study overcame these
challenges by combining past RL insights with modern artificial neural networks to develop an
algorithm referred to as deep Q-network (DQN), which reached human-level performance in
complex video games [2] (Figure 1A,B).

Various algorithms have been developed to improve upon DQN [10], including distributional RL
[6,7]. The key innovation of distributional RL lies in how these algorithms predict future rewards.
In environments where rewards and state transitions are inherently stochastic, traditional RL algo-
rithms learn to predict a single quantity, the mean over all potential rewards. Distributional RL
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Glossary
Distributional reinforcement
learning: a family of algorithms
whereby an agent learns not only the
expected reward, but rather the entire
distribution of rewards.
Expectile: the τ-th expectile of a
distribution is the value eτ that minimizes
the expectile regression loss function for
τ (Equation 11). The 0.5-th expectile
equals the mean.
Gradient: the gradient of a scalar-
valued function f is a vector-valued
function whose components are the
partial derivatives of f. In this paper, f is a
loss functionwithKmodel parameters to
be optimized as its variables. Evaluating
the gradient therefore results in a K-
vector, which indicates how sensitive f is
locally to small changes of the
parameters.
Loss function: also called cost, error,
or objective function, it is the equation
that provides a metric for the goodness-
of-fit of a set of parameters to data. One
can fit a model, for example, a
regression, by finding the parameters
that minimize the loss function.
Markovdynamics: property of a state
space such that the probability of a
successor state st+1 depends directly
on st and not any prior state:
P(st+1|s0,s1,…st) = P(st+1|st).
Nonparametric code: a type of
population code that makes no
assumptions about the underlying type
of distribution. A quantile-like code is one
example.
Parametric code: a type of population
code in which neural activity reflects
particular parameters of a predefined
type of distribution (in simple cases, the
mean and variance of a Gaussian, but
often more complex distributions).
Population code: the representation of
a particular type of information (e.g., the
presence of a specific sensory stimulus,
the average reward, or the distribution of
rewards) by the firing of a population of
neurons.
Quantile: the τ-th quantile of a
distribution is the value qτ such that τ
fraction of samples is below qτ while the
other 1 − τ fraction is above it.
Equivalently, qτ minimizes the quantile
regression loss function for τ (Equation 9).
The 0.5-th quantile is the median.
Quantile regression: a model that
predicts quantiles of a distribution given
some predictor variables (e.g., a state
vector).
Reinforcement learning (RL): a field
of AI and theoretical neuroscience that
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algorithms, by contrast, learn to predict the entire probability distribution over rewards
(Figure 1C). Notably, modifying DQN to implement variants of distributional RL boosts perfor-
mance by as much as two and a half times [6,7,10] (Figure 1D).

How Distributional RL Works
Two major topics in distributional RL are: (i) how the reward distribution is represented, and
(ii) how it is learned. The original distributional RL algorithm [6] used data structures akin to histo-
grams (the number of samples falling into fixed bins, or categories) to represent a distribution and
treated learning as a multiclass classification problem. This class of distributional RL is hence
called ‘categorical’ distributional RL [6]. Although using a histogram is an intuitive (and common)
way to represent a distribution, it remains unclear whether neurons in the brain can instantiate this
approach. A subsequent paper proposed to replace the histogram representation by an algo-
rithm called quantile regression [7], which uses a novel population coding scheme to represent
a distribution and a biologically plausible learning algorithm to update it.

Learning from Prediction Errors
One of the key ideas in RL is that learning is driven by prediction errors (i.e., the discrepancy
between actual and expected outcomes) [11,12]. This idea originated in animal learning theories
and was formulated mathematically by Rescorla and Wagner [13]. The Rescorla-Wagner (RW)
rule postulates that the strength of association between two stimuli is updated based on a predic-
tion error. In the simplest case, when a stimulus (X ) is presented, the animal predicts the value of
the future outcome. Once this outcome is revealed, the animal compares the outcome (R) against
the predicted value (V ) and computes the prediction error δ ≔ R − V. According to the RW rule,
the value of stimulus X is updated in proportion to the prediction error:

V ← V þ α ∙δ : ½1�

Here, α is the learning rate parameter, which takes a value between 0 and 1. Equation 1 defines
how the value V is updated. (The arrow indicates that V on the left-hand side is the value after
updating whereas V on the right-hand side is the value before.) If R is constant, the predicted
value gradually approaches the actual value and the prediction error approaches 0. Even if R is
probabilistic, the predicted value will converge to the mean reward amount, at which point positive
and negative prediction errors will balance across trials (Figure 2A). In a more sophisticated RL
algorithm called temporal difference (TD) learning [9,11,12], the prediction error is computed
based on the difference between the predicted values at consecutive time points (Box 1), but
the update rule may otherwise remain the same.

Toward Distributional RL
While expected values can be useful, summarizing a situation by just a single quantity discards
information that may become important in the future. If the demands of the animal change, for
example, if large, uncertain rewards become preferred to smaller, certain ones [14], animals
that store more detailed information about outcomes may perform better. Learning entire
distributions sounds computationally expensive, but interestingly, distributional RL can arise out
of two simple modifications to Equation 1 [7,8].

The first modification is to ‘binarize’ the update rule as follows,

V ← V þ α �
−1 if δ ≤ 0

1 if δ > 0

8<
: ½2�
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considers the interaction between an
agent and its environment. The agent
receives states and rewards as inputs. It
then takes actions that may modify its
state and/or elicit reward. The agent’s
objective, in general, is to maximize value.
States: the description of the
environment that is input to RL
algorithms, alongside rewards.
Stochastic gradient descent:
minimization method that computes the
gradient of the loss function on individual
samples, selected at random, and then
adjusts the parameters in the negative
direction of this gradient.
Temporal difference (TD) learning:
bootstrapping technique in RL that
computes the difference between
predicted value at successive points in
time to update the estimate of value.
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That is, the prediction error (δ ) in the update equation is replaced by +1 or −1, depending on the sign
of δ, such that value predictions are incremented (or decremented) by a fixed amount. In this case,
V will converge to the median rather than the mean of the reward distribution (Figure 2B). Intuitively,
this is because the median is the value that divides a distribution such that a sample from the full
distribution is equally likely to fall above or below it. The increments and decrements specified by
Equation 2 will balance out at the point where positive and negative prediction errors occur with
exactly the same frequency, which is to say, when V is the median of the reward distribution.

The second modification is to add variability in the learning rate (α ). Suppose we have a family of
value predictors, Vi, each of which learns its value prediction in a slightly different way [7,8]. We
assign each Vi two separate learning rates, an α i

+ for positive prediction errors and an α i
− for neg-

ative prediction errors, resulting in the learning rule

Vi ← Vi þ
α−
i � −1ð Þ if δ i ≤ 0

αþ
i � þ1ð Þ if δ i > 0

(
½3�
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Figure 1. Deep Reinforcement Learning (RL). (A) A formulation of RL problems. In RL, an agent learns what action to take in a given state in order to maximize the
cumulative sum of future rewards. In video games such as Atari games (here, the Space Invaders game is shown), an agent chooses which action [a(t), joystick turn, button
press] to take based on the current state [s(t), pixel images]. The reward [r(t)] is defined as the points that the agent or player earns. After David Silver’s lecture slide (https://
www.davidsilver.uk/teaching/). (B) Structure of deep Q-network (DQN). A deep artificial neural network (more specifically, a convolutional neural network) takes as input a
high-dimensional state vector (in this illustration, pixel images of four consecutive Atari game frames) along with sparse scalar rewards and returns as output a vector
corresponding to the value of each possible action given that state [called action values or Q-values and denoted Q(s, a)]. The agent chooses actions based on these
Q-values. To improve performance, the original DQN implemented a technique called ‘experience replay’, whereby a sequence of events is stored in a memory buffer
and replayed randomly during training [2]. This helped remove correlations in the observation sequence, which had previously prevented RL algorithms from being
used to train neural networks. Modified from [2]. (C) Difference between traditional and distributional RL. Distributional DQN estimates a complete reward distribution
for each allowable action. Modified from [6]. (D) Performance of different RL algorithms in DQN. Gray, DQN using a traditional RL algorithm [2]. Light blue, DQN using a
categorical distributional RL algorithm (C51 algorithm in [6]). Blue, DQN using a distributional RL based on quantile regression [7]. Modified from [7].

982 Trends in Neurosciences, December 2020, Vol. 43, No. 12

Image of Figure 1
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/


Value: in the Rescorla-Wagner
formulation, it is the predicted amount of
rewardassociatedwith a stimulus. In theTD
framework, it is the expected sum of
discounted future rewards associated with
a state (Box 1) or state-action combination.

TrendsTrends inin NeurosciencesNeurosciences

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Mean Median

Quantiles Quantiles

Quantiles
Quantiles

Expectiles Expectiles

(See figure legend at the bottom of the next page.

Trends in Neurosciences

Trends in Neuro
)

sciences, December 2020, Vol. 43, No. 12 983

Image of Figure 2


Box 1. Temporal Difference (TD) Learning

The Rescorla-Wagner (RW) rule [13], for all its success, is limited by its exclusive focus on immediate rewards. Fortunately,
many of its shortcomings can be overcome by defining a different environmental structure and learning objective [9,11,12].
We start by considering arbitrary states s, which transition at each time step and sample a random reward (possibly zero or
negative) from a probability distribution R(st). We then define a new learning objective, the value:

V stð Þ ≔ E R stð Þ þ γR stþ1ð Þ þ γ2R stþ2ð Þ þ…
� �

; ½I�

where E[·] denotes an expectation over stochastic state transitions and reward emissions, and γ is a discount factor
between 0 and 1, reflecting a preference for earlier rewards.

Contrary to the RW model, which cares only about the reward obtained in a trial, this model cares about (a weighted sum
of) all future rewards. Since the environment is assumed to follow Markov dynamics, we can rewrite this relationship
recursively, using the so-called Bellman equation:

V stð Þ ≔ E R stð Þ þ γV stþ1ð Þ½ �: ½II�

Rearranging and sampling rt ~ R(st) from the environment, we arrive at a new kind of RPE, namely, a TD error [4], which we
also call δ to emphasize its similarity to the RPE in the RW model:

δ tð Þ ≔ rt þ γV stþ1ð Þ − V stð Þ: ½III�

The value update then occurs in exactly the same manner as before:

V stð Þ← V stð Þ þ αδ tð Þ: ½IV�

The similarity between the RW and TD learning rules disguises one important difference. In the case of the RW rule, we
computed the prediction error using the actual reward, R, that was experienced. In TD, we substitute R with rt + γV(st+1),
our estimate of the target value of state st. But this target includes yet another value predictor γV(st+1), which we also are try-
ing to learn and which may in fact be inaccurate. Therefore, we use one estimate to refine a different estimate, a procedure
known as ‘bootstrapping’. For that reason, unlike RW, TD learning is not a true instance of stochastic gradient descent, since
changing the parameters of our value function changes not only our estimate but also our target [9]. This is the principal
reason why we focus on distributional forms of the RW (rather than TD) rule in the main text. Nonetheless, and quite
remarkably, this ‘bootstrapping’ procedure is proven to converge to a point near the local optimum in the case of linear
function approximation [88] and can be made to work very well in practice, even in situations where theoretical conver-
gence is not guaranteed [2].
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In the case where α i
+ > α i

−, positive prediction errors drive learning more strongly compared
with negative ones. This will cause Vi to converge to a value larger than the median, so we
call such value predictors ‘optimistic’. Conversely, when α i

+ < α i
−, the value predictors become

‘pessimistic’. For any combination of α i
+ and α i

−, a value predictor that learns according to the

above rule will converge to the
αþ
i

αþ
i þ α−

i

¼ τ i-th quantile (Figure 2C,D). Multiple value predictors
Figure 2. Learning Rules of Distributional Reinforcement Learning: Quantile and Expectile Regression. (A) The
standard Rescorla-Wagner learning rule converges to the mean of the reward distribution. (B) Modifying the update rule to
use only the sign of the prediction error causes the associated value predictor to converge to the median of the reward
distribution. (C,D) Adding diversity to the learning rates alongside a binarized update rule that follows the sign of the
prediction error causes a family of value predictors to converge to quantiles of the reward distribution. More precisely, the

value qτ i to which predictor i converges is the τi-th quantile of the distribution, where τi is given by
αþ
i

αþ
i þ α−

i
. This is

illustrated for both unimodal (C) and bimodal (D) distributions. (E) The cumulative distribution function (CDF) is a familiar
representation of a probability distribution. (F) By transposing this representation, we get the quantile function, or inverse
CDF (left). Uniformly spaced quantiles cluster in regions of higher probability density (right). Together, these quantiles
encode the reward distribution in a nonparametric fashion. (G,H) Multiplying the prediction error by asymmetric learning
rates yields expectiles. Relative to quantiles, expectiles are pulled toward the mean for both unimodal (G) and bimodal (H)
distributions. Abbreviations: α, learning rate; δ, reward prediction error; V, predicted value.
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associated with different τis thus form a population code that is the inverse of the cumulative
distribution function (CDF) (Figure 2E,F) of rewards.

One can also consider a family of value predictors that retains the original form of the update rule
in Equation 1, such that

Vi ← Vi þ
α−
i � δ i if δ i ≤ 0

αþ
i � δ i if δ i >0

8<
: ½4�

This update rule gives rise to a range of value estimates called expectiles (Figure 2G,H), which
generalize the mean just as quantiles generalize the median. However, unlike quantiles,
expectiles do not bear a straightforward relationship to the CDF. To understand them, it is
necessary to adopt a more general perspective on learning.

Distributional RL as the Process of Minimizing Estimation Errors
The distributional RL algorithms illustrated earlier are known as quantile and expectile
regression [7,8]. This is because in addition to thinking of quantiles as places to divide
ordered samples into two sets of given size ratios, they can be derived from the perspec-
tive of minimizing certain continuous loss functions, which is precisely what a regression
does [15,16]. We will demonstrate this here by re-deriving the aforementioned learning
algorithms for quantiles and expectiles from the common perspective of regression
(Figure 3A).

Let us first consider the most widespread error measure used in linear regression, the mean
squared error (MSE), in the context of learning about rewards (r). Assuming that we have
observed rewards r1, r2, …, rN across N trials, the MSE of some value V is defined as

MSE Vð Þ ¼ 1
N
∑n¼1
N rn − Vð Þ2 ½5�

and so measures the squared difference of this value to each observed reward, averaged across
all rewards [17]. This definition makes the MSE a function of V, such that as the value of V
changes, the MSE will increase or decrease (Figure 3B). The question we would like to address
is: what is the V that minimizes the MSE? To find this minimum, we set the derivative of the

MSE with respect to V to zero and solve for V, resulting inV ¼ 1
N
∑n¼1

N rn. Therefore, if one defines

the prediction error associated with the nth reward as δn = rn − V, then the MSE (the mean across
all δn

2) is minimized if V equals the average reward across trials.

One approach to minimize Equation 5 is to memorize all rewards across trials and subsequently
compute their mean. However, once the number of trials N is large, this method is neither
memory-efficient nor biologically plausible. An alternative method that is widely applied in
machine learning is stochastic gradient descent [18]. Revisiting the earlier example, assume
that the rewards r1, r2, …, rN are observed one after the other. We would like to find a local
learning rule that converges on an estimate V that approximately minimizes the sum of squared
prediction errors.

With stochastic gradient descent, the current reward estimate V is adjusted every time a new
observation rn becomes available by moving one small step down along the gradient of the
Trends in Neurosciences, December 2020, Vol. 43, No. 12 985
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Figure 3. Distributional Reinforcement Learning as Minimizing a Loss Function. (A) The reward (r) probabilities of an
example reward distribution. Mean Vmean, median Vmedian, 0.25-quantile V0.25−quantile, and 0.97-expectile V0.97−expectile of this
distribution are indicated with different colors. (B–E) Loss as a function of the value estimate V (left) when the rewards follow
the distribution presented in (A), illustrating that V = Vmean minimizes the mean squared error (B), V = Vmedian minimizes the
mean absolute error (C), V = V0.25−quantile minimizes the quantile regression loss for τ = 0.25 (D), and V = V0.97−expectile

minimizes the expectile regression loss for τ = 0.97 (E). The right panels show the loss on a single sample as a function of
the reward prediction error δ.
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squared error. [For mathematical convenience, here we actually compute the gradient of half the
squared error, ∇(δn

2/2), but the conceptual approach is the same.] This gradient measures how
the output of the loss function associated with this new observation, δn

2, will change when the
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relevant parameters are modified. In this case, the relevant parameter is just V, such that the
required gradient is given by the derivative of δn

2/2 with respect to V:

∇ δ2
n=2

� � ¼ d rn − Vð Þ2=2
dV

¼ − rn − Vð Þ
¼ − δn:

½6�

The parameter V will then be updated according to V ← V − α ∇ (δn
2/2). After substituting the

gradient, we obtain

V ← V þ α ∙ δn: ½7�

The current error function, which depends only on the most recently available reward rn, here acts
as a proxy of the error function encompassing all trials, Equation 6. Intuitively speaking,
subtracting α times the gradient from the current reward estimate, as performed in Equation 7,
corresponds to adjusting the reward estimate slightly towards the steepest drop of the current
error function. Notice that Equation 7 is equivalent to Equation 1. Therefore, the RW rule is
equivalent to stochastic gradient descent if we measure the loss by the MSE [19].

In general, as long as the error we aim to minimize has a form similar to Equation 5, in which the
global error is a sum of local errors, each of which only depends on the reward in one trial, we can
always apply an update rule similar to Equation 7, using the corresponding gradient to carry out
stochastic gradient descent. Below, we apply this approach to a variety of loss functions to derive
the corresponding update rules.

One simple change is to replace the square of δn by its absolute value, leading to the mean
absolute error

1
N
∑ n¼1

N j δn j : ½8�

In this case, the derivative with respect to V of |δn| = ∣ rn − V∣ is simply − sign (δn), which readers
will recognize as the update that converges to the median of the reward distribution (Figure 3C).

If we additionally weigh positive and negative errors differently,

1
N
∑ n¼1

N j δn j ∙
1− τ if δn ≤ 0

τ if δn >0

8<
: ½9�

where τ is a fixed value between 0 and 1, the best estimate becomes the τ-th quantile of the
reward distribution [16]. Hence, Equation 9 is called the quantile regression loss function.

We can again turn the global error function, Equation 9, into a sequential update by stochastic
gradient descent, resulting in

V ← V þ α �
− 1− τð Þ if δn ≤ 0

τ if δn >0

8<
: ½10�
Trends in Neurosciences, December 2020, Vol. 43, No. 12 987
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If δn is negative, the rate parameter equals −α (1 − τ ) = − α−; if it is positive, this product becomes
α τ = α+. This confirms the intuition developed in the preceding section (Equation 3), showing that
such an update rule indeed minimizes the quantile regression loss function and approximates the
τ-th quantile (Figure 3D).

To arrive at expectile regression, we move one step further and replace the absolute value of δn
with its square in Equation 9. This yields the weighted squared error loss function, also called the
expectile regression loss function [15,20],

1
N
∑n¼1
N δ2

n ∙
1− τ if δn ≤ 0

τ if δn >0

8<
: ½11�

whose associated best estimate is the τ-th expectile (Figure 3E). For τ = 0.5, the two weights are
equal, such that the error measure becomes equivalent to (half) the MSE, Equation 1. This con-
firms that the 0.5-th expectile is the mean across all rewards. Other expectiles can be interpreted
as the analogue to quantiles, but for squared rather than absolute errors.

Stochastic gradient descent on Equation 11 results in the update rule

V← V þ αδn �
1− τ if δn ≤ 0

τ if δn >0

8<
: ½12�

which is a modified version of RW rule in which the rate parameter takes on different values for
negative and positive δn (Equation 4).

Different loss functions therefore lead to estimating different statistics of the reward distribution.
Even if we fix a loss function, however, there are still many possible ways to represent and learn
the corresponding statistic. For instance, instead of storing the estimated quantiles directly and
performing updates on them as in Equation 10, the brain may approximate quantiles by a paramet-
ric vector-valued function q(θ) = (q1(θ),…,qM(θ)), with parameters θ that might correspond to syn-
aptic strengths between different neurons and outputs qi denoting the value of the τi-th quantile (q
and θ are vectors and thus bold). The same strategy could also apply to expectiles e(θ).

To find the update rules for these representations, we can again use stochastic gradient descent.
However, rather than computing the gradient with respect to V, we now compute it with respect
to the function’s parameters, θ. Following similar calculations as shown earlier, this update rule for
learning quantiles turns out to be

θ←θ þ α∑M
i¼1∇θqi θð Þ �

− 1− τð Þ if δ i;n ≤ 0

τ if δ i;n > 0

8<
: ½13�

while for learning expectiles, it becomes

θ←θ þ α∑M
i¼1δ i;n∇θei θð Þ �

1− τ if δ i;n ≤ 0

τ if δ i;n > 0

8<
: ½14�

Thus, the only changes to the update rules are: (i) the addition of the gradient terms ∇θqi(θ ) or
∇θei(θ ), and (ii) the sum of contributions from different component quantiles or expectiles. For
988 Trends in Neurosciences, December 2020, Vol. 43, No. 12
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components qi(θ ) or ei(θ ) estimated as linear parametric functions ui
Tθ + vi, this gradient is ui, which

results in a simple rescaling of the parameter update by ui. Such functions include single-layer neural
networks, in which case it is synaptic weights that are incremented or decremented. If wemove from
linear to nonlinear parametric functions, like multilayer neural networks, the gradients (and therefore
the updates) become slightly more complex, but the general principles of stochastic gradient
descent remain. In sum, by treating distributional RL as a regression problem and performing sto-
chastic gradient descent on an appropriate loss function, one can easily derive update rules that
converge to the desired statistics of the reward distribution under a wide variety of parameterizations.

Traditional and Distributional RL in the Brain
The idea that the brain uses some form of RL to select appropriate actions has been supported by
a number of observations of animal behavior and neuronal activity [12,13,21–23]. One of the stron-
gest pieces of evidence is the close relationship between the activity of dopamine neurons and the
reward prediction error (RPE) term in RL algorithms [21–23]. Neural activity representing value, the
other critical variable in these algorithms, is also found in dopamine-recipient areas [24–26].

Inmammals, dopamine neurons are locatedmainly in the ventral tegmental area (VTA) and substantia
nigra pars compacta in the midbrain, from which they send long axons to a wide swath of the brain
that includes the striatum, prefrontal cortex, and amygdala. The information conveyed by different
dopamine neurons varies greatly based on their projection targets [27–30], with the dopamine
neurons in the VTA that project to the ventral part of the striatum (nucleus accumbens) thought to
mainly signal RPEs (but see [31,32]). Beyond this coarse projection specificity, which has been
reviewed elsewhere [27,28], there is also fine-grained diversity within VTA dopamine neurons,
which is our focus here. While the activity of these neurons appears quite homogenous compared
with neurons in other parts of the brain [33,34], recent studies have revealed more diverse firing
patterns [35], at least some of whichmay reflect systematic variation in RPE signals [36]. Distributional
RL offers one possible explanation for the functional significance of this diversity within the VTA.

Empirically Testing Distributional RL
The key ingredient that transforms traditional RL into distributional RL is the diversity in learning
rate parameters for positive and negative RPEs (α+and α−), or, more critically, the ratio between

them, τ ¼ αþ

αþ þ α−, which we call the asymmetric scaling factor [7,8]. Although the biological pro-

cesses that implement α+ and α− remain unclear, one possibility is that these parameters corre-
spond to how the firing of each dopamine neuron scales up or down with respect to positive or
negative RPEs, respectively. This leads to several testable predictions in the expectile setting.

First, there should be ample diversity in asymmetric scaling factors across dopamine neurons
(Figure 4A), which should result in optimistic and pessimistic value predictors (Figure 4B). The
information contained in these value predictors (Vi), in turn, is routed back to dopamine neurons
for computing RPEs, subtracting ‘expectation’ (Vi) from the response to a received reward (R).
This means that for optimistic dopamine neurons, which are coupled to relatively high value
predictors, larger rewards are necessary to cancel out their reward response and obtain zero
RPE. Thus, optimistic dopamine neurons with α+ > α− will have ‘reversal points’ that are shifted
towards above-average reward magnitudes (Figure 4C). Conversely, pessimistic dopamine neu-
rons with α+ < α− will have reversal points shifted towards below-average reward magnitudes.
Across the population of neurons, distributional RL therefore makes the unique prediction that
the reversal points of dopamine response functions should be positively correlated with their

asymmetric scaling factors
�
τ ¼ αþ

αþ þ α−

�
.
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Figure 4. The Structured Diversity of Midbrain Dopamine Neurons Is Consistent with Distributiona
Reinforcement Learning. (A) Schematic of five different response functions (spiking activity of dopamine neurons) to
positive and negative reward prediction errors (RPEs). In this model, the slope of the response function to positive
and negative RPEs corresponds to the learning rates α+ and α−. Diversity in α+ and α− values results in differen

asymmetric scaling factors
�

αþ
i

αþ
i þ α−

i

�
. (B) RPE channels (δi) with α+ < α− overweight negative prediction errors, resulting

in pessimistic (blue) value predictors (Vi), while RPE channels with α+ > α− overweight positive prediction errors and resul
in optimistic (red) value predictors. This representation corresponds to the Rescorla-Wagner approach in which RPE and
value pairs form separate channels, with no crosstalk between channels with different scaling factors. See Box 2 for the
general update rule when this condition is not met. (C) Given that different value predictors encode different reward
magnitudes, the corresponding RPE channels will have diverse reversal points (reward magnitudes that elicit no RPE

(Figure legend continued at the bottom of the next page.
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A recent study [8] tested these predictions using existing data from optogenetically tagged VTA
dopamine neurons in mice performing a task in which a single odor preceded a variable reward
[34,37]. Responses differed in subtle but important ways among dopamine neurons; some
neurons were consistently excited, even for below-average rewards, while others were excited
only by rewards that exceeded the average (Figure 4D) [8]. The reversal points in this task were
assumed to reflect different value predictions: each reversal point eτ i was interpreted as the τi-th
expectile of the reward distribution.

To independently compute τi, α i
+ and α i

− were estimated for each neuron i as the slopes of the
average response function above and below the neuron’s reversal point. This analysis revealed
significant variability in asymmetric scaling factors, tiling a relatively wide range between 0 and 1
(Figure 4E). Critically, these asymmetric scaling factors were positively correlated with the
reversal points, as predicted earlier (Figure 4F). Finally, such structured heterogeneity in
dopamine neurons allowed the authors to decode possible reward distributions from the neural
data by finding reward distributions compatible with the expectiles defined by {τi, eτ i}
(Figure 4G). Importantly, this decoding procedure strongly relied on the structured
heterogeneity assumption imposed by an expectile code and should have been unsuccessful
if the variability merely reflected random noise.

Distributional RL lends itself to several additional experimental predictions, which remain to be
tested [8]. For example, dopamine neurons should show consistent asymmetric scaling factors
across different reward distributions. Furthermore, optimistic cells should learn more slowly
from negative prediction errors compared with pessimistic cells and therefore be slower to
devalue when reward contingencies are changed. Quantile-like distributions of value should be
present in both the downstream targets as well as the inputs to VTA dopamine neurons [8],
with optimistic neurons in one region projecting predominantly to optimistic neurons elsewhere.
Finally, distributional representations should predict behavior in operant tasks, such that biasing
dopamine neurons optimistically [38] elicits risk-seeking behavior.

Is Distributional RL Biologically Plausible?
The studies discussed earlier are promising, but the prospect of distributional RL in the brain
raises many new questions regarding development, plasticity, and computation in the
dopamine system.

Diversity in Asymmetric Scaling and Independent Loops
The critical feature of distributional RL, the diversity of asymmetric scaling factors in dopamine
signals (Figure 4A), might be established developmentally simply through stochasticity in wiring.
However, there may be more specific mechanisms in place to ensure such diversity. Recent
evidence suggests that positive and negative RPEs may be shaped by relatively separate mech-
anisms. For example, lesions of the lateral habenula or rostromedial tegmental nucleus (RMTg)
activity relative to baseline). The reversal points correspond to the values Vi of the τi-th expectiles of the reward
distribution. (D) Reversal points of optotagged dopamine neurons are consistent across two independent sets of trials
suggesting that the diversity observed is reliable (P = 1.8 × 10−5, each point represents a cell). Modified from [8]
(E) Diversity in asymmetric scaling in dopamine neurons tiles the entire [0, 1] interval and is statistically reliable [one-way
ANOVA; F(38,234) = 2.93, P = 4 × 10−7]. Modified from [8]. (F) Significant correlation between reversal points and
asymmetric scaling in dopamine neurons (each point is a cell, linear regression P = 8.1 × 10−5). Gray traces show variability
over distributional RL simulations run to calculate reversal points in this task. Modified from [8]. (G) Decoding of the reward
distribution from dopamine cell activity using an expectile code. The expectiles of the distribution, {τi,eτ i}, were defined by the
asymmetries and reversal points of dopamine neurons, respectively. Gray area represents the smoothed reward distribution
light blue traces represent several decoding runs, and the dark blue trace represents their mean. Modified from [8].
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result in a preferential reduction of responses to negative RPEs [38,39]. Intriguingly, habenula-
lesioned animals become ‘optimistic’ in reward-seeking behavior as well [38], raising the possibil-
ity that asymmetric scaling factors might influence behavior.

One important assumption in the distributional RL model discussed earlier is the independence
between loops of dopamine neuron-value predictor pairs, to separate optimistic and pessimistic
value predictors (Figure 4B). Of course, complete independence of these loops would be unreal-
istic, given the complexity of wiring in the brain. Axons of dopamine neurons branch extensively in
the dorsal striatum, but branching in the ventral striatum is much more restricted [40–42]. It turns
out that adding relatively extensive crosstalk between neighboring dopamine projections does
not disturb distributional RL [8], provided that optimistic and pessimistic dopamine neurons
(and value predictors) are topographically organized (e.g., [42]). One way to create such a gradi-
ent would be through inhomogeneous projections of inputs generating excitatory and inhibitory
responses in dopamine neurons, as is the case for input from RMTg [43,44]. There is additional
topographic variability in the intrinsic membrane properties of dopamine neurons, particularly in
their response to hyperpolarizing current, that is hypothesized to render them differentially sensi-
tive to positive and negative RPEs [45], adding yet another layer of diversity that could support
distributional RL.

Learning Rate Parameters in Striatum and Cortex
Up to this point, we have assumed that asymmetric scaling factors are already implemented in the
firing of dopamine neurons [8]. However, learning rate parameters may also be affected by down-
stream processes such as synaptic plasticity at dopamine-recipient neurons. Recent studies
have begun to establish experimental paradigms for inducing synaptic plasticity using transient
dopamine release in vitro and measuring the resulting ‘plasticity function’ [46,47]. Along these
lines, recent studies indicate that positive and negative RPEs are processed differently, depend-
ing on whether the target cells in the striatum express D1- or D2-type dopamine receptors
[46,47]. This dichotomous circuit architecture resembles the binarized update rules shown earlier,
but it is at present unclear whether it enables distributional RL in the brain.

Normative models predict that the overall learning rate should be dynamically modulated by the
volatility of rewards in the environment [48]. The mechanism of distributional RL leaves open
the possibility that additional, extrinsic factors might modulate the overall learning rate, or
‘gain’, while leaving the ratio between positive and negative learning rates, and thus the distribu-
tional codes, relatively unchanged. Neuromodulators such as serotonin and norepinephrine, act-
ing in cortical or striatal areas, are good candidates for tuning such a gain mechanism [49,50].
Furthermore, frontal regions such as the anterior cingulate [48,51] and orbitofrontal cortex [52],
which project densely to more ventral portions of the striatum [53], also encode value, prediction
error, uncertainty, and volatility and have been hypothesized to adjust the gain under conditions of
uncertainty [54]. In principle, this additional, cortical level of regulation could go beyond adapting
the learning rate to directly influencing the computation or readout of a quantile-like code, for
example, by biasing downstream circuits towardsmore optimistic or pessimistic value predictors.

The importance of interplay between cortical and subcortical circuits in this context is highlighted
by the Iowa Gambling Task (IGT), which was originally designed to characterize deficits in risk-
based decision-making in patients with orbitofrontal damage [55]. Parkinson’s patients treated
with L-DOPA, which elevates dopamine levels (but not unmedicated patients [56], who have nor-
mal levels of ventral striatal dopamine [57]) also exhibit deficits in the IGT, as well as impulse con-
trol disorders such as pathological gambling [58,59]. This pattern suggests that L-DOPA may
compromise the fidelity of distributional RL and is consistent with previous reports that
992 Trends in Neurosciences, December 2020, Vol. 43, No. 12
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dopaminergic [60] and ventral striatal [61,62] activity can combine information about reward
mean and variance to influence choice behavior [63–66]. Distributional RL provides a new poten-
tial mechanism to explain the involvement of dopaminergic activity in risk and could play a critical
role in guiding efficient exploration of uncertain environments [67].

How Does the Brain Benefit from Distributional Representations?
The performance improvement garnered by distributional RL in previous studies [6–8,10] is not
due to better decision-making at the action selection stage; the modified DQN in these studies
computed the mean of the inferred reward distribution to decide which action to take. Instead,
it is thought that the benefit of distributional RL comes mainly from its ability to support efficient
representation learning in multilayer neural networks. In traditional DQN, states with the same
expected value yield the same output even if they give rise to very different reward distributions;
thus, there is no drive to distinguish these states in lower layers of the network. A distributional
DQN, by contrast, outputs the complete return distribution and so requires distinct representa-
tions in the hidden layers [8]. By combining the quantile or expectile loss with backpropagation
or other optimization methods, deep neural networks can convey this much richer information
to lower layers and thereby improve performance even with risk-neutral policies. Linear function
approximators (e.g., single-layer neural networks) do not learn hidden representations, so distri-
butional RL confers no benefit for estimating the expected value in the linear setting [68]. Whether
or not such distributional codes also promote state learning in the brain remains to be tested
experimentally. However, it is compelling to speculate that such codes are central not just for
learning distributions of reward magnitude [8,34,69] and probability [38], but also for tracking
rewards across uncertain delay intervals [70–72] and representing such distributions in the
common currency of value.

Quantile-like codes are nonparametric codes, as they do not a priori assume a specific form of
a probability distribution with associated parameters. Previous studies have proposed different
population coding schemes. For example, probabilistic population codes (PPCs) [73,74] and dis-
tributed distributional codes (DDCs) [75,76] employ population coding schemes from which var-
ious statistical parameters of a distribution can be read out, making them parametric codes. As
a simple example, a PPCmight encode a Gaussian distribution, in which case themeanwould be
reflected in which specific neurons are most active and the variance would be reflected in the
inverse of the overall activity [73]. It is not yet known whether parametric codes predict similar
structured heterogeneity of dopamine neuron RPEs. Understanding the precise format of
population codes is crucial because it helps determine how downstream neurons can use that
information to guide behavior. While PPCs, for example, support Bayesian inference [73,77],
quantile codes could support simple implementations [8] of cumulative prospect theory [78],
which provides a descriptive model of human and animal behavior [79]. There have also been
simpler algorithms proposed that learn a specific parameter (e.g., variance) of a distribution
[54,80]. While these algorithms are not meant to learn the entire shape of a distribution, such
parameters may be useful for specific purposes, and it will be important to clarify under what
circumstances quantile-like codes outperform these simpler mechanisms.

Once an agent has sufficient experience, the full distribution of future returns captures intrinsic
and irreducible stochasticity in the environment, such as variability in reward size. However,
there are several additional possible sources of uncertainty in the RL framework, such as state,
value, and policy uncertainty, all of which have been proposed to affect dopamine cell activity,
albeit through different mechanisms [81]. For example, there is strong evidence that reward
expectations inferred from ambiguous state information [71,72,82] or perceptual uncertainty
[83,84] modulate dopamine activity. Future avenues of research should explore how a
Trends in Neurosciences, December 2020, Vol. 43, No. 12 993
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distributional representation of outcomes can be combined with such independent forms of
uncertainty to produce more robust learning.

Distributional TD Updates in the Brain
A subtle but crucial distinction between traditional and distributional RL when moving from the
RW to the TD framework centers on the computation of the prediction error δ (Box 2). In the
case of traditional RL, δ can be computed from a single, local estimate of the value at the
succeeding state. By contrast, distributional RL often requires samples to be generated from
the reward distribution of the succeeding state in order to compute δ [7,8]. The information
required to generate these samples is no longer contained locally within a (hypothetical) single
unit; instead, it is distributed across a population of neurons and hence available only globally.
Box 2. Distributional Temporal Difference (TD) Learning

In distributional TD learning, the objective is no longer simply the expected value, but rather the entire distribution over
cumulative discounted future reward beginning in state st. This is called the return distribution and denoted Z(st) [6]. We
emphasize that Z(st) is a random variable, unlike its expectation V(st) = E[Z(st)]. Nonetheless, we can write down a similar
‘distributional Bellman equation’, where the D denotes equality of distribution:

Z stð Þ¼D R stð Þ þ γZ stþ1ð Þ: ½I�

If we were to take the expectation on both sides, we would get back our familiar, nondistributional Bellman equation. In
contrast, we now seek to learn each statistic Vi(st) that minimizes the quantile regression loss (Equation 9 in the main text)
on samples from Z(st) for τ = τi. One way to do this is by computing samples of the distributional TD error [7]:

δ i tð Þ≔ rt þ γ~z stþ1ð Þ−Vi stð Þ: ½II�

Here, rt is a sample from R(st), provided by the environment, and ~zðstþ1Þ is a sample from the estimated distribution Z(st+1).
Note that this TD error departs from the traditional form; in particular, as ~zðstþ1Þ is fundamentally random, so is the TD er-
ror, and δi(t) ≠ rt + γVi(st+1) − Vi(st), as one might otherwise expect. Furthermore, since δi(t) enters the value update equa-
tions in a nonlinear way, we cannot simply operate with the average TD error, E[δi(t)]. Despite these differences, our value
predictors can be updated in direct analogy to the distributional RW rule:

Vi stð Þ← Vi stð Þ þ
α−
i � −1ð Þ if δ i tð Þ ≤ 0

αþ
i � þ1ð Þ if δ i tð Þ>0

8<
: ½III�

While asymptotically correct, a strategy that relies on a single sample ~zðstþ1Þ from the upcoming reward distribution, and
associated single δi(t) sample, would be limited by high variance. To reduce variance, we average across J updates, each
of which depends on its own sample of δi(t) [7]:

E ΔVi stð Þ½ � ¼ 1
J

X
j¼1

J α−
i � −1ð Þ if δ i; j tð Þ≤ 0

αþ
i � þ1ð Þ if δ i; j tð Þ > 0

8<
: ½IV�

Vi stð Þ← Vi stð Þ þ E ΔVi stð Þ½ �: ½V�

The expected update (Equation V) becomes equivalent to the sample update (Equation III) when Z(st+1) collapses to a
single Dirac, in which case all ~zðstþ1Þ are equivalent, and to the RW quantile update (Equation 3 in the main text) when
no future reward is expected, in which case all ~zðstþ1Þ are zero. This last case is the regime explored in work to date [8]
and in most of the present article, for simplicity.

Computing E[ΔVi(st)] (Equation IV) is straightforward for quantiles, since quantiles with uniformly spaced τi can be treated as
samples from the underlying distribution as long as the number of quantiles is reasonably large. We can therefore simply inter-
pret each quantile Vj(st+1) as a sample from Z(st+1) and compute the expectation of ΔVi(st) over j for all pairs of (Vi(st),Vj(st+1)) [7].
However, performing similar sampling for a given set of discrete expectiles requires a different and currently computationally
expensive approach [89]. It remains to be seen whether alternative sampling strategies, or other approximations not depen-
dent on sampling, can be implemented to ensure robust, efficient computation of these estimators in a biologically plausible
manner.
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Outstanding Questions
Under what circumstances do animals
use reward distributions, rather than
expected values (utility) in making
decisions? How does distributional
RL support changes in risk preferences?

Are optimistic and pessimistic value
predictors explicitly specified during
neural development? Are they organized
in a topographic fashion in the
mesostriatal dopamine pathway?

Do distributional TD errors in the brain
improve animals’ representations of
states in the environment, as they do
in artificial systems?

How do quantile-like codes compare
quantitatively with existing probabilistic
population coding theories, such as
PPCs and DDCs?

Are learning rates modulated by
environmental volatility in a way that
preserves the optimism or pessimism
of individual value channels?

Might other neuromodulatory systems
beyond dopamine, such as acetylcholine,
be sensitive to the distribution of
predicted events? If so, what kinds of
codes are used to signal them?

What are the rules governing plasticity
in neurons that receive dopamine
input, particularly D1 and D2 receptor-
expressing medium spiny neurons, in
response to positive and negative do-

Trends in Neurosciences
Computing δ in the general TD case thus requires more elaborate feedback than simple TD-value
predictor loops (Box 2). Future work should seek to identify neural architectures that could com-
pute the distributional TD update, as well as experimental paradigms or environments that de-
mand such an update.

Concluding Remarks
Distributional RL arises from structured diversity in RPEs. The specific type of diversity confers a
computational advantage, providing a normative perspective on the diversity of dopamine neuron
firing. It is interesting to note that the signatures of this type of diversity were present in previous
studies, but were typically averaged out to focus on general trends across dopamine neurons
[34,69,85]. This attests to the potential of machine learning to inform the study of the brain: with-
out the development of distributional RL, this type of neural variability might have been discarded
as mere ‘noise’.

Beyond the dopamine system, the efficacy of quantile-like codes in deep RL and the biolog-
ical plausibility of the associated learning rules raise new possibilities for neural coding.
Whether such codes exist elsewhere in the brain, and how they interact with other population
coding schemes, remains unknown (see Outstanding Questions). Generally, the optimal type
and format of a neural code depends on the specific computations that it facilitates. Artificial
neural networks specifically adapted for performance on machine learning tasks may reveal
novel combinations of neural codes and related computations, as has been widely docu-
mented in the primate visual system [86,87]. Ongoing collaborations in this area will help
close the loop between biological and artificial neural networks and push the frontiers of neu-
roscience and AI.
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